Cleaned up planar SLAM example and created new Localization example
parent
8af4581139
commit
edb9c17962
|
@ -0,0 +1,63 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file LocalizationExample.cpp
|
||||
* @brief Simple robot localization example
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
// pull in the 2D PoseSLAM domain with all typedefs and helper functions defined
|
||||
#include <gtsam/slam/pose2SLAM.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
/**
|
||||
* Example of a simple 2D localization example
|
||||
* - Robot poses are facing along the X axis (horizontal, to the right in 2D)
|
||||
* - The robot moves 2 meters each step
|
||||
* - We have full odometry between poses
|
||||
*/
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
// create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
|
||||
pose2SLAM::Graph graph;
|
||||
|
||||
// add a Gaussian prior on pose x_1
|
||||
Pose2 priorMean(0.0, 0.0, 0.0); // prior mean is at origin
|
||||
SharedDiagonal priorNoise(Vector_(3, 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
|
||||
graph.addPrior(1, priorMean, priorNoise); // add directly to graph
|
||||
|
||||
// add two odometry factors
|
||||
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
|
||||
SharedDiagonal odometryNoise(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
|
||||
graph.addOdometry(1, 2, odometry, odometryNoise);
|
||||
graph.addOdometry(2, 3, odometry, odometryNoise);
|
||||
|
||||
// print
|
||||
graph.print("\nFactor graph:\n");
|
||||
|
||||
// create (deliberatly inaccurate) initial estimate
|
||||
pose2SLAM::Values initialEstimate;
|
||||
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
|
||||
|
||||
initialEstimate.print("\nInitial estimate:\n ");
|
||||
|
||||
// optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
pose2SLAM::Values result = graph.optimize(initialEstimate);
|
||||
result.print("\nFinal result:\n ");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -15,64 +15,57 @@
|
|||
* @author Alex Cunningham
|
||||
*/
|
||||
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
||||
// pull in the planar SLAM domain with all typedefs and helper functions defined
|
||||
#include <gtsam/slam/planarSLAM.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace planarSLAM;
|
||||
|
||||
/**
|
||||
* In this version of the system we make the following assumptions:
|
||||
* - All values are axis aligned
|
||||
* - Robot poses are facing along the X axis (horizontal, to the right in images)
|
||||
* Example of a simple 2D planar slam example with landmarls
|
||||
* - The robot and landmarks are on a 2 meter grid
|
||||
* - Robot poses are facing along the X axis (horizontal, to the right in 2D)
|
||||
* - The robot moves 2 meters each step
|
||||
* - We have full odometry between poses
|
||||
* - We have bearing and range information for measurements
|
||||
* - We have full odometry for measurements
|
||||
* - The robot and landmarks are on a grid, moving 2 meters each step
|
||||
* - Landmarks are 2 meters away from the robot trajectory
|
||||
*/
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
// create graph container and add factors to it
|
||||
Graph graph;
|
||||
// create the graph (defined in planarSlam.h, derived from NonlinearFactorGraph)
|
||||
planarSLAM::Graph graph;
|
||||
|
||||
/* add prior */
|
||||
// gaussian for prior
|
||||
SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
|
||||
Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin
|
||||
graph.addPrior(1, prior_measurement, prior_model); // add directly to graph
|
||||
// add a Gaussian prior on pose x_1
|
||||
Pose2 priorMean(0.0, 0.0, 0.0); // prior mean is at origin
|
||||
SharedDiagonal priorNoise(Vector_(3, 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
|
||||
graph.addPrior(1, priorMean, priorNoise); // add directly to graph
|
||||
|
||||
/* add odometry */
|
||||
// general noisemodel for odometry
|
||||
SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
|
||||
Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
|
||||
graph.addOdometry(1, 2, odom_measurement, odom_model);
|
||||
graph.addOdometry(2, 3, odom_measurement, odom_model);
|
||||
// add two odometry factors
|
||||
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
|
||||
SharedDiagonal odometryNoise(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
|
||||
graph.addOdometry(1, 2, odometry, odometryNoise);
|
||||
graph.addOdometry(2, 3, odometry, odometryNoise);
|
||||
|
||||
/* add measurements */
|
||||
// general noisemodel for measurements
|
||||
SharedDiagonal meas_model = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.2));
|
||||
// create a noise model for the landmark measurements
|
||||
SharedDiagonal measurementNoise(Vector_(2, 0.1, 0.2)); // 0.1 rad std on bearing, 20cm on range
|
||||
|
||||
// create the measurement values - indices are (pose id, landmark id)
|
||||
Rot2 bearing11 = Rot2::fromDegrees(45),
|
||||
bearing21 = Rot2::fromDegrees(90),
|
||||
bearing32 = Rot2::fromDegrees(90);
|
||||
bearing21 = Rot2::fromDegrees(90),
|
||||
bearing32 = Rot2::fromDegrees(90);
|
||||
double range11 = sqrt(4+4),
|
||||
range21 = 2.0,
|
||||
range32 = 2.0;
|
||||
range21 = 2.0,
|
||||
range32 = 2.0;
|
||||
|
||||
// create bearing/range factors and add them
|
||||
graph.addBearingRange(1, 1, bearing11, range11, meas_model);
|
||||
graph.addBearingRange(2, 1, bearing21, range21, meas_model);
|
||||
graph.addBearingRange(3, 2, bearing32, range32, meas_model);
|
||||
// add bearing/range factors (created by "addBearingRange")
|
||||
graph.addBearingRange(1, 1, bearing11, range11, measurementNoise);
|
||||
graph.addBearingRange(2, 1, bearing21, range21, measurementNoise);
|
||||
graph.addBearingRange(3, 2, bearing32, range32, measurementNoise);
|
||||
|
||||
graph.print("full graph");
|
||||
// print
|
||||
graph.print("Factor graph");
|
||||
|
||||
// initialize to noisy points
|
||||
// create (deliberatly inaccurate) initial estimate
|
||||
planarSLAM::Values initialEstimate;
|
||||
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
|
||||
|
@ -80,11 +73,11 @@ int main(int argc, char** argv) {
|
|||
initialEstimate.insertPoint(1, Point2(1.8, 2.1));
|
||||
initialEstimate.insertPoint(2, Point2(4.1, 1.8));
|
||||
|
||||
initialEstimate.print("initial estimate");
|
||||
initialEstimate.print("Initial estimate:\n ");
|
||||
|
||||
// optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
planarSLAM::Values result = LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();
|
||||
result.print("final result");
|
||||
planarSLAM::Values result = graph.optimize(initialEstimate);
|
||||
result.print("Final result:\n ");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue