cleaned up code and added comments
parent
61aed0e5ad
commit
eca776c8c0
|
|
@ -72,8 +72,9 @@ static const double PI = boost::math::constants::pi<double>();
|
|||
*/
|
||||
|
||||
/*
|
||||
* This function computes the cumulative orientation (without wrapping)
|
||||
* from each node to the root (root has zero orientation)
|
||||
* This function computes the cumulative orientation wrt the root (without wrapping)
|
||||
* for a node (without wrapping). The function starts at the nodes and moves towards the root
|
||||
* summing up the (directed) rotation measurements. The root is assumed to have orientation zero
|
||||
*/
|
||||
double computeThetaToRoot(const Key nodeKey, PredecessorMap<Key>& tree,
|
||||
map<Key, double>& deltaThetaMap, map<Key, double>& thetaFromRootMap) {
|
||||
|
|
@ -101,7 +102,7 @@ double computeThetaToRoot(const Key nodeKey, PredecessorMap<Key>& tree,
|
|||
|
||||
/*
|
||||
* This function computes the cumulative orientation (without wrapping)
|
||||
* from each node to the root (root has zero orientation)
|
||||
* for all node wrt the root (root has zero orientation)
|
||||
*/
|
||||
map<Key, double> computeThetasToRoot(vector<Key>& keysInBinary, map<Key, double>& deltaThetaMap, PredecessorMap<Key>& tree){
|
||||
|
||||
|
|
@ -113,8 +114,16 @@ map<Key, double> computeThetasToRoot(vector<Key>& keysInBinary, map<Key, double>
|
|||
return thetaToRootMap;
|
||||
}
|
||||
|
||||
void getSymbolicSubgraph(vector<Key>& keysInBinary, vector<size_t>& spanningTree,
|
||||
vector<size_t>& chords, map<Key, double>& deltaThetaMap, PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
|
||||
/*
|
||||
* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belong to the tree and to g,
|
||||
* and stores the factor slots corresponding to edges in the tree and to chords wrt this tree
|
||||
* Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
|
||||
* for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
|
||||
*/
|
||||
void getSymbolicSubgraph(vector<Key>& keysInBinary,
|
||||
/*OUTPUTS*/ vector<size_t>& spanningTree, vector<size_t>& chords, map<Key, double>& deltaThetaMap,
|
||||
/*INPUTS*/ PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
|
||||
|
||||
// Get keys for which you want the orientation
|
||||
size_t id=0;
|
||||
// Loop over the factors
|
||||
|
|
@ -122,18 +131,21 @@ void getSymbolicSubgraph(vector<Key>& keysInBinary, vector<size_t>& spanningTree
|
|||
if (factor->keys().size() == 2){
|
||||
Key key1 = factor->keys()[0];
|
||||
Key key2 = factor->keys()[1];
|
||||
if(std::find(keysInBinary.begin(), keysInBinary.end(), key1)==keysInBinary.end()) // did not find key1, we add it
|
||||
keysInBinary.push_back(key1);
|
||||
if(std::find(keysInBinary.begin(), keysInBinary.end(), key2)==keysInBinary.end()) // did not find key2, we add it
|
||||
keysInBinary.push_back(key2);
|
||||
|
||||
// recast to a between
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between) continue;
|
||||
|
||||
// store the keys: these are the orientations we are going to estimate
|
||||
if(std::find(keysInBinary.begin(), keysInBinary.end(), key1)==keysInBinary.end()) // did not find key1, we add it
|
||||
keysInBinary.push_back(key1);
|
||||
if(std::find(keysInBinary.begin(), keysInBinary.end(), key2)==keysInBinary.end()) // did not find key2, we add it
|
||||
keysInBinary.push_back(key2);
|
||||
|
||||
// get the orientation - measured().theta();
|
||||
double deltaTheta = pose2Between->measured().theta();
|
||||
|
||||
// insert (directed) orientations in the map "deltaThetaMap"
|
||||
bool inTree=false;
|
||||
if(tree[key1]==key2){
|
||||
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
|
||||
|
|
@ -143,6 +155,8 @@ void getSymbolicSubgraph(vector<Key>& keysInBinary, vector<size_t>& spanningTree
|
|||
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
|
||||
inTree = true;
|
||||
}
|
||||
|
||||
// store factor slot, distinguishing spanning tree edges from chords
|
||||
if(inTree == true)
|
||||
spanningTree.push_back(id);
|
||||
else // it's a chord!
