Merge pull request #1816 from truher/team100_camera_resectioning

add example CameraResectioning.py
release/4.3a0
Frank Dellaert 2024-09-20 13:12:21 -07:00 committed by GitHub
commit ed90121e0a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 85 additions and 0 deletions

View File

@ -0,0 +1,85 @@
# pylint: disable=consider-using-from-import,invalid-name,no-name-in-module,no-member,missing-function-docstring
"""
This is a 1:1 transcription of CameraResectioning.cpp.
"""
import numpy as np
from gtsam import Cal3_S2, CustomFactor, LevenbergMarquardtOptimizer, KeyVector
from gtsam import NonlinearFactor, NonlinearFactorGraph
from gtsam import PinholeCameraCal3_S2, Point2, Point3, Pose3, Rot3, Values
from gtsam.noiseModel import Base as SharedNoiseModel, Diagonal
from gtsam.symbol_shorthand import X
def resectioning_factor(
model: SharedNoiseModel,
key: int,
calib: Cal3_S2,
p: Point2,
P: Point3,
) -> NonlinearFactor:
def error_func(this: CustomFactor, v: Values, H: list[np.ndarray]) -> np.ndarray:
pose = v.atPose3(this.keys()[0])
camera = PinholeCameraCal3_S2(pose, calib)
if H is None:
return camera.project(P) - p
Dpose = np.zeros((2, 6), order="F")
Dpoint = np.zeros((2, 3), order="F")
Dcal = np.zeros((2, 5), order="F")
result = camera.project(P, Dpose, Dpoint, Dcal) - p
H[0] = Dpose
return result
return CustomFactor(model, KeyVector([key]), error_func)
def main() -> None:
"""
Camera: f = 1, Image: 100x100, center: 50, 50.0
Pose (ground truth): (Xw, -Yw, -Zw, [0,0,2.0]')
Known landmarks:
3D Points: (10,10,0) (-10,10,0) (-10,-10,0) (10,-10,0)
Perfect measurements:
2D Point: (55,45) (45,45) (45,55) (55,55)
"""
# read camera intrinsic parameters
calib = Cal3_S2(1, 1, 0, 50, 50)
# 1. create graph
graph = NonlinearFactorGraph()
# 2. add factors to the graph
measurement_noise = Diagonal.Sigmas(np.array([0.5, 0.5]))
graph.add(
resectioning_factor(
measurement_noise, X(1), calib, Point2(55, 45), Point3(10, 10, 0)
)
)
graph.add(
resectioning_factor(
measurement_noise, X(1), calib, Point2(45, 45), Point3(-10, 10, 0)
)
)
graph.add(
resectioning_factor(
measurement_noise, X(1), calib, Point2(45, 55), Point3(-10, -10, 0)
)
)
graph.add(
resectioning_factor(
measurement_noise, X(1), calib, Point2(55, 55), Point3(10, -10, 0)
)
)
# 3. Create an initial estimate for the camera pose
initial: Values = Values()
initial.insert(X(1), Pose3(Rot3(1, 0, 0, 0, -1, 0, 0, 0, -1), Point3(0, 0, 1)))
# 4. Optimize the graph using Levenberg-Marquardt
result: Values = LevenbergMarquardtOptimizer(graph, initial).optimize()
result.print("Final result:\n")
if __name__ == "__main__":
main()