Fixed ISAM2 doxygen documentation
parent
817bb913ab
commit
ec1e53a60d
|
@ -17,13 +17,13 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief The main ISAM2 class that is exposed to gtsam users.
|
||||
* @brief The main ISAM2 class that is exposed to gtsam users, see ISAM2 for usage.
|
||||
*
|
||||
* This is a thin wrapper around an ISAM2 class templated on
|
||||
* GaussianConditional, and the values on which that GaussianISAM2 is
|
||||
* templated.
|
||||
*
|
||||
* @tparam VALUES The LieValues or TupleValues\Emph{N} to contain the
|
||||
* @tparam VALUES The LieValues or TupleValues\Emph{N} that contains the
|
||||
* variables.
|
||||
*/
|
||||
template <class VALUES>
|
||||
|
|
|
@ -807,6 +807,7 @@ void ISAM2<Conditional, Values>::update(
|
|||
|
||||
tic(8,"recalculate");
|
||||
// 8. Redo top of Bayes tree
|
||||
boost::shared_ptr<FastSet<Index> > replacedKeys;
|
||||
if(markedKeys.size() > 0 || newKeys.size() > 0)
|
||||
replacedKeys = recalculate(markedKeys, structuralKeys, newKeys, linearFactors);
|
||||
toc(8,"recalculate");
|
||||
|
|
|
@ -29,80 +29,114 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
//typedef std::vector<GaussianFactor::shared_ptr> CachedFactors;
|
||||
|
||||
/**
|
||||
* Implementation of the full ISAM2 algorithm for incremental nonlinear optimization.
|
||||
*
|
||||
* The typical cycle of using this class to create an instance using the default
|
||||
* constructor, then add measurements and variables as they arrive using the update()
|
||||
* method. At any time, calculateEstimate() may be called to obtain the current
|
||||
* estimate of all variables.
|
||||
*/
|
||||
template<class CONDITIONAL, class VALUES>
|
||||
class ISAM2: public BayesTree<CONDITIONAL> {
|
||||
|
||||
protected:
|
||||
|
||||
// current linearization point
|
||||
/** The current linearization point */
|
||||
VALUES theta_;
|
||||
|
||||
// VariableIndex lets us look up factors by involved variable and keeps track of dimensions
|
||||
/** VariableIndex lets us look up factors by involved variable and keeps track of dimensions */
|
||||
VariableIndex variableIndex_;
|
||||
|
||||
// the linear solution, an update to the estimate in theta
|
||||
/** The linear delta from the last linear solution, an update to the estimate in theta */
|
||||
VectorValues deltaUnpermuted_;
|
||||
|
||||
// The residual permutation through which the deltaUnpermuted_ is
|
||||
// referenced. Permuting the VectorVALUES is slow, so for performance the
|
||||
// permutation is applied at access time instead of to the VectorVALUES
|
||||
// itself.
|
||||
/** @brief The permutation through which the deltaUnpermuted_ is
|
||||
* referenced.
|
||||
*
|
||||
* Permuting Vector entries would be slow, so for performance we
|
||||
* instead maintain this permutation through which we access the linear delta
|
||||
* indirectly
|
||||
*/
|
||||
Permuted<VectorValues> delta_;
|
||||
|
||||
// for keeping all original nonlinear factors
|
||||
/** All original nonlinear factors are stored here to use during relinearization */
|
||||
NonlinearFactorGraph<VALUES> nonlinearFactors_;
|
||||
|
||||
// The "ordering" allows converting Symbols to Index (integer) keys. We
|
||||
// keep it up to date as we add and reorder variables.
|
||||
/** @brief The current elimination ordering Symbols to Index (integer) keys.
|
||||
*
|
||||
* We keep it up to date as we add and reorder variables.
|
||||
*/
|
||||
Ordering ordering_;
|
||||
|
||||
// cached intermediate results for restarting computation in the middle
|
||||
// CachedFactors cached_;
|
||||
|
||||
private:
|
||||
#ifndef NDEBUG
|
||||
std::vector<bool> lastRelinVariables_;
|
||||
#endif
|
||||
|
||||
public:
|
||||
|
||||
typedef BayesTree<CONDITIONAL> Base;
|
||||
typedef ISAM2<CONDITIONAL, VALUES> This;
|
||||
|
||||
/** Create an empty Bayes Tree */
|
||||
ISAM2();
|
||||
|
||||
// /** Create a Bayes Tree from a Bayes Net */
|
||||
// ISAM2(const NonlinearFactorGraph<VALUES>& fg, const Ordering& ordering, const VALUES& config);
|
||||
|
||||
/** Destructor */
|
||||
virtual ~ISAM2() {}
|
||||
|
||||
typedef typename BayesTree<CONDITIONAL>::sharedClique sharedClique;
|
||||
typedef typename BayesTree<CONDITIONAL>::Cliques Cliques;
|
||||
typedef JacobianFactor CacheFactor;
|
||||
|
||||
public:
|
||||
|
||||
typedef BayesTree<CONDITIONAL> Base; ///< The BayesTree base class
|
||||
typedef ISAM2<CONDITIONAL, VALUES> This; ///< This class
|
||||
|
||||
/** Create an empty ISAM2 instance */
|
||||
ISAM2();
|
||||
|
||||
typedef typename BayesTree<CONDITIONAL>::sharedClique sharedClique; ///< Shared pointer to a clique
|
||||
typedef typename BayesTree<CONDITIONAL>::Cliques Cliques; ///< List of Clique typedef from base class
|
||||
|
||||
/**
|
||||
* ISAM2.
|
||||
* Add new factors, updating the solution and relinearizing as needed.
|
||||
*
|
||||
* Add new measurements, and optionally new variables, to the current system.
|
||||
* This runs a full step of the ISAM2 algorithm, relinearizing and updating
|
||||
* the solution as needed, according to the wildfire and relinearize
|
||||
* thresholds.
|
||||
*
|
||||
* @param newFactors The new factors to be added to the system
|
||||
* @param newTheta Initialization points for new variables to be added to the system.
|
||||
* You must include here all new variables occuring in newFactors (which were not already
|
||||
* in the system). There must not be any variables here that do not occur in newFactors,
|
||||
* and additionally, variables that were already in the system must not be included here.
|
||||
* @param wildfire_threshold The threshold below which the linear solution delta is not
|
||||
* updated.
|
||||
* @param relinearize_threshold The threshold on the linear delta below which a variable
|
||||
* will not be relinearized.
|
||||
* @param relinearize
|
||||
*/
|
||||
void update(const NonlinearFactorGraph<VALUES>& newFactors, const VALUES& newTheta,
|
||||
double wildfire_threshold = 0., double relinearize_threshold = 0., bool relinearize = true,
|
||||
bool force_relinearize = false);
|
||||
|
||||
// needed to create initial estimates
|
||||
/** Access the current linearization point
|
||||
const VALUES& getLinearizationPoint() const {return theta_;}
|
||||
|
||||
// estimate based on incomplete delta (threshold!)
|
||||
/** Compute an estimate from the incomplete linear delta computed during the last update.
|
||||
* This delta is incomplete because it was not updated below wildfire_threshold.
|
||||
*/
|
||||
VALUES calculateEstimate() const;
|
||||
|
||||
// estimate based on full delta (note that this is based on the current linearization point)
|
||||
/// @name Public members for non-typical usage
|
||||
//@{
|
||||
|
||||
/** Internal implementation functions */
|
||||
struct Impl {
|
||||
static void AddVariables(const VALUES& newTheta, VALUES& theta, Permuted<VectorValues>& delta, Ordering& ordering, typename Base::Nodes& nodes);
|
||||
};
|
||||
|
||||
/** Compute an estimate using a complete delta computed by a full back-substitution.
|
||||
*/
|
||||
VALUES calculateBestEstimate() const;
|
||||
|
||||
/** Access the current delta, computed during the last call to update */
|
||||
const Permuted<VectorValues>& getDelta() const { return delta_; }
|
||||
|
||||
/** Access the set of nonlinear factors */
|
||||
const NonlinearFactorGraph<VALUES>& getFactorsUnsafe() const { return nonlinearFactors_; }
|
||||
|
||||
/** Access the current ordering */
|
||||
const Ordering& getOrdering() const { return ordering_; }
|
||||
|
||||
size_t lastAffectedVariableCount;
|
||||
|
@ -112,7 +146,7 @@ public:
|
|||
size_t lastBacksubVariableCount;
|
||||
size_t lastNnzTop;
|
||||
|
||||
boost::shared_ptr<FastSet<Index> > replacedKeys;
|
||||
//@}
|
||||
|
||||
private:
|
||||
|
||||
|
@ -124,12 +158,6 @@ private:
|
|||
// void linear_update(const GaussianFactorGraph& newFactors);
|
||||
void find_all(sharedClique clique, FastSet<Index>& keys, const std::vector<bool>& marked); // helper function
|
||||
|
||||
public:
|
||||
|
||||
struct Impl {
|
||||
static void AddVariables(const VALUES& newTheta, VALUES& theta, Permuted<VectorValues>& delta, Ordering& ordering, typename Base::Nodes& nodes);
|
||||
};
|
||||
|
||||
}; // ISAM2
|
||||
|
||||
} /// namespace gtsam
|
||||
|
|
Loading…
Reference in New Issue