Added MultiProjectionFactor, invoving n views (camera poses) observing a single landmark: work in progress
							parent
							
								
									ba2ddb22d8
								
							
						
					
					
						commit
						ed79432a69
					
				|  | @ -0,0 +1,228 @@ | |||
| /* ----------------------------------------------------------------------------
 | ||||
| 
 | ||||
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||||
|  * Atlanta, Georgia 30332-0415 | ||||
|  * All Rights Reserved | ||||
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||||
| 
 | ||||
|  * See LICENSE for the license information | ||||
| 
 | ||||
|  * -------------------------------------------------------------------------- */ | ||||
| 
 | ||||
| /**
 | ||||
|  * @file ProjectionFactor.h | ||||
|  * @brief Basic bearing factor from 2D measurement | ||||
|  * @author Chris Beall | ||||
|  * @author Richard Roberts | ||||
|  * @author Frank Dellaert | ||||
|  * @author Alex Cunningham | ||||
|  */ | ||||
| 
 | ||||
| #pragma once | ||||
| 
 | ||||
| #include <gtsam/nonlinear/NonlinearFactor.h> | ||||
| #include <gtsam/geometry/SimpleCamera.h> | ||||
| #include <boost/optional.hpp> | ||||
| 
 | ||||
| namespace gtsam { | ||||
| 
 | ||||
|   /**
 | ||||
|    * Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here. | ||||
|    * i.e. the main building block for visual SLAM. | ||||
|    * @addtogroup SLAM | ||||
|    */ | ||||
|   template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2> | ||||
|   class MultiProjectionFactor: public NoiseModelFactor { | ||||
|   protected: | ||||
| 
 | ||||
|     // Keep a copy of measurement and calibration for I/O
 | ||||
|     Vector measured_;                    ///< 2D measurement for each of the n views
 | ||||
|     boost::shared_ptr<CALIBRATION> K_;  ///< shared pointer to calibration object
 | ||||
|     boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame
 | ||||
| 
 | ||||
| 
 | ||||
|     // verbosity handling for Cheirality Exceptions
 | ||||
|     bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
 | ||||
|     bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
 | ||||
| 
 | ||||
|   public: | ||||
| 
 | ||||
|     /// shorthand for base class type
 | ||||
|     typedef NoiseModelFactor Base; | ||||
| 
 | ||||
|     /// shorthand for this class
 | ||||
|     typedef MultiProjectionFactor<POSE, LANDMARK, CALIBRATION> This; | ||||
| 
 | ||||
|     /// shorthand for a smart pointer to a factor
 | ||||
|     typedef boost::shared_ptr<This> shared_ptr; | ||||
| 
 | ||||
|     /// Default constructor
 | ||||
|     MultiProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {} | ||||
| 
 | ||||
|     /**
 | ||||
|      * Constructor | ||||
|      * TODO: Mark argument order standard (keys, measurement, parameters) | ||||
|      * @param measured is the 2n dimensional location of the n points in the n views (the measurements) | ||||
|      * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) | ||||
|      * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark | ||||
|      * @param pointKey is the index of the landmark | ||||
|      * @param K shared pointer to the constant calibration | ||||
|      * @param body_P_sensor is the transform from body to sensor frame (default identity) | ||||
|      */ | ||||
|     MultiProjectionFactor(const Vector& measured, const SharedNoiseModel& model, | ||||
|         FastSet<Key> poseKeys, Key pointKey, const boost::shared_ptr<CALIBRATION>& K, | ||||
|         boost::optional<POSE> body_P_sensor = boost::none) : | ||||
|           Base(model), measured_(measured), K_(K), body_P_sensor_(body_P_sensor), | ||||
|           throwCheirality_(false), verboseCheirality_(false) { | ||||
|       keys_.assign(poseKeys.begin(), poseKeys.end()); | ||||
|       keys_.push_back(pointKey); | ||||
|     } | ||||
| 
 | ||||
|     /**
 | ||||
|      * Constructor with exception-handling flags | ||||
|      * TODO: Mark argument order standard (keys, measurement, parameters) | ||||
|      * @param measured is the 2 dimensional location of point in image (the measurement) | ||||
|      * @param model is the standard deviation | ||||
