remove extraneous file

release/4.3a0
Varun Agrawal 2023-01-07 06:33:30 -05:00
parent 3f201f3f4b
commit ec5149265a
1 changed files with 0 additions and 158 deletions

View File

@ -1,158 +0,0 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testHybridPruning.cpp
* @brief Unit tests for end-to-end Hybrid Estimation
* @author Varun Agrawal
*/
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearISAM.h>
#include <gtsam/hybrid/HybridSmoother.h>
#include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
#include "Switching.h"
using namespace std;
using namespace gtsam;
using symbol_shorthand::X;
/****************************************************************************/
// Test approximate inference with an additional pruning step.
TEST_DISABLED(HybridPruning, ISAM) {
size_t K = 16;
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
// Ground truth discrete seq
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
// Switching example of robot moving in 1D
// with given measurements and equal mode priors.
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
HybridNonlinearISAM isam;
HybridNonlinearFactorGraph graph;
Values initial;
// Add the X(0) prior
graph.push_back(switching.nonlinearFactorGraph.at(0));
initial.insert(X(0), switching.linearizationPoint.at<double>(X(0)));
HybridGaussianFactorGraph linearized;
HybridGaussianFactorGraph bayesNet;
for (size_t k = 1; k < K; k++) {
// Motion Model
graph.push_back(switching.nonlinearFactorGraph.at(k));
// Measurement
graph.push_back(switching.nonlinearFactorGraph.at(k + K - 1));
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
isam.update(graph, initial, 3);
graph.resize(0);
initial.clear();
}
Values result = isam.estimate();
DiscreteValues assignment = isam.assignment();
DiscreteValues expected_discrete;
for (size_t k = 0; k < K - 1; k++) {
expected_discrete[M(k)] = discrete_seq[k];
}
std::cout << "\n\n\nNonlinear Version!!\n\n" << std::endl;
GTSAM_PRINT(expected_discrete);
GTSAM_PRINT(assignment);
EXPECT(assert_equal(expected_discrete, assignment));
Values expected_continuous;
for (size_t k = 0; k < K; k++) {
expected_continuous.insert(X(k), measurements[k]);
}
EXPECT(assert_equal(expected_continuous, result));
}
/****************************************************************************/
// Test approximate inference with an additional pruning step.
TEST(HybridPruning, GaussianISAM) {
size_t K = 16;
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
// Ground truth discrete seq
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
// Switching example of robot moving in 1D
// with given measurements and equal mode priors.
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
HybridGaussianISAM isam;
HybridGaussianFactorGraph graph;
Values initial;
// Add the X(0) prior
graph.push_back(switching.linearizedFactorGraph.at(0));
initial.insert(X(0), switching.linearizationPoint.at<double>(X(0)));
HybridGaussianFactorGraph linearized;
HybridGaussianFactorGraph bayesNet;
for (size_t k = 1; k < K; k++) {
// Motion Model
graph.push_back(switching.linearizedFactorGraph.at(k));
// Measurement
graph.push_back(switching.linearizedFactorGraph.at(k + K - 1));
// initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
isam.update(graph, 3);
graph.resize(0);
// initial.clear();
}
HybridValues values = isam.optimize();
DiscreteValues expected_discrete;
for (size_t k = 0; k < K - 1; k++) {
expected_discrete[M(k)] = discrete_seq[k];
}
EXPECT(assert_equal(expected_discrete, values.discrete()));
// Values expected_continuous;
// for (size_t k = 0; k < K; k++) {
// expected_continuous.insert(X(k), measurements[k]);
// }
// EXPECT(assert_equal(expected_continuous, result));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */