Example to run LOST and compare to DLT

release/4.3a0
Akshay Krishnan 2022-07-10 16:49:30 -07:00
parent 63e0446f0b
commit ed5fa923cf
1 changed files with 161 additions and 0 deletions

View File

@ -0,0 +1,161 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file TriangulationLOSTExample.cpp
* @author Akshay Krishnan
* @brief This example runs triangulation several times using 3 different
* approaches: LOST, DLT, and DLT with optimization. It reports the covariance
* and the runtime for each approach.
*
* @date 2022-07-10
*/
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/triangulation.h>
#include <chrono>
#include <iostream>
#include <random>
using namespace std;
using namespace gtsam;
static std::mt19937 rng(42);
void PrintCovarianceStats(const Matrix& mat, const std::string& method) {
Matrix centered = mat.rowwise() - mat.colwise().mean();
Matrix cov = (centered.adjoint() * centered) / double(mat.rows() - 1);
std::cout << method << " covariance: " << std::endl;
std::cout << cov << std::endl;
std::cout << "Trace sqrt: " << sqrt(cov.trace()) << std::endl << std::endl;
}
void PrintDuration(const std::chrono::nanoseconds dur, double num_samples,
const std::string& method) {
double nanoseconds = dur.count() / num_samples;
std::cout << "Time taken by " << method << ": " << nanoseconds * 1e-3
<< std::endl;
}
void GetLargeCamerasDataset(CameraSet<PinholeCamera<Cal3_S2>>* cameras,
std::vector<Pose3>* poses, Point3* point,
Point2Vector* measurements) {
const double min_xy = -10, max_xy = 10;
const double min_z = -20, max_z = 0;
const int num_cameras = 500;
cameras->reserve(num_cameras);
poses->reserve(num_cameras);
measurements->reserve(num_cameras);
*point = Point3(0.0, 0.0, 10.0);
std::uniform_real_distribution<double> rand_xy(min_xy, max_xy);
std::uniform_real_distribution<double> rand_z(min_z, max_z);
Cal3_S2 identity_K;
for (int i = 0; i < num_cameras; ++i) {
Point3 wti(rand_xy(rng), rand_xy(rng), rand_z(rng));
Pose3 wTi(Rot3(), wti);
poses->push_back(wTi);
cameras->emplace_back(wTi, identity_K);
measurements->push_back(cameras->back().project(*point));
}
}
void GetSmallCamerasDataset(CameraSet<PinholeCamera<Cal3_S2>>* cameras,
std::vector<Pose3>* poses, Point3* point,
Point2Vector* measurements) {
Pose3 pose_1;
Pose3 pose_2(Rot3(), Point3(5., 0., -5.));
Cal3_S2 identity_K;
PinholeCamera<Cal3_S2> camera_1(pose_1, identity_K);
PinholeCamera<Cal3_S2> camera_2(pose_2, identity_K);
*point = Point3(0, 0, 1);
cameras->push_back(camera_1);
cameras->push_back(camera_2);
*poses = {pose_1, pose_2};
*measurements = {camera_1.project(*point), camera_2.project(*point)};
}
Point2Vector AddNoiseToMeasurements(const Point2Vector& measurements,
const double measurement_sigma) {
std::normal_distribution<double> normal(0.0, measurement_sigma);
Point2Vector noisy_measurements;
noisy_measurements.reserve(measurements.size());
for (const auto& p : measurements) {
noisy_measurements.emplace_back(p.x() + normal(rng), p.y() + normal(rng));
}
return noisy_measurements;
}
/* ************************************************************************* */
int main(int argc, char* argv[]) {
CameraSet<PinholeCamera<Cal3_S2>> cameras;
std::vector<Pose3> poses;
Point3 gt_point;
Point2Vector measurements;
GetLargeCamerasDataset(&cameras, &poses, &gt_point, &measurements);
// GetSmallCamerasDataset(&cameras, &poses, &gt_point, &measurements);
const double measurement_sigma = 1e-2;
SharedNoiseModel measurement_noise =
noiseModel::Isotropic::Sigma(2, measurement_sigma);
const long int num_trials = 1000;
Matrix dlt_errors = Matrix::Zero(num_trials, 3);
Matrix lost_errors = Matrix::Zero(num_trials, 3);
Matrix dlt_opt_errors = Matrix::Zero(num_trials, 3);
double rank_tol = 1e-9;
boost::shared_ptr<Cal3_S2> calib = boost::make_shared<Cal3_S2>();
std::chrono::nanoseconds dlt_duration;
std::chrono::nanoseconds dlt_opt_duration;
std::chrono::nanoseconds lost_duration;
std::chrono::nanoseconds lost_tls_duration;
for (int i = 0; i < num_trials; i++) {
Point2Vector noisy_measurements =
AddNoiseToMeasurements(measurements, measurement_sigma);
auto lost_start = std::chrono::high_resolution_clock::now();
boost::optional<Point3> estimate_lost = triangulatePoint3<Cal3_S2>(
cameras, noisy_measurements, rank_tol, false, measurement_noise, true);
lost_duration += std::chrono::high_resolution_clock::now() - lost_start;
auto dlt_start = std::chrono::high_resolution_clock::now();
boost::optional<Point3> estimate_dlt = triangulatePoint3<Cal3_S2>(
cameras, noisy_measurements, rank_tol, false, measurement_noise, false);
dlt_duration += std::chrono::high_resolution_clock::now() - dlt_start;
auto dlt_opt_start = std::chrono::high_resolution_clock::now();
boost::optional<Point3> estimate_dlt_opt = triangulatePoint3<Cal3_S2>(
cameras, noisy_measurements, rank_tol, true, measurement_noise, false);
dlt_opt_duration +=
std::chrono::high_resolution_clock::now() - dlt_opt_start;
lost_errors.row(i) = *estimate_lost - gt_point;
dlt_errors.row(i) = *estimate_dlt - gt_point;
dlt_opt_errors.row(i) = *estimate_dlt_opt - gt_point;
}
PrintCovarianceStats(lost_errors, "LOST");
PrintCovarianceStats(dlt_errors, "DLT");
PrintCovarianceStats(dlt_opt_errors, "DLT_OPT");
PrintDuration(lost_duration, num_trials, "LOST");
PrintDuration(dlt_duration, num_trials, "DLT");
PrintDuration(dlt_opt_duration, num_trials, "DLT_OPT");
}