cleaned up code and added comments

release/4.3a0
Luca 2014-05-16 16:18:14 -04:00
parent 61aed0e5ad
commit eca776c8c0
1 changed files with 51 additions and 35 deletions

View File

@ -72,8 +72,9 @@ static const double PI = boost::math::constants::pi<double>();
*/
/*
* This function computes the cumulative orientation (without wrapping)
* from each node to the root (root has zero orientation)
* This function computes the cumulative orientation wrt the root (without wrapping)
* for a node (without wrapping). The function starts at the nodes and moves towards the root
* summing up the (directed) rotation measurements. The root is assumed to have orientation zero
*/
double computeThetaToRoot(const Key nodeKey, PredecessorMap<Key>& tree,
map<Key, double>& deltaThetaMap, map<Key, double>& thetaFromRootMap) {
@ -101,7 +102,7 @@ double computeThetaToRoot(const Key nodeKey, PredecessorMap<Key>& tree,
/*
* This function computes the cumulative orientation (without wrapping)
* from each node to the root (root has zero orientation)
* for all node wrt the root (root has zero orientation)
*/
map<Key, double> computeThetasToRoot(vector<Key>& keysInBinary, map<Key, double>& deltaThetaMap, PredecessorMap<Key>& tree){
@ -113,8 +114,16 @@ map<Key, double> computeThetasToRoot(vector<Key>& keysInBinary, map<Key, double>
return thetaToRootMap;
}
void getSymbolicSubgraph(vector<Key>& keysInBinary, vector<size_t>& spanningTree,
vector<size_t>& chords, map<Key, double>& deltaThetaMap, PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
/*
* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belong to the tree and to g,
* and stores the factor slots corresponding to edges in the tree and to chords wrt this tree
* Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
* for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
*/
void getSymbolicSubgraph(vector<Key>& keysInBinary,
/*OUTPUTS*/ vector<size_t>& spanningTree, vector<size_t>& chords, map<Key, double>& deltaThetaMap,
/*INPUTS*/ PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
// Get keys for which you want the orientation
size_t id=0;
// Loop over the factors
@ -122,18 +131,21 @@ void getSymbolicSubgraph(vector<Key>& keysInBinary, vector<size_t>& spanningTree
if (factor->keys().size() == 2){
Key key1 = factor->keys()[0];
Key key2 = factor->keys()[1];
if(std::find(keysInBinary.begin(), keysInBinary.end(), key1)==keysInBinary.end()) // did not find key1, we add it
keysInBinary.push_back(key1);
if(std::find(keysInBinary.begin(), keysInBinary.end(), key2)==keysInBinary.end()) // did not find key2, we add it
keysInBinary.push_back(key2);
// recast to a between
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
if (!pose2Between) continue;
// store the keys: these are the orientations we are going to estimate
if(std::find(keysInBinary.begin(), keysInBinary.end(), key1)==keysInBinary.end()) // did not find key1, we add it
keysInBinary.push_back(key1);
if(std::find(keysInBinary.begin(), keysInBinary.end(), key2)==keysInBinary.end()) // did not find key2, we add it
keysInBinary.push_back(key2);
// get the orientation - measured().theta();
double deltaTheta = pose2Between->measured().theta();
// insert (directed) orientations in the map "deltaThetaMap"
bool inTree=false;
if(tree[key1]==key2){
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
@ -143,6 +155,8 @@ void getSymbolicSubgraph(vector<Key>& keysInBinary, vector<size_t>& spanningTree
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
inTree = true;
}
// store factor slot, distinguishing spanning tree edges from chords
if(inTree == true)
spanningTree.push_back(id);
else // it's a chord!
@ -152,51 +166,53 @@ void getSymbolicSubgraph(vector<Key>& keysInBinary, vector<size_t>& spanningTree
}
}
void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta){
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
if (!pose2Between) throw std::invalid_argument("buildOrientationGraph: invalid between factor!");
deltaTheta = (Vector(1) << pose2Between->measured().theta());
// Retrieve noise model
SharedNoiseModel model = pose2Between->get_noiseModel();
boost::shared_ptr< noiseModel::Gaussian > gaussianModel = boost::dynamic_pointer_cast< noiseModel::Gaussian >(model);
if (!gaussianModel) throw std::invalid_argument("buildOrientationGraph: invalid noise model!");
Matrix infoMatrix = gaussianModel->R() * gaussianModel->R(); // information matrix
Matrix covMatrix = infoMatrix.inverse();
Vector variance_deltaTheta = (Vector(1) << covMatrix(2,2));
model_deltaTheta = noiseModel::Diagonal::Variances(variance_deltaTheta);
}
/*
* Linear factor graph with regularized orientation measurements
*/
GaussianFactorGraph buildOrientationGraph(const vector<size_t>& spanningTree, const vector<size_t>& chords,
const NonlinearFactorGraph& g, map<Key, double> orientationsToRoot){
GaussianFactorGraph lagoGraph;
Vector deltaTheta;
noiseModel::Diagonal::shared_ptr model_deltaTheta;
Matrix I = eye(1);
BOOST_FOREACH(const size_t& factorId, spanningTree){ // put original measurements in the spanning tree
// put original measurements in the spanning tree
BOOST_FOREACH(const size_t& factorId, spanningTree){
Key key1 = g[factorId]->keys()[0];
Key key2 = g[factorId]->keys()[1];
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(g[factorId]);
if (!pose2Between) throw std::invalid_argument("buildOrientationGraph: invalid between factor (ST)!");
Vector deltaTheta = (Vector(1) << pose2Between->measured().theta());
// Retrieve noise model
SharedNoiseModel model = pose2Between->get_noiseModel();
boost::shared_ptr< noiseModel::Gaussian > gaussianModel = boost::dynamic_pointer_cast< noiseModel::Gaussian >(model);
if (!gaussianModel) throw std::invalid_argument("buildOrientationGraph: invalid noise model (ST)!");
Matrix infoMatrix = gaussianModel->R() * gaussianModel->R(); // information matrix
Matrix covMatrix = infoMatrix.inverse();
Vector variance_deltaTheta = (Vector(1) << covMatrix(2,2));
noiseModel::Diagonal::shared_ptr model_deltaTheta = noiseModel::Diagonal::Variances(variance_deltaTheta);
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
}
BOOST_FOREACH(const size_t& factorId, chords){ // put regularized measurements in the chords
// put regularized measurements in the chords
BOOST_FOREACH(const size_t& factorId, chords){
Key key1 = g[factorId]->keys()[0];
Key key2 = g[factorId]->keys()[1];
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(g[factorId]);
if (!pose2Between) throw std::invalid_argument("buildOrientationGraph: invalid between factor (chords)!");
double key1_DeltaTheta_key2 = pose2Between->measured().theta();
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
double key1_DeltaTheta_key2 = deltaTheta(0);
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot[key1] - orientationsToRoot[key2]; // this coincides to summing up measurements along the cycle induced by the chord
double k = round(k2pi_noise/(2*PI));
Vector deltaTheta = (Vector(1) << key1_DeltaTheta_key2 - 2*k*PI);
// Retrieve noise model
SharedNoiseModel model = pose2Between->get_noiseModel();
boost::shared_ptr< noiseModel::Gaussian > gaussianModel = boost::dynamic_pointer_cast< noiseModel::Gaussian >(model);
if (!gaussianModel) throw std::invalid_argument("buildOrientationGraph: invalid noise model (chords)!");
Matrix infoMatrix = gaussianModel->R() * gaussianModel->R(); // information matrix
Matrix covMatrix = infoMatrix.inverse();
Vector variance_deltaTheta = (Vector(1) << covMatrix(2,2));
noiseModel::Diagonal::shared_ptr model_deltaTheta = noiseModel::Diagonal::Variances(variance_deltaTheta);
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*PI);
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
}
// prior on first orientation (anchor)
noiseModel::Diagonal::shared_ptr model_anchor = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
std::cout << "TODO: fix the right root orientation and key" << std::endl;
lagoGraph.add(JacobianFactor(x0, I, (Vector(1) << 0.0), model_anchor));
return lagoGraph;
}