|      * @param poseKey is the index of the camera | ||||
|      * @param pointKey is the index of the landmark | ||||
|      * @param K shared pointer to the constant calibration | ||||
|      * @param throwCheirality determines whether Cheirality exceptions are rethrown | ||||
|      * @param verboseCheirality determines whether exceptions are printed for Cheirality | ||||
|      * @param body_P_sensor is the transform from body to sensor frame  (default identity) | ||||
|      */ | ||||
|     MultiProjectionFactor(const Vector& measured, const SharedNoiseModel& model, | ||||
|         FastSet<Key> poseKeys, Key pointKey, const boost::shared_ptr<CALIBRATION>& K, | ||||
|         bool throwCheirality, bool verboseCheirality, | ||||
|         boost::optional<POSE> body_P_sensor = boost::none) : | ||||
|           Base(model), measured_(measured), K_(K), body_P_sensor_(body_P_sensor), | ||||
|           throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {} | ||||
| 
 | ||||
|     /** Virtual destructor */ | ||||
|     virtual ~MultiProjectionFactor() {} | ||||
| 
 | ||||
|     /// @return a deep copy of this factor
 | ||||
|     virtual gtsam::NonlinearFactor::shared_ptr clone() const { | ||||
|       return boost::static_pointer_cast<gtsam::NonlinearFactor>( | ||||
|           gtsam::NonlinearFactor::shared_ptr(new This(*this))); } | ||||
| 
 | ||||
|     /**
 | ||||
|      * print | ||||
|      * @param s optional string naming the factor | ||||
|      * @param keyFormatter optional formatter useful for printing Symbols | ||||
|      */ | ||||
|     void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { | ||||
|       std::cout << s << "MultiProjectionFactor, z = "; | ||||
|       std::cout << measured_ << "measurements, z = "; | ||||
|       if(this->body_P_sensor_) | ||||
|         this->body_P_sensor_->print("  sensor pose in body frame: "); | ||||
|       Base::print("", keyFormatter); | ||||
|     } | ||||
| 
 | ||||
|     /// equals
 | ||||
|     virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const { | ||||
|       const This *e = dynamic_cast<const This*>(&p); | ||||
|       return e | ||||
|           && Base::equals(p, tol) | ||||
|           //&& this->measured_.equals(e->measured_, tol)
 | ||||
|           && this->K_->equals(*e->K_, tol) | ||||
|           && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); | ||||
|     } | ||||
| 
 | ||||
|     /// Evaluate error h(x)-z and optionally derivatives
 | ||||
|     Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const{ | ||||
| 
 | ||||
|       Vector a; | ||||
|       return a; | ||||
| 
 | ||||
| //      Point3 point = x.at<Point3>(*keys_.end());
 | ||||
| //
 | ||||
| //      std::vector<KeyType>::iterator vit;
 | ||||
| //      for (vit = keys_.begin(); vit != keys_.end()-1; vit++) {
 | ||||
| //        Key key = (*vit);
 | ||||
| //        Pose3 pose = x.at<Pose3>(key);
 | ||||
| //
 | ||||
| //        if(body_P_sensor_) {
 | ||||
| //          if(H1) {
 | ||||
| //            gtsam::Matrix H0;
 | ||||
| //            PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_, H0), *K_);
 | ||||
| //            Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
 | ||||
| //            *H1 = *H1 * H0;
 | ||||
| //            return reprojectionError.vector();
 | ||||
| //          } else {
 | ||||
| //            PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_), *K_);
 | ||||
| //            Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
 | ||||
| //            return reprojectionError.vector();
 | ||||
| //          }
 | ||||
| //        } else {
 | ||||
| //          PinholeCamera<CALIBRATION> camera(pose, *K_);
 | ||||
| //          Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
 | ||||
| //          return reprojectionError.vector();
 | ||||
| //        }
 | ||||
| //      }
 | ||||
| 
 | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
|     Vector evaluateError(const Pose3& pose, const Point3& point, | ||||
|         boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 = boost::none) const { | ||||
|       try { | ||||
|         if(body_P_sensor_) { | ||||
|           if(H1) { | ||||
