Merge pull request #1816 from truher/team100_camera_resectioning
add example CameraResectioning.pyrelease/4.3a0
commit
ed90121e0a
|
@ -0,0 +1,85 @@
|
|||
# pylint: disable=consider-using-from-import,invalid-name,no-name-in-module,no-member,missing-function-docstring
|
||||
"""
|
||||
This is a 1:1 transcription of CameraResectioning.cpp.
|
||||
"""
|
||||
import numpy as np
|
||||
from gtsam import Cal3_S2, CustomFactor, LevenbergMarquardtOptimizer, KeyVector
|
||||
from gtsam import NonlinearFactor, NonlinearFactorGraph
|
||||
from gtsam import PinholeCameraCal3_S2, Point2, Point3, Pose3, Rot3, Values
|
||||
from gtsam.noiseModel import Base as SharedNoiseModel, Diagonal
|
||||
from gtsam.symbol_shorthand import X
|
||||
|
||||
|
||||
def resectioning_factor(
|
||||
model: SharedNoiseModel,
|
||||
key: int,
|
||||
calib: Cal3_S2,
|
||||
p: Point2,
|
||||
P: Point3,
|
||||
) -> NonlinearFactor:
|
||||
|
||||
def error_func(this: CustomFactor, v: Values, H: list[np.ndarray]) -> np.ndarray:
|
||||
pose = v.atPose3(this.keys()[0])
|
||||
camera = PinholeCameraCal3_S2(pose, calib)
|
||||
if H is None:
|
||||
return camera.project(P) - p
|
||||
Dpose = np.zeros((2, 6), order="F")
|
||||
Dpoint = np.zeros((2, 3), order="F")
|
||||
Dcal = np.zeros((2, 5), order="F")
|
||||
result = camera.project(P, Dpose, Dpoint, Dcal) - p
|
||||
H[0] = Dpose
|
||||
return result
|
||||
|
||||
return CustomFactor(model, KeyVector([key]), error_func)
|
||||
|
||||
|
||||
def main() -> None:
|
||||
"""
|
||||
Camera: f = 1, Image: 100x100, center: 50, 50.0
|
||||
Pose (ground truth): (Xw, -Yw, -Zw, [0,0,2.0]')
|
||||
Known landmarks:
|
||||
3D Points: (10,10,0) (-10,10,0) (-10,-10,0) (10,-10,0)
|
||||
Perfect measurements:
|
||||
2D Point: (55,45) (45,45) (45,55) (55,55)
|
||||
"""
|
||||
|
||||
# read camera intrinsic parameters
|
||||
calib = Cal3_S2(1, 1, 0, 50, 50)
|
||||
|
||||
# 1. create graph
|
||||
graph = NonlinearFactorGraph()
|
||||
|
||||
# 2. add factors to the graph
|
||||
measurement_noise = Diagonal.Sigmas(np.array([0.5, 0.5]))
|
||||
graph.add(
|
||||
resectioning_factor(
|
||||
measurement_noise, X(1), calib, Point2(55, 45), Point3(10, 10, 0)
|
||||
)
|
||||
)
|
||||
graph.add(
|
||||
resectioning_factor(
|
||||
measurement_noise, X(1), calib, Point2(45, 45), Point3(-10, 10, 0)
|
||||
)
|
||||
)
|
||||
graph.add(
|
||||
resectioning_factor(
|
||||
measurement_noise, X(1), calib, Point2(45, 55), Point3(-10, -10, 0)
|
||||
)
|
||||
)
|
||||
graph.add(
|
||||
resectioning_factor(
|
||||
measurement_noise, X(1), calib, Point2(55, 55), Point3(10, -10, 0)
|
||||
)
|
||||
)
|
||||
|
||||
# 3. Create an initial estimate for the camera pose
|
||||
initial: Values = Values()
|
||||
initial.insert(X(1), Pose3(Rot3(1, 0, 0, 0, -1, 0, 0, 0, -1), Point3(0, 0, 1)))
|
||||
|
||||
# 4. Optimize the graph using Levenberg-Marquardt
|
||||
result: Values = LevenbergMarquardtOptimizer(graph, initial).optimize()
|
||||
result.print("Final result:\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue