working example
parent
7c24448a2b
commit
ea82d51d10
|
@ -18,9 +18,11 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactor.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearISAM.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
|
@ -37,13 +39,11 @@ using namespace std;
|
|||
using namespace gtsam;
|
||||
using namespace boost::algorithm;
|
||||
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
// Testing params
|
||||
const size_t max_loop_count = 2000; // 200 //2000 //8000
|
||||
|
||||
const bool is_with_ambiguity = false; // run original iSAM2 without ambiguities
|
||||
// const bool is_with_ambiguity = true; // run original iSAM2 with ambiguities
|
||||
const size_t max_loop_count = 1000; // 2000; // 200 //2000 //8000
|
||||
|
||||
noiseModel::Diagonal::shared_ptr prior_noise_model =
|
||||
noiseModel::Diagonal::Sigmas(
|
||||
|
@ -51,7 +51,7 @@ noiseModel::Diagonal::shared_ptr prior_noise_model =
|
|||
|
||||
noiseModel::Diagonal::shared_ptr pose_noise_model =
|
||||
noiseModel::Diagonal::Sigmas(
|
||||
(Vector(3) << 1.0 / 50.0, 1.0 / 50.0, 1.0 / 100.0).finished());
|
||||
(Vector(3) << 1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0).finished());
|
||||
|
||||
/**
|
||||
* @brief Write the results of optimization to filename.
|
||||
|
@ -84,25 +84,20 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
// ifstream in("../data/mh_All_city10000_groundtruth.txt");
|
||||
|
||||
size_t pose_count = 0;
|
||||
size_t pose_count = 0, discrete_count = 0;
|
||||
size_t index = 0;
|
||||
|
||||
std::list<double> time_list;
|
||||
|
||||
ISAM2Params parameters;
|
||||
HybridNonlinearISAM isam;
|
||||
|
||||
parameters.optimizationParams = gtsam::ISAM2GaussNewtonParams(0.0);
|
||||
|
||||
parameters.relinearizeThreshold = 0.01;
|
||||
|
||||
parameters.relinearizeSkip = 1;
|
||||
ISAM2* isam2 = new ISAM2(parameters);
|
||||
|
||||
NonlinearFactorGraph* graph = new NonlinearFactorGraph();
|
||||
HybridNonlinearFactorGraph graph;
|
||||
|
||||
Values init_values;
|
||||
Values results;
|
||||
|
||||
size_t maxNrHypotheses = 3;
|
||||
|
||||
double x = 0.0;
|
||||
double y = 0.0;
|
||||
double rad = 0.0;
|
||||
|
@ -110,23 +105,21 @@ int main(int argc, char* argv[]) {
|
|||
Pose2 prior_pose(x, y, rad);
|
||||
|
||||
init_values.insert(X(0), prior_pose);
|
||||
pose_count++;
|
||||
pose_count += 1;
|
||||
|
||||
graph->add(PriorFactor<Pose2>(X(0), prior_pose, prior_noise_model));
|
||||
graph.push_back(PriorFactor<Pose2>(X(0), prior_pose, prior_noise_model));
|
||||
|
||||
isam2->update(*graph, init_values);
|
||||
graph->resize(0);
|
||||
isam.update(graph, init_values, maxNrHypotheses);
|
||||
|
||||
graph.resize(0);
|
||||
init_values.clear();
|
||||
results = isam2->calculateBestEstimate();
|
||||
results = isam.estimate();
|
||||
|
||||
//*
|
||||
size_t key_s = 0;
|
||||
size_t key_t = 0;
|
||||
size_t key_s, key_t;
|
||||
|
||||
clock_t start_time = clock();
|
||||
string str;
|
||||
std::string str;
|
||||
while (getline(in, str) && index < max_loop_count) {
|
||||
// cout << str << endl;
|
||||
vector<string> parts;
|
||||
split(parts, str, is_any_of(" "));
|
||||
|
||||
|
@ -142,35 +135,47 @@ int main(int argc, char* argv[]) {
|
|||
pose_array[i] = Pose2(x, y, rad);
|
||||
}
|
||||
|
||||
Pose2 odom_pose;
|
||||
if (is_with_ambiguity) {
|
||||
// Get wrong intentionally
|
||||
int id = index % num_measurements;
|
||||
odom_pose = Pose2(pose_array[id]);
|
||||
} else {
|
||||
odom_pose = pose_array[0];
|
||||
}
|
||||
|
||||
// Take the first one as the initial estimate
|
||||
Pose2 odom_pose = pose_array[0];
|
||||
if (key_s == key_t - 1) { // new X(key)
|
||||
init_values.insert(X(key_t), results.at<Pose2>(X(key_s)) * odom_pose);
|
||||
pose_count++;
|
||||
} else { // loop
|
||||
index++;
|
||||
// index++;
|
||||
}
|
||||
graph->add(
|
||||
BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose, pose_noise_model));
|
||||
|
||||
isam2->update(*graph, init_values);
|
||||
graph->resize(0);
|
||||
if (num_measurements == 2) {
|
||||
// Add hybrid factor which considers both measurements
|
||||
DiscreteKey m(M(discrete_count), num_measurements);
|
||||
discrete_count++;
|
||||
|
||||
graph.push_back(DecisionTreeFactor(m, "0.6 0.4"));
|
||||
|
||||
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
|
||||
X(key_s), X(key_t), pose_array[0], pose_noise_model);
|
||||
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
|
||||
X(key_s), X(key_t), pose_array[1], pose_noise_model);
|
||||
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
|
||||
// HybridNonlinearFactor mixtureFactor(m, factors);
|
||||
HybridNonlinearFactor mixtureFactor(m, {f0, f1});
|
||||
graph.push_back(mixtureFactor);
|
||||
|
||||
} else {
|
||||
graph.add(BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose,
|
||||
pose_noise_model));
|
||||
}
|
||||
|
||||
isam.update(graph, init_values, maxNrHypotheses);
|
||||
graph.resize(0);
|
||||
init_values.clear();
|
||||
results = isam2->calculateBestEstimate();
|
||||
results = isam.estimate();
|
||||
isam.assignment().print("The Discrete Assignment");
|
||||
|
||||
//*
|
||||
// Print loop index and time taken in processor clock ticks
|
||||
if (index % 50 == 0 && key_s != key_t - 1) {
|
||||
std::cout << "index: " << index << std::endl;
|
||||
std::cout << "acc_time: " << time_list.back() << std::endl;
|
||||
}
|
||||
// */
|
||||
|
||||
if (key_s == key_t - 1) {
|
||||
clock_t cur_time = clock();
|
||||
|
@ -181,7 +186,8 @@ int main(int argc, char* argv[]) {
|
|||
string step_file_idx = std::to_string(100000 + time_list.size());
|
||||
|
||||
ofstream step_outfile;
|
||||
string step_file_name = "step_files/ISAM2_city10000_S" + step_file_idx;
|
||||
string step_file_name =
|
||||
"step_files/HybridISAM_city10000_S" + step_file_idx;
|
||||
step_outfile.open(step_file_name + ".txt");
|
||||
for (size_t i = 0; i < (key_t + 1); ++i) {
|
||||
Pose2 out_pose = results.at<Pose2>(X(i));
|
||||
|
@ -190,6 +196,8 @@ int main(int argc, char* argv[]) {
|
|||
}
|
||||
step_outfile.close();
|
||||
}
|
||||
|
||||
index += 1;
|
||||
}
|
||||
|
||||
clock_t end_time = clock();
|
||||
|
@ -197,10 +205,10 @@ int main(int argc, char* argv[]) {
|
|||
cout << "total_time: " << total_time << endl;
|
||||
|
||||
/// Write results to file
|
||||
write_results(results, (key_t + 1));
|
||||
write_results(results, (key_t + 1), "HybridISAM_city10000.txt");
|
||||
|
||||
ofstream outfile_time;
|
||||
std::string time_file_name = "ISAM2_city10000_time.txt";
|
||||
std::string time_file_name = "HybridISAM_city10000_time.txt";
|
||||
outfile_time.open(time_file_name);
|
||||
for (auto acc_time : time_list) {
|
||||
outfile_time << acc_time << std::endl;
|
||||
|
|
Loading…
Reference in New Issue