Cleaned up planar SLAM example and created new Localization example

release/4.3a0
Frank Dellaert 2012-05-20 20:31:33 +00:00
parent 8af4581139
commit edb9c17962
2 changed files with 95 additions and 39 deletions

View File

@ -0,0 +1,63 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file LocalizationExample.cpp
* @brief Simple robot localization example
* @author Frank Dellaert
*/
// pull in the 2D PoseSLAM domain with all typedefs and helper functions defined
#include <gtsam/slam/pose2SLAM.h>
using namespace std;
using namespace gtsam;
/**
* Example of a simple 2D localization example
* - Robot poses are facing along the X axis (horizontal, to the right in 2D)
* - The robot moves 2 meters each step
* - We have full odometry between poses
*/
int main(int argc, char** argv) {
// create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
pose2SLAM::Graph graph;
// add a Gaussian prior on pose x_1
Pose2 priorMean(0.0, 0.0, 0.0); // prior mean is at origin
SharedDiagonal priorNoise(Vector_(3, 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
graph.addPrior(1, priorMean, priorNoise); // add directly to graph
// add two odometry factors
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
SharedDiagonal odometryNoise(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
graph.addOdometry(1, 2, odometry, odometryNoise);
graph.addOdometry(2, 3, odometry, odometryNoise);
// print
graph.print("\nFactor graph:\n");
// create (deliberatly inaccurate) initial estimate
pose2SLAM::Values initialEstimate;
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
initialEstimate.print("\nInitial estimate:\n ");
// optimize using Levenberg-Marquardt optimization with an ordering from colamd
pose2SLAM::Values result = graph.optimize(initialEstimate);
result.print("\nFinal result:\n ");
return 0;
}

View File

@ -15,64 +15,57 @@
* @author Alex Cunningham * @author Alex Cunningham
*/ */
#include <cmath>
#include <iostream>
// pull in the planar SLAM domain with all typedefs and helper functions defined // pull in the planar SLAM domain with all typedefs and helper functions defined
#include <gtsam/slam/planarSLAM.h> #include <gtsam/slam/planarSLAM.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
using namespace std; using namespace std;
using namespace gtsam; using namespace gtsam;
using namespace planarSLAM;
/** /**
* In this version of the system we make the following assumptions: * Example of a simple 2D planar slam example with landmarls
* - All values are axis aligned * - The robot and landmarks are on a 2 meter grid
* - Robot poses are facing along the X axis (horizontal, to the right in images) * - Robot poses are facing along the X axis (horizontal, to the right in 2D)
* - The robot moves 2 meters each step
* - We have full odometry between poses
* - We have bearing and range information for measurements * - We have bearing and range information for measurements
* - We have full odometry for measurements
* - The robot and landmarks are on a grid, moving 2 meters each step
* - Landmarks are 2 meters away from the robot trajectory * - Landmarks are 2 meters away from the robot trajectory
*/ */
int main(int argc, char** argv) { int main(int argc, char** argv) {
// create graph container and add factors to it // create the graph (defined in planarSlam.h, derived from NonlinearFactorGraph)
Graph graph; planarSLAM::Graph graph;
/* add prior */ // add a Gaussian prior on pose x_1
// gaussian for prior Pose2 priorMean(0.0, 0.0, 0.0); // prior mean is at origin
SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); SharedDiagonal priorNoise(Vector_(3, 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin graph.addPrior(1, priorMean, priorNoise); // add directly to graph
graph.addPrior(1, prior_measurement, prior_model); // add directly to graph
/* add odometry */ // add two odometry factors
// general noisemodel for odometry Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); SharedDiagonal odometryNoise(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) graph.addOdometry(1, 2, odometry, odometryNoise);
graph.addOdometry(1, 2, odom_measurement, odom_model); graph.addOdometry(2, 3, odometry, odometryNoise);
graph.addOdometry(2, 3, odom_measurement, odom_model);
/* add measurements */ // create a noise model for the landmark measurements
// general noisemodel for measurements SharedDiagonal measurementNoise(Vector_(2, 0.1, 0.2)); // 0.1 rad std on bearing, 20cm on range
SharedDiagonal meas_model = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.2));
// create the measurement values - indices are (pose id, landmark id) // create the measurement values - indices are (pose id, landmark id)
Rot2 bearing11 = Rot2::fromDegrees(45), Rot2 bearing11 = Rot2::fromDegrees(45),
bearing21 = Rot2::fromDegrees(90), bearing21 = Rot2::fromDegrees(90),
bearing32 = Rot2::fromDegrees(90); bearing32 = Rot2::fromDegrees(90);
double range11 = sqrt(4+4), double range11 = sqrt(4+4),
range21 = 2.0, range21 = 2.0,
range32 = 2.0; range32 = 2.0;
// create bearing/range factors and add them // add bearing/range factors (created by "addBearingRange")
graph.addBearingRange(1, 1, bearing11, range11, meas_model); graph.addBearingRange(1, 1, bearing11, range11, measurementNoise);
graph.addBearingRange(2, 1, bearing21, range21, meas_model); graph.addBearingRange(2, 1, bearing21, range21, measurementNoise);
graph.addBearingRange(3, 2, bearing32, range32, meas_model); graph.addBearingRange(3, 2, bearing32, range32, measurementNoise);
graph.print("full graph"); // print
graph.print("Factor graph");
// initialize to noisy points // create (deliberatly inaccurate) initial estimate
planarSLAM::Values initialEstimate; planarSLAM::Values initialEstimate;
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2)); initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
@ -80,11 +73,11 @@ int main(int argc, char** argv) {
initialEstimate.insertPoint(1, Point2(1.8, 2.1)); initialEstimate.insertPoint(1, Point2(1.8, 2.1));
initialEstimate.insertPoint(2, Point2(4.1, 1.8)); initialEstimate.insertPoint(2, Point2(4.1, 1.8));
initialEstimate.print("initial estimate"); initialEstimate.print("Initial estimate:\n ");
// optimize using Levenberg-Marquardt optimization with an ordering from colamd // optimize using Levenberg-Marquardt optimization with an ordering from colamd
planarSLAM::Values result = LevenbergMarquardtOptimizer(graph, initialEstimate).optimize(); planarSLAM::Values result = graph.optimize(initialEstimate);
result.print("final result"); result.print("Final result:\n ");
return 0; return 0;
} }