Added symbol keys

release/4.3a0
Frank Dellaert 2018-10-13 17:48:36 -04:00
parent 18234f68fd
commit eb447d28a1
1 changed files with 38 additions and 37 deletions

View File

@ -18,12 +18,9 @@ using namespace gtsam;
vector<Pose3> createPoses() {
// Create the set of ground-truth poses
vector<Pose3> poses;
double radius = 30.0;
int i = 0;
double theta = 0.0;
Point3 up(0, 0, 1);
Point3 target(0, 0, 0);
for (; i < 80; ++i, theta += 2 * M_PI / 8) {
double radius = 30.0, theta = 0.0;
Point3 up(0, 0, 1), target(0, 0, 0);
for (size_t i = 0; i < 80; ++i, theta += 2 * M_PI / 8) {
Point3 position(radius * cos(theta), radius * sin(theta), 0.0);
SimpleCamera camera = SimpleCamera::Lookat(position, target, up);
poses.push_back(camera.pose());
@ -33,6 +30,10 @@ vector<Pose3> createPoses() {
/* ************************************************************************* */
int main(int argc, char* argv[]) {
// Shorthand for velocity and pose variables
using symbol_shorthand::V;
using symbol_shorthand::X;
// Create the set of ground-truth landmarks and poses
vector<Pose3> poses = createPoses();
@ -50,37 +51,38 @@ int main(int argc, char* argv[]) {
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
auto noise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
newgraph.push_back(PriorFactor<Pose3>(0, poses[0], noise));
totalgraph.push_back(PriorFactor<Pose3>(0, poses[0], noise));
newgraph.push_back(PriorFactor<Pose3>(X(0), poses[0], noise));
totalgraph.push_back(PriorFactor<Pose3>(X(0), poses[0], noise));
// Add imu priors
int biasidx = 1000;
Key biasKey = Symbol('b', 0);
auto biasnoise = noiseModel::Diagonal::Sigmas(Vector6::Constant(0.1));
PriorFactor<imuBias::ConstantBias> biasprior(biasidx, imuBias::ConstantBias(),
PriorFactor<imuBias::ConstantBias> biasprior(biasKey, imuBias::ConstantBias(),
biasnoise);
newgraph.push_back(biasprior);
totalgraph.push_back(biasprior);
initialEstimate.insert(biasidx, imuBias::ConstantBias());
totalEstimate.insert(biasidx, imuBias::ConstantBias());
initialEstimate.insert(biasKey, imuBias::ConstantBias());
totalEstimate.insert(biasKey, imuBias::ConstantBias());
auto velnoise = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1));
Vector gravity(3), zero(3);
Vector gravity(3), zero(3), velocity(3);
gravity << 0, 0, -9.8;
zero << 0, 0, 0;
velocity << 0, 0, 0;
#ifdef GTSAM4
PriorFactor<Vector> velprior(100, zero, velnoise);
PriorFactor<Vector> velprior(V(0), zero, velnoise);
#else
PriorFactor<LieVector> velprior(100, zero, velnoise);
PriorFactor<LieVector> velprior(V(0), zero, velnoise);
#endif
newgraph.push_back(velprior);
totalgraph.push_back(velprior);
#ifdef GTSAM4
initialEstimate.insert(100, zero);
totalEstimate.insert(100, zero);
initialEstimate.insert(V(0), zero);
totalEstimate.insert(V(0), zero);
#else
initialEstimate.insert(100, LieVector(zero));
totalEstimate.insert(100, LieVector(zero));
initialEstimate.insert(V(0), LieVector(zero));
totalEstimate.insert(V(0), LieVector(zero));
#endif
Matrix3 I;
@ -110,21 +112,21 @@ int main(int argc, char* argv[]) {
Pose3 delta(Rot3::ypr(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
#endif
if (i == 0) { // First time add two poses
initialEstimate.insert(0, poses[0].compose(delta));
initialEstimate.insert(1, poses[1].compose(delta));
totalEstimate.insert(0, poses[0].compose(delta));
totalEstimate.insert(1, poses[1].compose(delta));
initialEstimate.insert(X(0), poses[0].compose(delta));
initialEstimate.insert(X(1), poses[1].compose(delta));
totalEstimate.insert(X(0), poses[0].compose(delta));
totalEstimate.insert(X(1), poses[1].compose(delta));
} else if (i >= 2) { // Add more poses as necessary
initialEstimate.insert(i, poses[i].compose(delta));
totalEstimate.insert(i, poses[i].compose(delta));
initialEstimate.insert(X(i), poses[i].compose(delta));
totalEstimate.insert(X(i), poses[i].compose(delta));
}
if (i > 0) {
// Add Bias variables periodically
if (i % 5 == 0) {
biasidx++;
Symbol b1 = biasidx - 1;
Symbol b2 = biasidx;
biasKey++;
Symbol b1 = biasKey - 1;
Symbol b2 = biasKey;
Vector6 covvec;
covvec << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1;
auto cov = noiseModel::Diagonal::Variances(covvec);
@ -134,28 +136,27 @@ int main(int argc, char* argv[]) {
b1, b2, imuBias::ConstantBias(), cov);
newgraph.add(f);
totalgraph.add(f);
initialEstimate.insert(biasidx, imuBias::ConstantBias());
totalEstimate.insert(biasidx, imuBias::ConstantBias());
initialEstimate.insert(biasKey, imuBias::ConstantBias());
totalEstimate.insert(biasKey, imuBias::ConstantBias());
}
// Add Imu Factor
accum.integrateMeasurement(gravity, zero, 0.5);
#ifdef GTSAM4
ImuFactor imufac(i - 1, 100 + i - 1, i, 100 + i, biasidx, accum);
ImuFactor imufac(X(i - 1), V(i - 1), X(i), V(i), biasKey, accum);
#else
ImuFactor imufac(i - 1, 100 + i - 1, i, 100 + i, biasidx, accum, gravity,
ImuFactor imufac(X(i - 1), V(i - 1), X(i), V(i), biasKey, accum, gravity,
zero);
#endif
newgraph.add(imufac);
totalgraph.add(imufac);
// insert new velocity
#ifdef GTSAM4
initialEstimate.insert(100 + i, gravity);
totalEstimate.insert(100 + i, gravity);
initialEstimate.insert(V(i), velocity);
totalEstimate.insert(V(i), velocity);
#else
initialEstimate.insert(100 + i, LieVector(gravity));
totalEstimate.insert(100 + i, LieVector(gravity));
initialEstimate.insert(V(i), LieVector(velocity));
totalEstimate.insert(V(i), LieVector(velocity));
#endif
accum.resetIntegration();
}