|             gtsam::Matrix H0; | ||||
|             PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_, H0), *K_); | ||||
|             Point2 reprojectionError(camera.project(point, H1, H2) - measured_); | ||||
|             *H1 = *H1 * H0; | ||||
|             return reprojectionError.vector(); | ||||
|           } else { | ||||
|             PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_), *K_); | ||||
|             Point2 reprojectionError(camera.project(point, H1, H2) - measured_); | ||||
|             return reprojectionError.vector(); | ||||
|           } | ||||
|         } else { | ||||
|           PinholeCamera<CALIBRATION> camera(pose, *K_); | ||||
|           Point2 reprojectionError(camera.project(point, H1, H2) - measured_); | ||||
|           return reprojectionError.vector(); | ||||
|         } | ||||
|       } catch( CheiralityException& e) { | ||||
|         if (H1) *H1 = zeros(2,6); | ||||
|         if (H2) *H2 = zeros(2,3); | ||||
|         if (verboseCheirality_) | ||||
|           std::cout << e.what() << ": Landmark "<< DefaultKeyFormatter(this->key2()) << | ||||
|               " moved behind camera " << DefaultKeyFormatter(this->key1()) << std::endl; | ||||
|         if (throwCheirality_) | ||||
|           throw e; | ||||
|       } | ||||
|       return ones(2) * 2.0 * K_->fx(); | ||||
|     } | ||||
| 
 | ||||
|     /** return the measurements */ | ||||
|     const Vector& measured() const { | ||||
|       return measured_; | ||||
|     } | ||||
| 
 | ||||
|     /** return the calibration object */ | ||||
|     inline const boost::shared_ptr<CALIBRATION> calibration() const { | ||||
|       return K_; | ||||
|     } | ||||
| 
 | ||||
|     /** return verbosity */ | ||||
|     inline bool verboseCheirality() const { return verboseCheirality_; } | ||||
| 
 | ||||
|     /** return flag for throwing cheirality exceptions */ | ||||
|     inline bool throwCheirality() const { return throwCheirality_; } | ||||
| 
 | ||||
|   private: | ||||
| 
 | ||||
|     /// Serialization function
 | ||||
|     friend class boost::serialization::access; | ||||
|     template<class ARCHIVE> | ||||
|     void serialize(ARCHIVE & ar, const unsigned int version) { | ||||
|       ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); | ||||
|       ar & BOOST_SERIALIZATION_NVP(measured_); | ||||
|       ar & BOOST_SERIALIZATION_NVP(K_); | ||||
|       ar & BOOST_SERIALIZATION_NVP(body_P_sensor_); | ||||
|       ar & BOOST_SERIALIZATION_NVP(throwCheirality_); | ||||
|       ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); | ||||
|     } | ||||
|   }; | ||||
| } // \ namespace gtsam
 | ||||
|  | @ -0,0 +1,235 @@ | |||
| /* ----------------------------------------------------------------------------
 | ||||
| 
 | ||||
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||||
|  * Atlanta, Georgia 30332-0415 | ||||
|  * All Rights Reserved | ||||
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||||
| 
 | ||||
|  * See LICENSE for the license information | ||||
| 
 | ||||
|  * -------------------------------------------------------------------------- */ | ||||
| 
 | ||||
| /**
 | ||||
|  *  @file  testProjectionFactor.cpp | ||||
|  *  @brief Unit tests for ProjectionFactor Class | ||||
|  *  @author Frank Dellaert | ||||
|  *  @date Nov 2009 | ||||
|  */ | ||||
| 
 | ||||
| #include <gtsam_unstable/nonlinear/ConcurrentBatchFilter.h> | ||||
| #include <gtsam/slam/PriorFactor.h> | ||||
| #include <gtsam/slam/BetweenFactor.h> | ||||
| #include <gtsam/slam/ProjectionFactor.h> | ||||
| #include <gtsam_unstable/slam/MultiProjectionFactor.h> | ||||
| #include <gtsam/nonlinear/ISAM2.h> | ||||
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> | ||||
| #include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||||
| #include <gtsam/nonlinear/LinearContainerFactor.h> | ||||
| #include <gtsam/nonlinear/Ordering.h> | ||||
| #include <gtsam/nonlinear/Values.h> | ||||
| #include <gtsam/nonlinear/Symbol.h> | ||||
| #include <gtsam/nonlinear/Key.h> | ||||
| #include <gtsam/linear/GaussianSequentialSolver.h> | ||||
| #include <gtsam/inference/JunctionTree.h> | ||||
| #include <gtsam/geometry/Pose3.h> | ||||
| #include <gtsam/geometry/Point3.h> | ||||
| #include <gtsam/geometry/Point2.h> | ||||
| #include <gtsam/geometry/Cal3DS2.h> | ||||
| #include <gtsam/geometry/Cal3_S2.h> | ||||
| #include <CppUnitLite/TestHarness.h> | ||||
| 
 | ||||
| 
 | ||||
| using namespace std; | ||||
| using namespace gtsam; | ||||
| 
 | ||||
| // make a realistic calibration matrix
 | ||||
| static double fov = 60; // degrees
 | ||||
| static size_t w=640,h=480; | ||||
| static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h)); | ||||
| 
 | ||||
| // Create a noise model for the pixel error
 | ||||
| static SharedNoiseModel model(noiseModel::Unit::Create(2)); | ||||
| 
 | ||||
| // Convenience for named keys
 | ||||
| //using symbol_shorthand::X;
 | ||||
| //using symbol_shorthand::L;
 | ||||
| 
 | ||||
| //typedef GenericProjectionFactor<Pose3, Point3> TestProjectionFactor;
 | ||||
| 
 | ||||
| 
 | ||||
| ///* ************************************************************************* */
 | ||||
| TEST( MultiProjectionFactor, create ){ | ||||
|   Values theta; | ||||
|   NonlinearFactorGraph graph; | ||||
| 
 | ||||
|   Symbol x1('X',  1); | ||||
|   Symbol x2('X',  2); | ||||
|   Symbol x3('X',  3); | ||||
| 
 | ||||
|   Symbol l1('l',  1); | ||||
|   Vector n_measPixel(6); // Pixel measurements from 3 cameras observing landmark 1
 | ||||
|   n_measPixel << 10, 10, 10, 10, 10, 10; | ||||
|   const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1); | ||||
| 
 | ||||
|   FastSet<Key> views; | ||||
|   views.insert(x1); | ||||
|   views.insert(x2); | ||||
|   views.insert(x3); | ||||
| 
 | ||||
|   MultiProjectionFactor<Pose3, Point3> mpFactor(n_measPixel, noiseProjection, views, l1, K); | ||||
|   graph.add(mpFactor); | ||||
| 
 | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST( ProjectionFactor, nonStandard ) {
 | ||||
| //  GenericProjectionFactor<Pose3, Point3, Cal3DS2> f;
 | ||||
| //}
 | ||||
| //
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST( ProjectionFactor, Constructor) {
 | ||||
| //  Key poseKey(X(1));
 | ||||
| //  Key pointKey(L(1));
 | ||||
| //
 | ||||
| //  Point2 measurement(323.0, 240.0);
 | ||||
| //
 | ||||
| //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
 | ||||
| //}
 | ||||
| //
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST( ProjectionFactor, ConstructorWithTransform) {
 | ||||
| //  Key poseKey(X(1));
 | ||||
| //  Key pointKey(L(1));
 | ||||
| //
 | ||||
| //  Point2 measurement(323.0, 240.0);
 | ||||
| //  Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | ||||
| //
 | ||||
| //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
 | ||||
| //}
 | ||||
| //
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST( ProjectionFactor, Equals ) {
 | ||||
| //  // Create two identical factors and make sure they're equal
 | ||||
| //  Point2 measurement(323.0, 240.0);
 | ||||
| //
 | ||||
| //  TestProjectionFactor factor1(measurement, model, X(1), L(1), K);
 | ||||
| //  TestProjectionFactor factor2(measurement, model, X(1), L(1), K);
 | ||||
| //
 | ||||
| //  CHECK(assert_equal(factor1, factor2));
 | ||||
| //}
 | ||||
| //
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST( ProjectionFactor, EqualsWithTransform ) {
 | ||||
| //  // Create two identical factors and make sure they're equal
 | ||||
| //  Point2 measurement(323.0, 240.0);
 | ||||
| //  Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | ||||
| //
 | ||||
| //  TestProjectionFactor factor1(measurement, model, X(1), L(1), K, body_P_sensor);
 | ||||
| //  TestProjectionFactor factor2(measurement, model, X(1), L(1), K, body_P_sensor);
 | ||||
| //
 | ||||
| //  CHECK(assert_equal(factor1, factor2));
 | ||||
| //}
 | ||||
| //
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST( ProjectionFactor, Error ) {
 | ||||
| //  // Create the factor with a measurement that is 3 pixels off in x
 | ||||
| //  Key poseKey(X(1));
 | ||||
| //  Key pointKey(L(1));
 | ||||
| //  Point2 measurement(323.0, 240.0);
 | ||||
| //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
 | ||||
| //
 | ||||
| //  // Set the linearization point
 | ||||
| //  Pose3 pose(Rot3(), Point3(0,0,-6));
 | ||||
| //  Point3 point(0.0, 0.0, 0.0);
 | ||||
| //
 | ||||
| //  // Use the factor to calculate the error
 | ||||
| //  Vector actualError(factor.evaluateError(pose, point));
 | ||||
| //
 | ||||
| //  // The expected error is (-3.0, 0.0) pixels / UnitCovariance
 | ||||
| //  Vector expectedError = Vector_(2, -3.0, 0.0);
 | ||||
| //
 | ||||
| //  // Verify we get the expected error
 | ||||
| //  CHECK(assert_equal(expectedError, actualError, 1e-9));
 | ||||
| //}
 | ||||
| //
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST( ProjectionFactor, ErrorWithTransform ) {
 | ||||
| //  // Create the factor with a measurement that is 3 pixels off in x
 | ||||
| //  Key poseKey(X(1));
 | ||||
| //  Key pointKey(L(1));
 | ||||
| //  Point2 measurement(323.0, 240.0);
 | ||||
| //  Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | ||||
| //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
 | ||||
| //
 | ||||
| //  // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
 | ||||
| //  Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
 | ||||
| //  Point3 point(0.0, 0.0, 0.0);
 | ||||
| //
 | ||||
| //  // Use the factor to calculate the error
 | ||||
| //  Vector actualError(factor.evaluateError(pose, point));
 | ||||
| //
 | ||||
| //  // The expected error is (-3.0, 0.0) pixels / UnitCovariance
 | ||||
| //  Vector expectedError = Vector_(2, -3.0, 0.0);
 | ||||
| //
 | ||||
| //  // Verify we get the expected error
 | ||||
| //  CHECK(assert_equal(expectedError, actualError, 1e-9));
 | ||||
| //}
 | ||||
| //
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST( ProjectionFactor, Jacobian ) {
 | ||||
| //  // Create the factor with a measurement that is 3 pixels off in x
 | ||||
| //  Key poseKey(X(1));
 | ||||
| //  Key pointKey(L(1));
 | ||||
| //  Point2 measurement(323.0, 240.0);
 | ||||
| //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
 | ||||
| //
 | ||||
| //  // Set the linearization point
 | ||||
| //  Pose3 pose(Rot3(), Point3(0,0,-6));
 | ||||
| //  Point3 point(0.0, 0.0, 0.0);
 | ||||
| //
 | ||||
| //  // Use the factor to calculate the Jacobians
 | ||||
| //  Matrix H1Actual, H2Actual;
 | ||||
| //  factor.evaluateError(pose, point, H1Actual, H2Actual);
 | ||||
| //
 | ||||
| //  // The expected Jacobians
 | ||||
| //  Matrix H1Expected = Matrix_(2, 6, 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.);
 | ||||
| //  Matrix H2Expected = Matrix_(2, 3, 92.376, 0., 0., 0., 92.376, 0.);
 | ||||
| //
 | ||||
| //  // Verify the Jacobians are correct
 | ||||
| //  CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
 | ||||
| //  CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
 | ||||
| //}
 | ||||
| //
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST( ProjectionFactor, JacobianWithTransform ) {
 | ||||
| //  // Create the factor with a measurement that is 3 pixels off in x
 | ||||
| //  Key poseKey(X(1));
 | ||||
| //  Key pointKey(L(1));
 | ||||
| //  Point2 measurement(323.0, 240.0);
 | ||||
| //  Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | ||||
| //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
 | ||||
| //
 | ||||
| //  // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
 | ||||
| //  Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
 | ||||
| //  Point3 point(0.0, 0.0, 0.0);
 | ||||
| //
 | ||||
| //  // Use the factor to calculate the Jacobians
 | ||||
| //  Matrix H1Actual, H2Actual;
 | ||||
| //  factor.evaluateError(pose, point, H1Actual, H2Actual);
 | ||||
| //
 | ||||
| //  // The expected Jacobians
 | ||||
| //  Matrix H1Expected = Matrix_(2, 6, -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376);
 | ||||
| //  Matrix H2Expected = Matrix_(2, 3, 0., -92.376, 0., 0., 0., -92.376);
 | ||||
| //
 | ||||
| //  // Verify the Jacobians are correct
 | ||||
| //  CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
 | ||||
| //  CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
 | ||||
| //}
 | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); } | ||||
| /* ************************************************************************* */ | ||||
| 
 | ||||
		Loading…
	
		Reference in New Issue