add test for checking pruning

release/4.3a0
Varun Agrawal 2024-10-07 12:06:14 -04:00
parent 5ee27bfad1
commit ec32d5f197
1 changed files with 49 additions and 0 deletions

View File

@ -161,6 +161,55 @@ TEST(HybridEstimation, IncrementalSmoother) {
EXPECT(assert_equal(expected_continuous, result)); EXPECT(assert_equal(expected_continuous, result));
} }
/****************************************************************************/
// Test if pruned factor is set to correct error and no errors are thrown.
TEST(HybridEstimation, ValidPruningError) {
using namespace estimation_fixture;
size_t K = 8;
HybridNonlinearFactorGraph graph;
Values initial;
Switching switching = InitializeEstimationProblem(K, 1e-2, 1e-3, measurements,
"1/1 1/1", graph, initial);
HybridSmoother smoother;
HybridGaussianFactorGraph linearized;
constexpr size_t maxNrLeaves = 3;
for (size_t k = 1; k < K; k++) {
// Motion Model
graph.push_back(switching.nonlinearFactorGraph.at(k));
// Measurement
graph.push_back(switching.nonlinearFactorGraph.at(k + K - 1));
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
linearized = *graph.linearize(initial);
Ordering ordering = smoother.getOrdering(linearized);
smoother.update(linearized, maxNrLeaves, ordering);
graph.resize(0);
}
HybridValues delta = smoother.hybridBayesNet().optimize();
Values result = initial.retract(delta.continuous());
DiscreteValues expected_discrete;
for (size_t k = 0; k < K - 1; k++) {
expected_discrete[M(k)] = discrete_seq[k];
}
EXPECT(assert_equal(expected_discrete, delta.discrete()));
Values expected_continuous;
for (size_t k = 0; k < K; k++) {
expected_continuous.insert(X(k), measurements[k]);
}
EXPECT(assert_equal(expected_continuous, result));
}
/****************************************************************************/ /****************************************************************************/
// Test approximate inference with an additional pruning step. // Test approximate inference with an additional pruning step.
TEST(HybridEstimation, ISAM) { TEST(HybridEstimation, ISAM) {