|
||||
|
|
@ -152,51 +166,53 @@ void getSymbolicSubgraph(vector<Key>& keysInBinary, vector<size_t>& spanningTree
|
|||
}
|
||||
}
|
||||
|
||||
void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
|
||||
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta){
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between) throw std::invalid_argument("buildOrientationGraph: invalid between factor!");
|
||||
deltaTheta = (Vector(1) << pose2Between->measured().theta());
|
||||
// Retrieve noise model
|
||||
SharedNoiseModel model = pose2Between->get_noiseModel();
|
||||
boost::shared_ptr< noiseModel::Gaussian > gaussianModel = boost::dynamic_pointer_cast< noiseModel::Gaussian >(model);
|
||||
if (!gaussianModel) throw std::invalid_argument("buildOrientationGraph: invalid noise model!");
|
||||
Matrix infoMatrix = gaussianModel->R() * gaussianModel->R(); // information matrix
|
||||
Matrix covMatrix = infoMatrix.inverse();
|
||||
Vector variance_deltaTheta = (Vector(1) << covMatrix(2,2));
|
||||
model_deltaTheta = noiseModel::Diagonal::Variances(variance_deltaTheta);
|
||||
}
|
||||
|
||||
/*
|
||||
* Linear factor graph with regularized orientation measurements
|
||||
*/
|
||||
GaussianFactorGraph buildOrientationGraph(const vector<size_t>& spanningTree, const vector<size_t>& chords,
|
||||
const NonlinearFactorGraph& g, map<Key, double> orientationsToRoot){
|
||||
|
||||
GaussianFactorGraph lagoGraph;
|
||||
Vector deltaTheta;
|
||||
noiseModel::Diagonal::shared_ptr model_deltaTheta;
|
||||
|
||||
Matrix I = eye(1);
|
||||
BOOST_FOREACH(const size_t& factorId, spanningTree){ // put original measurements in the spanning tree
|
||||
// put original measurements in the spanning tree
|
||||
BOOST_FOREACH(const size_t& factorId, spanningTree){
|
||||
Key key1 = g[factorId]->keys()[0];
|
||||
Key key2 = g[factorId]->keys()[1];
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(g[factorId]);
|
||||
if (!pose2Between) throw std::invalid_argument("buildOrientationGraph: invalid between factor (ST)!");
|
||||
Vector deltaTheta = (Vector(1) << pose2Between->measured().theta());
|
||||
// Retrieve noise model
|
||||
SharedNoiseModel model = pose2Between->get_noiseModel();
|
||||
boost::shared_ptr< noiseModel::Gaussian > gaussianModel = boost::dynamic_pointer_cast< noiseModel::Gaussian >(model);
|
||||
if (!gaussianModel) throw std::invalid_argument("buildOrientationGraph: invalid noise model (ST)!");
|
||||
Matrix infoMatrix = gaussianModel->R() * gaussianModel->R(); // information matrix
|
||||
Matrix covMatrix = infoMatrix.inverse();
|
||||
Vector variance_deltaTheta = (Vector(1) << covMatrix(2,2));
|
||||
noiseModel::Diagonal::shared_ptr model_deltaTheta = noiseModel::Diagonal::Variances(variance_deltaTheta);
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
|
||||
}
|
||||
BOOST_FOREACH(const size_t& factorId, chords){ // put regularized measurements in the chords
|
||||
// put regularized measurements in the chords
|
||||
BOOST_FOREACH(const size_t& factorId, chords){
|
||||
Key key1 = g[factorId]->keys()[0];
|
||||
Key key2 = g[factorId]->keys()[1];
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(g[factorId]);
|
||||
if (!pose2Between) throw std::invalid_argument("buildOrientationGraph: invalid between factor (chords)!");
|
||||
double key1_DeltaTheta_key2 = pose2Between->measured().theta();
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
double key1_DeltaTheta_key2 = deltaTheta(0);
|
||||
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot[key1] - orientationsToRoot[key2]; // this coincides to summing up measurements along the cycle induced by the chord
|
||||
double k = round(k2pi_noise/(2*PI));
|
||||
Vector deltaTheta = (Vector(1) << key1_DeltaTheta_key2 - 2*k*PI);
|
||||
// Retrieve noise model
|
||||
SharedNoiseModel model = pose2Between->get_noiseModel();
|
||||
boost::shared_ptr< noiseModel::Gaussian > gaussianModel = boost::dynamic_pointer_cast< noiseModel::Gaussian >(model);
|
||||
if (!gaussianModel) throw std::invalid_argument("buildOrientationGraph: invalid noise model (chords)!");
|
||||
Matrix infoMatrix = gaussianModel->R() * gaussianModel->R(); // information matrix
|
||||
Matrix covMatrix = infoMatrix.inverse();
|
||||
Vector variance_deltaTheta = (Vector(1) << covMatrix(2,2));
|
||||
noiseModel::Diagonal::shared_ptr model_deltaTheta = noiseModel::Diagonal::Variances(variance_deltaTheta);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
|
||||
Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*PI);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
|
||||
}
|
||||
// prior on first orientation (anchor)
|
||||
noiseModel::Diagonal::shared_ptr model_anchor = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
|
||||
std::cout << "TODO: fix the right root orientation and key" << std::endl;
|
||||
lagoGraph.add(JacobianFactor(x0, I, (Vector(1) << 0.0), model_anchor));
|
||||
return lagoGraph;
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue