commit
e9d2f8775f
|
@ -89,14 +89,14 @@ namespace gtsam {
|
|||
/** Map from keys to Clique */
|
||||
typedef ConcurrentMap<Key, sharedClique> Nodes;
|
||||
|
||||
/** Root cliques */
|
||||
typedef FastVector<sharedClique> Roots;
|
||||
|
||||
protected:
|
||||
|
||||
/** Map from indices to Clique */
|
||||
Nodes nodes_;
|
||||
|
||||
/** Root cliques */
|
||||
typedef FastVector<sharedClique> Roots;
|
||||
|
||||
/** Root cliques */
|
||||
Roots roots_;
|
||||
|
||||
|
|
|
@ -98,7 +98,7 @@ namespace gtsam {
|
|||
for (size_t j = 0; j < n; j++)
|
||||
{
|
||||
// Retrieve the factors involving this variable and create the current node
|
||||
const VariableIndex::Factors& factors = structure[order[j]];
|
||||
const FactorIndices& factors = structure[order[j]];
|
||||
const sharedNode node = boost::make_shared<Node>();
|
||||
node->key = order[j];
|
||||
|
||||
|
|
|
@ -79,7 +79,7 @@ Ordering Ordering::ColamdConstrained(const VariableIndex& variableIndex,
|
|||
size_t index = 0;
|
||||
for (auto key_factors: variableIndex) {
|
||||
// Arrange factor indices into COLAMD format
|
||||
const VariableIndex::Factors& column = key_factors.second;
|
||||
const FactorIndices& column = key_factors.second;
|
||||
for(size_t factorIndex: column) {
|
||||
A[count++] = (int) factorIndex; // copy sparse column
|
||||
}
|
||||
|
|
|
@ -67,8 +67,8 @@ void VariableIndex::remove(ITERATOR firstFactor, ITERATOR lastFactor,
|
|||
"Internal error, requested inconsistent number of factor indices and factors in VariableIndex::remove");
|
||||
if (factors[i]) {
|
||||
for(Key j: *factors[i]) {
|
||||
Factors& factorEntries = internalAt(j);
|
||||
Factors::iterator entry = std::find(factorEntries.begin(),
|
||||
FactorIndices& factorEntries = internalAt(j);
|
||||
auto entry = std::find(factorEntries.begin(),
|
||||
factorEntries.end(), *factorIndex);
|
||||
if (entry == factorEntries.end())
|
||||
throw std::invalid_argument(
|
||||
|
|
|
@ -42,14 +42,12 @@ namespace gtsam {
|
|||
*/
|
||||
class GTSAM_EXPORT VariableIndex {
|
||||
public:
|
||||
|
||||
typedef boost::shared_ptr<VariableIndex> shared_ptr;
|
||||
typedef FactorIndices Factors;
|
||||
typedef Factors::iterator Factor_iterator;
|
||||
typedef Factors::const_iterator Factor_const_iterator;
|
||||
typedef FactorIndices::iterator Factor_iterator;
|
||||
typedef FactorIndices::const_iterator Factor_const_iterator;
|
||||
|
||||
protected:
|
||||
typedef FastMap<Key,Factors> KeyMap;
|
||||
typedef FastMap<Key, FactorIndices> KeyMap;
|
||||
KeyMap index_;
|
||||
size_t nFactors_; // Number of factors in the original factor graph.
|
||||
size_t nEntries_; // Sum of involved variable counts of each factor.
|
||||
|
@ -59,8 +57,6 @@ public:
|
|||
typedef KeyMap::const_iterator iterator;
|
||||
typedef KeyMap::value_type value_type;
|
||||
|
||||
public:
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
|
@ -72,7 +68,9 @@ public:
|
|||
* of a factor graph.
|
||||
*/
|
||||
template <class FG>
|
||||
VariableIndex(const FG& factorGraph) : nFactors_(0), nEntries_(0) { augment(factorGraph); }
|
||||
explicit VariableIndex(const FG& factorGraph) : nFactors_(0), nEntries_(0) {
|
||||
augment(factorGraph);
|
||||
}
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
|
@ -88,7 +86,7 @@ public:
|
|||
size_t nEntries() const { return nEntries_; }
|
||||
|
||||
/// Access a list of factors by variable
|
||||
const Factors& operator[](Key variable) const {
|
||||
const FactorIndices& operator[](Key variable) const {
|
||||
KeyMap::const_iterator item = index_.find(variable);
|
||||
if(item == index_.end())
|
||||
throw std::invalid_argument("Requested non-existent variable from VariableIndex");
|
||||
|
@ -96,6 +94,11 @@ public:
|
|||
return item->second;
|
||||
}
|
||||
|
||||
/// Return true if no factors associated with a variable
|
||||
const bool empty(Key variable) const {
|
||||
return (*this)[variable].empty();
|
||||
}
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
@ -166,16 +169,18 @@ protected:
|
|||
Factor_const_iterator factorsEnd(Key variable) const { return internalAt(variable).end(); }
|
||||
|
||||
/// Internal version of 'at' that asserts existence
|
||||
const Factors& internalAt(Key variable) const {
|
||||
const FactorIndices& internalAt(Key variable) const {
|
||||
const KeyMap::const_iterator item = index_.find(variable);
|
||||
assert(item != index_.end());
|
||||
return item->second; }
|
||||
return item->second;
|
||||
}
|
||||
|
||||
/// Internal version of 'at' that asserts existence
|
||||
Factors& internalAt(Key variable) {
|
||||
FactorIndices& internalAt(Key variable) {
|
||||
const KeyMap::iterator item = index_.find(variable);
|
||||
assert(item != index_.end());
|
||||
return item->second; }
|
||||
return item->second;
|
||||
}
|
||||
|
||||
/// @}
|
||||
};
|
||||
|
|
|
@ -31,150 +31,6 @@ using namespace std;
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
void ISAM2::Impl::AddFactorsStep1(const NonlinearFactorGraph& newFactors,
|
||||
bool useUnusedSlots,
|
||||
NonlinearFactorGraph* nonlinearFactors,
|
||||
FactorIndices* newFactorIndices) {
|
||||
newFactorIndices->resize(newFactors.size());
|
||||
|
||||
if (useUnusedSlots) {
|
||||
size_t globalFactorIndex = 0;
|
||||
for (size_t newFactorIndex = 0; newFactorIndex < newFactors.size();
|
||||
++newFactorIndex) {
|
||||
// Loop to find the next available factor slot
|
||||
do {
|
||||
// If we need to add more factors than we have room for, resize
|
||||
// nonlinearFactors, filling the new slots with NULL factors. Otherwise,
|
||||
// check if the current factor in nonlinearFactors is already used, and
|
||||
// if so, increase globalFactorIndex. If the current factor in
|
||||
// nonlinearFactors is unused, break out of the loop and use the current
|
||||
// slot.
|
||||
if (globalFactorIndex >= nonlinearFactors->size())
|
||||
nonlinearFactors->resize(nonlinearFactors->size() +
|
||||
newFactors.size() - newFactorIndex);
|
||||
else if ((*nonlinearFactors)[globalFactorIndex])
|
||||
++globalFactorIndex;
|
||||
else
|
||||
break;
|
||||
} while (true);
|
||||
|
||||
// Use the current slot, updating nonlinearFactors and newFactorSlots.
|
||||
(*nonlinearFactors)[globalFactorIndex] = newFactors[newFactorIndex];
|
||||
(*newFactorIndices)[newFactorIndex] = globalFactorIndex;
|
||||
}
|
||||
} else {
|
||||
// We're not looking for unused slots, so just add the factors at the end.
|
||||
for (size_t i = 0; i < newFactors.size(); ++i)
|
||||
(*newFactorIndices)[i] = i + nonlinearFactors->size();
|
||||
nonlinearFactors->push_back(newFactors);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
KeySet ISAM2::Impl::CheckRelinearizationFull(
|
||||
const VectorValues& delta,
|
||||
const ISAM2Params::RelinearizationThreshold& relinearizeThreshold) {
|
||||
KeySet relinKeys;
|
||||
|
||||
if (const double* threshold = boost::get<double>(&relinearizeThreshold)) {
|
||||
for (const VectorValues::KeyValuePair& key_delta : delta) {
|
||||
double maxDelta = key_delta.second.lpNorm<Eigen::Infinity>();
|
||||
if (maxDelta >= *threshold) relinKeys.insert(key_delta.first);
|
||||
}
|
||||
} else if (const FastMap<char, Vector>* thresholds =
|
||||
boost::get<FastMap<char, Vector> >(&relinearizeThreshold)) {
|
||||
for (const VectorValues::KeyValuePair& key_delta : delta) {
|
||||
const Vector& threshold =
|
||||
thresholds->find(Symbol(key_delta.first).chr())->second;
|
||||
if (threshold.rows() != key_delta.second.rows())
|
||||
throw std::invalid_argument(
|
||||
"Relinearization threshold vector dimensionality for '" +
|
||||
std::string(1, Symbol(key_delta.first).chr()) +
|
||||
"' passed into iSAM2 parameters does not match actual variable "
|
||||
"dimensionality.");
|
||||
if ((key_delta.second.array().abs() > threshold.array()).any())
|
||||
relinKeys.insert(key_delta.first);
|
||||
}
|
||||
}
|
||||
|
||||
return relinKeys;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static void CheckRelinearizationRecursiveDouble(
|
||||
double threshold, const VectorValues& delta,
|
||||
const ISAM2::sharedClique& clique, KeySet* relinKeys) {
|
||||
// Check the current clique for relinearization
|
||||
bool relinearize = false;
|
||||
for (Key var : *clique->conditional()) {
|
||||
double maxDelta = delta[var].lpNorm<Eigen::Infinity>();
|
||||
if (maxDelta >= threshold) {
|
||||
relinKeys->insert(var);
|
||||
relinearize = true;
|
||||
}
|
||||
}
|
||||
|
||||
// If this node was relinearized, also check its children
|
||||
if (relinearize) {
|
||||
for (const ISAM2::sharedClique& child : clique->children) {
|
||||
CheckRelinearizationRecursiveDouble(threshold, delta, child, relinKeys);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static void CheckRelinearizationRecursiveMap(
|
||||
const FastMap<char, Vector>& thresholds, const VectorValues& delta,
|
||||
const ISAM2::sharedClique& clique, KeySet* relinKeys) {
|
||||
// Check the current clique for relinearization
|
||||
bool relinearize = false;
|
||||
for (Key var : *clique->conditional()) {
|
||||
// Find the threshold for this variable type
|
||||
const Vector& threshold = thresholds.find(Symbol(var).chr())->second;
|
||||
|
||||
const Vector& deltaVar = delta[var];
|
||||
|
||||
// Verify the threshold vector matches the actual variable size
|
||||
if (threshold.rows() != deltaVar.rows())
|
||||
throw std::invalid_argument(
|
||||
"Relinearization threshold vector dimensionality for '" +
|
||||
std::string(1, Symbol(var).chr()) +
|
||||
"' passed into iSAM2 parameters does not match actual variable "
|
||||
"dimensionality.");
|
||||
|
||||
// Check for relinearization
|
||||
if ((deltaVar.array().abs() > threshold.array()).any()) {
|
||||
relinKeys->insert(var);
|
||||
relinearize = true;
|
||||
}
|
||||
}
|
||||
|
||||
// If this node was relinearized, also check its children
|
||||
if (relinearize) {
|
||||
for (const ISAM2::sharedClique& child : clique->children) {
|
||||
CheckRelinearizationRecursiveMap(thresholds, delta, child, relinKeys);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
KeySet ISAM2::Impl::CheckRelinearizationPartial(
|
||||
const ISAM2::Roots& roots, const VectorValues& delta,
|
||||
const ISAM2Params::RelinearizationThreshold& relinearizeThreshold) {
|
||||
KeySet relinKeys;
|
||||
for (const ISAM2::sharedClique& root : roots) {
|
||||
if (relinearizeThreshold.type() == typeid(double))
|
||||
CheckRelinearizationRecursiveDouble(
|
||||
boost::get<double>(relinearizeThreshold), delta, root, &relinKeys);
|
||||
else if (relinearizeThreshold.type() == typeid(FastMap<char, Vector>))
|
||||
CheckRelinearizationRecursiveMap(
|
||||
boost::get<FastMap<char, Vector> >(relinearizeThreshold), delta, root,
|
||||
&relinKeys);
|
||||
}
|
||||
return relinKeys;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
namespace internal {
|
||||
inline static void optimizeInPlace(const ISAM2::sharedClique& clique,
|
||||
|
@ -189,7 +45,7 @@ inline static void optimizeInPlace(const ISAM2::sharedClique& clique,
|
|||
} // namespace internal
|
||||
|
||||
/* ************************************************************************* */
|
||||
size_t ISAM2::Impl::UpdateGaussNewtonDelta(const ISAM2::Roots& roots,
|
||||
size_t DeltaImpl::UpdateGaussNewtonDelta(const ISAM2::Roots& roots,
|
||||
const KeySet& replacedKeys,
|
||||
double wildfireThreshold,
|
||||
VectorValues* delta) {
|
||||
|
@ -272,7 +128,7 @@ void updateRgProd(const ISAM2::sharedClique& clique, const KeySet& replacedKeys,
|
|||
} // namespace internal
|
||||
|
||||
/* ************************************************************************* */
|
||||
size_t ISAM2::Impl::UpdateRgProd(const ISAM2::Roots& roots,
|
||||
size_t DeltaImpl::UpdateRgProd(const ISAM2::Roots& roots,
|
||||
const KeySet& replacedKeys,
|
||||
const VectorValues& gradAtZero,
|
||||
VectorValues* RgProd) {
|
||||
|
@ -287,7 +143,7 @@ size_t ISAM2::Impl::UpdateRgProd(const ISAM2::Roots& roots,
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues ISAM2::Impl::ComputeGradientSearch(const VectorValues& gradAtZero,
|
||||
VectorValues DeltaImpl::ComputeGradientSearch(const VectorValues& gradAtZero,
|
||||
const VectorValues& RgProd) {
|
||||
// Compute gradient squared-magnitude
|
||||
const double gradientSqNorm = gradAtZero.dot(gradAtZero);
|
||||
|
|
|
@ -11,18 +11,65 @@
|
|||
|
||||
/**
|
||||
* @file ISAM2-impl.h
|
||||
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
|
||||
* @author Michael Kaess, Richard Roberts
|
||||
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid
|
||||
* relinearization.
|
||||
* @author Michael Kaess, Richard Roberts, Frank Dellaert
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/nonlinear/ISAM2Result.h>
|
||||
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/inference/JunctionTree-inst.h> // We need the inst file because we'll make a special JT templated on ISAM2
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/inference/VariableIndex.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/linear/GaussianEliminationTree.h>
|
||||
|
||||
#include <boost/range/adaptors.hpp>
|
||||
#include <boost/range/algorithm/copy.hpp>
|
||||
namespace br {
|
||||
using namespace boost::range;
|
||||
using namespace boost::adaptors;
|
||||
} // namespace br
|
||||
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
struct GTSAM_EXPORT ISAM2::Impl {
|
||||
/* ************************************************************************* */
|
||||
// Special BayesTree class that uses ISAM2 cliques - this is the result of
|
||||
// reeliminating ISAM2 subtrees.
|
||||
class ISAM2BayesTree : public ISAM2::Base {
|
||||
public:
|
||||
typedef ISAM2::Base Base;
|
||||
typedef ISAM2BayesTree This;
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
ISAM2BayesTree() {}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Special JunctionTree class that produces ISAM2 BayesTree cliques, used for
|
||||
// reeliminating ISAM2 subtrees.
|
||||
class ISAM2JunctionTree
|
||||
: public JunctionTree<ISAM2BayesTree, GaussianFactorGraph> {
|
||||
public:
|
||||
typedef JunctionTree<ISAM2BayesTree, GaussianFactorGraph> Base;
|
||||
typedef ISAM2JunctionTree This;
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
explicit ISAM2JunctionTree(const GaussianEliminationTree& eliminationTree)
|
||||
: Base(eliminationTree) {}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
struct GTSAM_EXPORT DeltaImpl {
|
||||
struct GTSAM_EXPORT PartialSolveResult {
|
||||
ISAM2::sharedClique bayesTree;
|
||||
};
|
||||
|
@ -34,57 +81,468 @@ struct GTSAM_EXPORT ISAM2::Impl {
|
|||
boost::optional<FastMap<Key, int> > constrainedKeys;
|
||||
};
|
||||
|
||||
/// Perform the first part of the bookkeeping updates for adding new factors. Adds them to the
|
||||
/// complete list of nonlinear factors, and populates the list of new factor indices, both
|
||||
/// optionally finding and reusing empty factor slots.
|
||||
static void AddFactorsStep1(const NonlinearFactorGraph& newFactors, bool useUnusedSlots,
|
||||
NonlinearFactorGraph* nonlinearFactors, FactorIndices* newFactorIndices);
|
||||
|
||||
/**
|
||||
* Find the set of variables to be relinearized according to relinearizeThreshold.
|
||||
* Any variables in the VectorValues delta whose vector magnitude is greater than
|
||||
* or equal to relinearizeThreshold are returned.
|
||||
* @param delta The linear delta to check against the threshold
|
||||
* @param keyFormatter Formatter for printing nonlinear keys during debugging
|
||||
* @return The set of variable indices in delta whose magnitude is greater than or
|
||||
* equal to relinearizeThreshold
|
||||
*/
|
||||
static KeySet CheckRelinearizationFull(const VectorValues& delta,
|
||||
const ISAM2Params::RelinearizationThreshold& relinearizeThreshold);
|
||||
|
||||
/**
|
||||
* Find the set of variables to be relinearized according to relinearizeThreshold.
|
||||
* This check is performed recursively, starting at the top of the tree. Once a
|
||||
* variable in the tree does not need to be relinearized, no further checks in
|
||||
* that branch are performed. This is an approximation of the Full version, designed
|
||||
* to save time at the expense of accuracy.
|
||||
* @param delta The linear delta to check against the threshold
|
||||
* @param keyFormatter Formatter for printing nonlinear keys during debugging
|
||||
* @return The set of variable indices in delta whose magnitude is greater than or
|
||||
* equal to relinearizeThreshold
|
||||
*/
|
||||
static KeySet CheckRelinearizationPartial(const ISAM2::Roots& roots,
|
||||
const VectorValues& delta, const ISAM2Params::RelinearizationThreshold& relinearizeThreshold);
|
||||
|
||||
/**
|
||||
* Update the Newton's method step point, using wildfire
|
||||
*/
|
||||
static size_t UpdateGaussNewtonDelta(const ISAM2::Roots& roots,
|
||||
const KeySet& replacedKeys, double wildfireThreshold, VectorValues* delta);
|
||||
const KeySet& replacedKeys,
|
||||
double wildfireThreshold,
|
||||
VectorValues* delta);
|
||||
|
||||
/**
|
||||
* Update the RgProd (R*g) incrementally taking into account which variables
|
||||
* have been recalculated in \c replacedKeys. Only used in Dogleg.
|
||||
*/
|
||||
static size_t UpdateRgProd(const ISAM2::Roots& roots, const KeySet& replacedKeys,
|
||||
const VectorValues& gradAtZero, VectorValues* RgProd);
|
||||
static size_t UpdateRgProd(const ISAM2::Roots& roots,
|
||||
const KeySet& replacedKeys,
|
||||
const VectorValues& gradAtZero,
|
||||
VectorValues* RgProd);
|
||||
|
||||
/**
|
||||
* Compute the gradient-search point. Only used in Dogleg.
|
||||
*/
|
||||
static VectorValues ComputeGradientSearch(const VectorValues& gradAtZero,
|
||||
const VectorValues& RgProd);
|
||||
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Implementation functions for update method
|
||||
* All of the methods below have clear inputs and outputs, even if not
|
||||
* functional: iSAM2 is inherintly imperative.
|
||||
*/
|
||||
struct GTSAM_EXPORT UpdateImpl {
|
||||
const ISAM2Params& params_;
|
||||
const ISAM2UpdateParams& updateParams_;
|
||||
UpdateImpl(const ISAM2Params& params, const ISAM2UpdateParams& updateParams)
|
||||
: params_(params), updateParams_(updateParams) {}
|
||||
|
||||
// Provide some debugging information at the start of update
|
||||
static void LogStartingUpdate(const NonlinearFactorGraph& newFactors,
|
||||
const ISAM2& isam2) {
|
||||
gttic(pushBackFactors);
|
||||
const bool debug = ISDEBUG("ISAM2 update");
|
||||
const bool verbose = ISDEBUG("ISAM2 update verbose");
|
||||
|
||||
if (verbose) {
|
||||
std::cout << "ISAM2::update\n";
|
||||
isam2.print("ISAM2: ");
|
||||
}
|
||||
|
||||
if (debug || verbose) {
|
||||
newFactors.print("The new factors are: ");
|
||||
}
|
||||
}
|
||||
|
||||
// Check relinearization if we're at the nth step, or we are using a looser
|
||||
// loop relinerization threshold.
|
||||
bool relinarizationNeeded(size_t update_count) const {
|
||||
return updateParams_.force_relinearize ||
|
||||
(params_.enableRelinearization &&
|
||||
update_count % params_.relinearizeSkip == 0);
|
||||
}
|
||||
|
||||
// Add any new factors \Factors:=\Factors\cup\Factors'.
|
||||
void pushBackFactors(const NonlinearFactorGraph& newFactors,
|
||||
NonlinearFactorGraph* nonlinearFactors,
|
||||
GaussianFactorGraph* linearFactors,
|
||||
VariableIndex* variableIndex,
|
||||
FactorIndices* newFactorsIndices,
|
||||
KeySet* keysWithRemovedFactors) const {
|
||||
gttic(pushBackFactors);
|
||||
|
||||
// Perform the first part of the bookkeeping updates for adding new factors.
|
||||
// Adds them to the complete list of nonlinear factors, and populates the
|
||||
// list of new factor indices, both optionally finding and reusing empty
|
||||
// factor slots.
|
||||
*newFactorsIndices = nonlinearFactors->add_factors(
|
||||
newFactors, params_.findUnusedFactorSlots);
|
||||
|
||||
// Remove the removed factors
|
||||
NonlinearFactorGraph removedFactors;
|
||||
removedFactors.reserve(updateParams_.removeFactorIndices.size());
|
||||
for (const auto index : updateParams_.removeFactorIndices) {
|
||||
removedFactors.push_back(nonlinearFactors->at(index));
|
||||
nonlinearFactors->remove(index);
|
||||
if (params_.cacheLinearizedFactors) linearFactors->remove(index);
|
||||
}
|
||||
|
||||
// Remove removed factors from the variable index so we do not attempt to
|
||||
// relinearize them
|
||||
variableIndex->remove(updateParams_.removeFactorIndices.begin(),
|
||||
updateParams_.removeFactorIndices.end(),
|
||||
removedFactors);
|
||||
*keysWithRemovedFactors = removedFactors.keys();
|
||||
}
|
||||
|
||||
// Get keys from removed factors and new factors, and compute unused keys,
|
||||
// i.e., keys that are empty now and do not appear in the new factors.
|
||||
void computeUnusedKeys(const NonlinearFactorGraph& newFactors,
|
||||
const VariableIndex& variableIndex,
|
||||
const KeySet& keysWithRemovedFactors,
|
||||
KeySet* unusedKeys) const {
|
||||
gttic(computeUnusedKeys);
|
||||
KeySet removedAndEmpty;
|
||||
for (Key key : keysWithRemovedFactors) {
|
||||
if (variableIndex.empty(key))
|
||||
removedAndEmpty.insert(removedAndEmpty.end(), key);
|
||||
}
|
||||
KeySet newFactorSymbKeys = newFactors.keys();
|
||||
std::set_difference(removedAndEmpty.begin(), removedAndEmpty.end(),
|
||||
newFactorSymbKeys.begin(), newFactorSymbKeys.end(),
|
||||
std::inserter(*unusedKeys, unusedKeys->end()));
|
||||
}
|
||||
|
||||
// Calculate nonlinear error
|
||||
void error(const NonlinearFactorGraph& nonlinearFactors,
|
||||
const Values& estimate, boost::optional<double>* result) const {
|
||||
gttic(error);
|
||||
result->reset(nonlinearFactors.error(estimate));
|
||||
}
|
||||
|
||||
// Mark linear update
|
||||
void gatherInvolvedKeys(const NonlinearFactorGraph& newFactors,
|
||||
const NonlinearFactorGraph& nonlinearFactors,
|
||||
const KeySet& keysWithRemovedFactors,
|
||||
KeySet* markedKeys) const {
|
||||
gttic(gatherInvolvedKeys);
|
||||
*markedKeys = newFactors.keys(); // Get keys from new factors
|
||||
// Also mark keys involved in removed factors
|
||||
markedKeys->insert(keysWithRemovedFactors.begin(),
|
||||
keysWithRemovedFactors.end());
|
||||
|
||||
// Also mark any provided extra re-eliminate keys
|
||||
if (updateParams_.extraReelimKeys) {
|
||||
for (Key key : *updateParams_.extraReelimKeys) {
|
||||
markedKeys->insert(key);
|
||||
}
|
||||
}
|
||||
|
||||
// Also, keys that were not observed in existing factors, but whose affected
|
||||
// keys have been extended now (e.g. smart factors)
|
||||
if (updateParams_.newAffectedKeys) {
|
||||
for (const auto& factorAddedKeys : *updateParams_.newAffectedKeys) {
|
||||
const auto factorIdx = factorAddedKeys.first;
|
||||
const auto& affectedKeys = nonlinearFactors.at(factorIdx)->keys();
|
||||
markedKeys->insert(affectedKeys.begin(), affectedKeys.end());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Update detail, unused, and observed keys from markedKeys
|
||||
void updateKeys(const KeySet& markedKeys, ISAM2Result* result) const {
|
||||
gttic(updateKeys);
|
||||
// Observed keys for detailed results
|
||||
if (result->detail && params_.enableDetailedResults) {
|
||||
for (Key key : markedKeys) {
|
||||
result->detail->variableStatus[key].isObserved = true;
|
||||
}
|
||||
}
|
||||
|
||||
for (Key index : markedKeys) {
|
||||
// Only add if not unused
|
||||
if (result->unusedKeys.find(index) == result->unusedKeys.end())
|
||||
// Make a copy of these, as we'll soon add to them
|
||||
result->observedKeys.push_back(index);
|
||||
}
|
||||
}
|
||||
|
||||
static void CheckRelinearizationRecursiveMap(
|
||||
const FastMap<char, Vector>& thresholds, const VectorValues& delta,
|
||||
const ISAM2::sharedClique& clique, KeySet* relinKeys) {
|
||||
// Check the current clique for relinearization
|
||||
bool relinearize = false;
|
||||
for (Key var : *clique->conditional()) {
|
||||
// Find the threshold for this variable type
|
||||
const Vector& threshold = thresholds.find(Symbol(var).chr())->second;
|
||||
|
||||
const Vector& deltaVar = delta[var];
|
||||
|
||||
// Verify the threshold vector matches the actual variable size
|
||||
if (threshold.rows() != deltaVar.rows())
|
||||
throw std::invalid_argument(
|
||||
"Relinearization threshold vector dimensionality for '" +
|
||||
std::string(1, Symbol(var).chr()) +
|
||||
"' passed into iSAM2 parameters does not match actual variable "
|
||||
"dimensionality.");
|
||||
|
||||
// Check for relinearization
|
||||
if ((deltaVar.array().abs() > threshold.array()).any()) {
|
||||
relinKeys->insert(var);
|
||||
relinearize = true;
|
||||
}
|
||||
}
|
||||
|
||||
// If this node was relinearized, also check its children
|
||||
if (relinearize) {
|
||||
for (const ISAM2::sharedClique& child : clique->children) {
|
||||
CheckRelinearizationRecursiveMap(thresholds, delta, child, relinKeys);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void CheckRelinearizationRecursiveDouble(
|
||||
double threshold, const VectorValues& delta,
|
||||
const ISAM2::sharedClique& clique, KeySet* relinKeys) {
|
||||
// Check the current clique for relinearization
|
||||
bool relinearize = false;
|
||||
for (Key var : *clique->conditional()) {
|
||||
double maxDelta = delta[var].lpNorm<Eigen::Infinity>();
|
||||
if (maxDelta >= threshold) {
|
||||
relinKeys->insert(var);
|
||||
relinearize = true;
|
||||
}
|
||||
}
|
||||
|
||||
// If this node was relinearized, also check its children
|
||||
if (relinearize) {
|
||||
for (const ISAM2::sharedClique& child : clique->children) {
|
||||
CheckRelinearizationRecursiveDouble(threshold, delta, child, relinKeys);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the set of variables to be relinearized according to
|
||||
* relinearizeThreshold. This check is performed recursively, starting at
|
||||
* the top of the tree. Once a variable in the tree does not need to be
|
||||
* relinearized, no further checks in that branch are performed. This is an
|
||||
* approximation of the Full version, designed to save time at the expense
|
||||
* of accuracy.
|
||||
* @param delta The linear delta to check against the threshold
|
||||
* @param keyFormatter Formatter for printing nonlinear keys during
|
||||
* debugging
|
||||
* @return The set of variable indices in delta whose magnitude is greater
|
||||
* than or equal to relinearizeThreshold
|
||||
*/
|
||||
static KeySet CheckRelinearizationPartial(
|
||||
const ISAM2::Roots& roots, const VectorValues& delta,
|
||||
const ISAM2Params::RelinearizationThreshold& relinearizeThreshold) {
|
||||
KeySet relinKeys;
|
||||
for (const ISAM2::sharedClique& root : roots) {
|
||||
if (relinearizeThreshold.type() == typeid(double))
|
||||
CheckRelinearizationRecursiveDouble(
|
||||
boost::get<double>(relinearizeThreshold), delta, root, &relinKeys);
|
||||
else if (relinearizeThreshold.type() == typeid(FastMap<char, Vector>))
|
||||
CheckRelinearizationRecursiveMap(
|
||||
boost::get<FastMap<char, Vector> >(relinearizeThreshold), delta,
|
||||
root, &relinKeys);
|
||||
}
|
||||
return relinKeys;
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the set of variables to be relinearized according to
|
||||
* relinearizeThreshold. Any variables in the VectorValues delta whose
|
||||
* vector magnitude is greater than or equal to relinearizeThreshold are
|
||||
* returned.
|
||||
* @param delta The linear delta to check against the threshold
|
||||
* @param keyFormatter Formatter for printing nonlinear keys during
|
||||
* debugging
|
||||
* @return The set of variable indices in delta whose magnitude is greater
|
||||
* than or equal to relinearizeThreshold
|
||||
*/
|
||||
static KeySet CheckRelinearizationFull(
|
||||
const VectorValues& delta,
|
||||
const ISAM2Params::RelinearizationThreshold& relinearizeThreshold) {
|
||||
KeySet relinKeys;
|
||||
|
||||
if (const double* threshold = boost::get<double>(&relinearizeThreshold)) {
|
||||
for (const VectorValues::KeyValuePair& key_delta : delta) {
|
||||
double maxDelta = key_delta.second.lpNorm<Eigen::Infinity>();
|
||||
if (maxDelta >= *threshold) relinKeys.insert(key_delta.first);
|
||||
}
|
||||
} else if (const FastMap<char, Vector>* thresholds =
|
||||
boost::get<FastMap<char, Vector> >(&relinearizeThreshold)) {
|
||||
for (const VectorValues::KeyValuePair& key_delta : delta) {
|
||||
const Vector& threshold =
|
||||
thresholds->find(Symbol(key_delta.first).chr())->second;
|
||||
if (threshold.rows() != key_delta.second.rows())
|
||||
throw std::invalid_argument(
|
||||
"Relinearization threshold vector dimensionality for '" +
|
||||
std::string(1, Symbol(key_delta.first).chr()) +
|
||||
"' passed into iSAM2 parameters does not match actual variable "
|
||||
"dimensionality.");
|
||||
if ((key_delta.second.array().abs() > threshold.array()).any())
|
||||
relinKeys.insert(key_delta.first);
|
||||
}
|
||||
}
|
||||
|
||||
return relinKeys;
|
||||
}
|
||||
|
||||
// Mark keys in \Delta above threshold \beta:
|
||||
KeySet gatherRelinearizeKeys(const ISAM2::Roots& roots,
|
||||
const VectorValues& delta,
|
||||
const KeySet& fixedVariables,
|
||||
KeySet* markedKeys) const {
|
||||
gttic(gatherRelinearizeKeys);
|
||||
// J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
|
||||
KeySet relinKeys =
|
||||
params_.enablePartialRelinearizationCheck
|
||||
? CheckRelinearizationPartial(roots, delta,
|
||||
params_.relinearizeThreshold)
|
||||
: CheckRelinearizationFull(delta, params_.relinearizeThreshold);
|
||||
if (updateParams_.forceFullSolve)
|
||||
relinKeys = CheckRelinearizationFull(delta, 0.0); // for debugging
|
||||
|
||||
// Remove from relinKeys any keys whose linearization points are fixed
|
||||
for (Key key : fixedVariables) {
|
||||
relinKeys.erase(key);
|
||||
}
|
||||
if (updateParams_.noRelinKeys) {
|
||||
for (Key key : *updateParams_.noRelinKeys) {
|
||||
relinKeys.erase(key);
|
||||
}
|
||||
}
|
||||
|
||||
// Add the variables being relinearized to the marked keys
|
||||
markedKeys->insert(relinKeys.begin(), relinKeys.end());
|
||||
return relinKeys;
|
||||
}
|
||||
|
||||
// Record relinerization threshold keys in detailed results
|
||||
void recordRelinearizeDetail(const KeySet& relinKeys,
|
||||
ISAM2Result::DetailedResults* detail) const {
|
||||
if (detail && params_.enableDetailedResults) {
|
||||
for (Key key : relinKeys) {
|
||||
detail->variableStatus[key].isAboveRelinThreshold = true;
|
||||
detail->variableStatus[key].isRelinearized = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Mark all cliques that involve marked variables \Theta_{J} and all
|
||||
// their ancestors.
|
||||
void findFluid(const ISAM2::Roots& roots, const KeySet& relinKeys,
|
||||
KeySet* markedKeys,
|
||||
ISAM2Result::DetailedResults* detail) const {
|
||||
gttic(findFluid);
|
||||
for (const auto& root : roots)
|
||||
// add other cliques that have the marked ones in the separator
|
||||
root->findAll(relinKeys, markedKeys);
|
||||
|
||||
// Relinearization-involved keys for detailed results
|
||||
if (detail && params_.enableDetailedResults) {
|
||||
KeySet involvedRelinKeys;
|
||||
for (const auto& root : roots)
|
||||
root->findAll(relinKeys, &involvedRelinKeys);
|
||||
for (Key key : involvedRelinKeys) {
|
||||
if (!detail->variableStatus[key].isAboveRelinThreshold) {
|
||||
detail->variableStatus[key].isRelinearizeInvolved = true;
|
||||
detail->variableStatus[key].isRelinearized = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply expmap to the given values, but only for indices appearing in
|
||||
* \c mask. Values are expmapped in-place.
|
||||
* \param mask Mask on linear indices, only \c true entries are expmapped
|
||||
*/
|
||||
static void ExpmapMasked(const VectorValues& delta, const KeySet& mask,
|
||||
Values* theta) {
|
||||
gttic(ExpmapMasked);
|
||||
assert(theta->size() == delta.size());
|
||||
Values::iterator key_value;
|
||||
VectorValues::const_iterator key_delta;
|
||||
#ifdef GTSAM_USE_TBB
|
||||
for (key_value = theta->begin(); key_value != theta->end(); ++key_value) {
|
||||
key_delta = delta.find(key_value->key);
|
||||
#else
|
||||
for (key_value = theta->begin(), key_delta = delta.begin();
|
||||
key_value != theta->end(); ++key_value, ++key_delta) {
|
||||
assert(key_value->key == key_delta->first);
|
||||
#endif
|
||||
Key var = key_value->key;
|
||||
assert(static_cast<size_t>(delta[var].size()) == key_value->value.dim());
|
||||
assert(delta[var].allFinite());
|
||||
if (mask.exists(var)) {
|
||||
Value* retracted = key_value->value.retract_(delta[var]);
|
||||
key_value->value = *retracted;
|
||||
retracted->deallocate_();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Linearize new factors
|
||||
void linearizeNewFactors(const NonlinearFactorGraph& newFactors,
|
||||
const Values& theta, size_t numNonlinearFactors,
|
||||
const FactorIndices& newFactorsIndices,
|
||||
GaussianFactorGraph* linearFactors) const {
|
||||
gttic(linearizeNewFactors);
|
||||
auto linearized = newFactors.linearize(theta);
|
||||
if (params_.findUnusedFactorSlots) {
|
||||
linearFactors->resize(numNonlinearFactors);
|
||||
for (size_t i = 0; i < newFactors.size(); ++i)
|
||||
(*linearFactors)[newFactorsIndices[i]] = (*linearized)[i];
|
||||
} else {
|
||||
linearFactors->push_back(*linearized);
|
||||
}
|
||||
assert(linearFactors->size() == numNonlinearFactors);
|
||||
}
|
||||
|
||||
void augmentVariableIndex(const NonlinearFactorGraph& newFactors,
|
||||
const FactorIndices& newFactorsIndices,
|
||||
VariableIndex* variableIndex) const {
|
||||
gttic(augmentVariableIndex);
|
||||
// Augment the variable index with the new factors
|
||||
if (params_.findUnusedFactorSlots)
|
||||
variableIndex->augment(newFactors, newFactorsIndices);
|
||||
else
|
||||
variableIndex->augment(newFactors);
|
||||
|
||||
// Augment it with existing factors which now affect to more variables:
|
||||
if (updateParams_.newAffectedKeys) {
|
||||
for (const auto& factorAddedKeys : *updateParams_.newAffectedKeys) {
|
||||
const auto factorIdx = factorAddedKeys.first;
|
||||
variableIndex->augmentExistingFactor(factorIdx, factorAddedKeys.second);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void LogRecalculateKeys(const ISAM2Result& result) {
|
||||
const bool debug = ISDEBUG("ISAM2 recalculate");
|
||||
|
||||
if (debug) {
|
||||
std::cout << "markedKeys: ";
|
||||
for (const Key key : result.markedKeys) {
|
||||
std::cout << key << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "observedKeys: ";
|
||||
for (const Key key : result.observedKeys) {
|
||||
std::cout << key << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
static FactorIndexSet GetAffectedFactors(const KeyList& keys,
|
||||
const VariableIndex& variableIndex) {
|
||||
gttic(GetAffectedFactors);
|
||||
FactorIndexSet indices;
|
||||
for (const Key key : keys) {
|
||||
const FactorIndices& factors(variableIndex[key]);
|
||||
indices.insert(factors.begin(), factors.end());
|
||||
}
|
||||
return indices;
|
||||
}
|
||||
|
||||
// find intermediate (linearized) factors from cache that are passed into
|
||||
// the affected area
|
||||
static GaussianFactorGraph GetCachedBoundaryFactors(
|
||||
const ISAM2::Cliques& orphans) {
|
||||
GaussianFactorGraph cachedBoundary;
|
||||
|
||||
for (const auto& orphan : orphans) {
|
||||
// retrieve the cached factor and add to boundary
|
||||
cachedBoundary.push_back(orphan->cachedFactor());
|
||||
}
|
||||
|
||||
return cachedBoundary;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -16,24 +16,16 @@
|
|||
* @author Michael Kaess, Richard Roberts, Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <gtsam/nonlinear/ISAM2-impl.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/nonlinear/ISAM2Result.h>
|
||||
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/base/timing.h>
|
||||
#include <gtsam/inference/BayesTree-inst.h>
|
||||
#include <gtsam/inference/JunctionTree-inst.h> // We need the inst file because we'll make a special JT templated on ISAM2
|
||||
#include <gtsam/linear/GaussianEliminationTree.h>
|
||||
#include <gtsam/nonlinear/LinearContainerFactor.h>
|
||||
|
||||
#include <boost/range/adaptors.hpp>
|
||||
#include <boost/range/algorithm/copy.hpp>
|
||||
namespace br {
|
||||
using namespace boost::range;
|
||||
using namespace boost::adaptors;
|
||||
} // namespace br
|
||||
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <utility>
|
||||
|
||||
|
@ -44,35 +36,6 @@ namespace gtsam {
|
|||
// Instantiate base class
|
||||
template class BayesTree<ISAM2Clique>;
|
||||
|
||||
static const bool kDisableReordering = false;
|
||||
static const double kBatchThreshold = 0.65;
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Special BayesTree class that uses ISAM2 cliques - this is the result of
|
||||
// reeliminating ISAM2 subtrees.
|
||||
class ISAM2BayesTree : public ISAM2::Base {
|
||||
public:
|
||||
typedef ISAM2::Base Base;
|
||||
typedef ISAM2BayesTree This;
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
ISAM2BayesTree() {}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Special JunctionTree class that produces ISAM2 BayesTree cliques, used for
|
||||
// reeliminating ISAM2 subtrees.
|
||||
class ISAM2JunctionTree
|
||||
: public JunctionTree<ISAM2BayesTree, GaussianFactorGraph> {
|
||||
public:
|
||||
typedef JunctionTree<ISAM2BayesTree, GaussianFactorGraph> Base;
|
||||
typedef ISAM2JunctionTree This;
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
explicit ISAM2JunctionTree(const GaussianEliminationTree& eliminationTree)
|
||||
: Base(eliminationTree) {}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
ISAM2::ISAM2(const ISAM2Params& params) : params_(params), update_count_(0) {
|
||||
if (params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
|
||||
|
@ -96,40 +59,12 @@ bool ISAM2::equals(const ISAM2& other, double tol) const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
FactorIndexSet ISAM2::getAffectedFactors(const KeyList& keys) const {
|
||||
static const bool debug = false;
|
||||
if (debug) cout << "Getting affected factors for ";
|
||||
if (debug) {
|
||||
for (const Key key : keys) {
|
||||
cout << key << " ";
|
||||
}
|
||||
}
|
||||
if (debug) cout << endl;
|
||||
|
||||
FactorIndexSet indices;
|
||||
for (const Key key : keys) {
|
||||
const VariableIndex::Factors& factors(variableIndex_[key]);
|
||||
indices.insert(factors.begin(), factors.end());
|
||||
}
|
||||
if (debug) cout << "Affected factors are: ";
|
||||
if (debug) {
|
||||
for (const auto index : indices) {
|
||||
cout << index << " ";
|
||||
}
|
||||
}
|
||||
if (debug) cout << endl;
|
||||
return indices;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// retrieve all factors that ONLY contain the affected variables
|
||||
// (note that the remaining stuff is summarized in the cached factors)
|
||||
|
||||
GaussianFactorGraph::shared_ptr ISAM2::relinearizeAffectedFactors(
|
||||
const FastList<Key>& affectedKeys, const KeySet& relinKeys) const {
|
||||
gttic(getAffectedFactors);
|
||||
FactorIndexSet candidates = getAffectedFactors(affectedKeys);
|
||||
gttoc(getAffectedFactors);
|
||||
GaussianFactorGraph ISAM2::relinearizeAffectedFactors(
|
||||
const ISAM2UpdateParams& updateParams, const FastList<Key>& affectedKeys,
|
||||
const KeySet& relinKeys) {
|
||||
gttic(relinearizeAffectedFactors);
|
||||
FactorIndexSet candidates =
|
||||
UpdateImpl::GetAffectedFactors(affectedKeys, variableIndex_);
|
||||
|
||||
gttic(affectedKeysSet);
|
||||
// for fast lookup below
|
||||
|
@ -138,7 +73,7 @@ GaussianFactorGraph::shared_ptr ISAM2::relinearizeAffectedFactors(
|
|||
gttoc(affectedKeysSet);
|
||||
|
||||
gttic(check_candidates_and_linearize);
|
||||
auto linearized = boost::make_shared<GaussianFactorGraph>();
|
||||
GaussianFactorGraph linearized;
|
||||
for (const FactorIndex idx : candidates) {
|
||||
bool inside = true;
|
||||
bool useCachedLinear = params_.cacheLinearizedFactors;
|
||||
|
@ -156,10 +91,10 @@ GaussianFactorGraph::shared_ptr ISAM2::relinearizeAffectedFactors(
|
|||
assert(linearFactors_[idx]);
|
||||
assert(linearFactors_[idx]->keys() == nonlinearFactors_[idx]->keys());
|
||||
#endif
|
||||
linearized->push_back(linearFactors_[idx]);
|
||||
linearized.push_back(linearFactors_[idx]);
|
||||
} else {
|
||||
auto linearFactor = nonlinearFactors_[idx]->linearize(theta_);
|
||||
linearized->push_back(linearFactor);
|
||||
linearized.push_back(linearFactor);
|
||||
if (params_.cacheLinearizedFactors) {
|
||||
#ifdef GTSAM_EXTRA_CONSISTENCY_CHECKS
|
||||
assert(linearFactors_[idx]->keys() == linearFactor->keys());
|
||||
|
@ -175,92 +110,37 @@ GaussianFactorGraph::shared_ptr ISAM2::relinearizeAffectedFactors(
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// find intermediate (linearized) factors from cache that are passed into the
|
||||
// affected area
|
||||
void ISAM2::recalculate(const ISAM2UpdateParams& updateParams,
|
||||
const KeySet& relinKeys, ISAM2Result* result) {
|
||||
gttic(recalculate);
|
||||
UpdateImpl::LogRecalculateKeys(*result);
|
||||
|
||||
GaussianFactorGraph ISAM2::getCachedBoundaryFactors(const Cliques& orphans) {
|
||||
GaussianFactorGraph cachedBoundary;
|
||||
|
||||
for (sharedClique orphan : orphans) {
|
||||
// retrieve the cached factor and add to boundary
|
||||
cachedBoundary.push_back(orphan->cachedFactor());
|
||||
}
|
||||
|
||||
return cachedBoundary;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
boost::shared_ptr<KeySet> ISAM2::recalculate(
|
||||
const KeySet& markedKeys, const KeySet& relinKeys,
|
||||
const KeyVector& observedKeys, const KeySet& unusedIndices,
|
||||
const boost::optional<FastMap<Key, int> >& constrainKeys,
|
||||
ISAM2Result* result) {
|
||||
// TODO(dellaert): new factors are linearized twice,
|
||||
// the newFactors passed in are not used.
|
||||
|
||||
const bool debug = ISDEBUG("ISAM2 recalculate");
|
||||
|
||||
// Input: BayesTree(this), newFactors
|
||||
|
||||
// figures for paper, disable for timing
|
||||
#ifdef PRINT_STATS
|
||||
static int counter = 0;
|
||||
int maxClique = 0;
|
||||
double avgClique = 0;
|
||||
int numCliques = 0;
|
||||
int nnzR = 0;
|
||||
if (counter > 0) { // cannot call on empty tree
|
||||
GaussianISAM2_P::CliqueData cdata = this->getCliqueData();
|
||||
GaussianISAM2_P::CliqueStats cstats = cdata.getStats();
|
||||
maxClique = cstats.maxCONDITIONALSize;
|
||||
avgClique = cstats.avgCONDITIONALSize;
|
||||
numCliques = cdata.conditionalSizes.size();
|
||||
nnzR = calculate_nnz(this->root());
|
||||
}
|
||||
counter++;
|
||||
#endif
|
||||
|
||||
if (debug) {
|
||||
cout << "markedKeys: ";
|
||||
for (const Key key : markedKeys) {
|
||||
cout << key << " ";
|
||||
}
|
||||
cout << endl;
|
||||
cout << "observedKeys: ";
|
||||
for (const Key key : observedKeys) {
|
||||
cout << key << " ";
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
// 1. Remove top of Bayes tree and convert to a factor graph:
|
||||
if (!result->markedKeys.empty() || !result->observedKeys.empty()) {
|
||||
// Remove top of Bayes tree and convert to a factor graph:
|
||||
// (a) For each affected variable, remove the corresponding clique and all
|
||||
// parents up to the root. (b) Store orphaned sub-trees \BayesTree_{O} of
|
||||
// removed cliques.
|
||||
gttic(removetop);
|
||||
Cliques orphans;
|
||||
GaussianBayesNet affectedBayesNet;
|
||||
this->removeTop(KeyVector(markedKeys.begin(), markedKeys.end()),
|
||||
Cliques orphans;
|
||||
this->removeTop(
|
||||
KeyVector(result->markedKeys.begin(), result->markedKeys.end()),
|
||||
&affectedBayesNet, &orphans);
|
||||
gttoc(removetop);
|
||||
|
||||
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
|
||||
// bug was here: we cannot reuse the original factors, because then the cached
|
||||
// factors get messed up [all the necessary data is actually contained in the
|
||||
// affectedBayesNet, including what was passed in from the boundaries,
|
||||
// so this would be correct; however, in the process we also generate new
|
||||
// cached_ entries that will be wrong (ie. they don't contain what would be
|
||||
// passed up at a certain point if batch elimination was done, but that's
|
||||
// what we need); we could choose not to update cached_ from here, but then
|
||||
// the new information (and potentially different variable ordering) is not
|
||||
// reflected in the cached_ values which again will be wrong]
|
||||
// so instead we have to retrieve the original linearized factors AND add the
|
||||
// cached factors from the boundary
|
||||
// bug was here: we cannot reuse the original factors, because then the
|
||||
// cached factors get messed up [all the necessary data is actually
|
||||
// contained in the affectedBayesNet, including what was passed in from the
|
||||
// boundaries, so this would be correct; however, in the process we also
|
||||
// generate new cached_ entries that will be wrong (ie. they don't contain
|
||||
// what would be passed up at a certain point if batch elimination was done,
|
||||
// but that's what we need); we could choose not to update cached_ from
|
||||
// here, but then the new information (and potentially different variable
|
||||
// ordering) is not reflected in the cached_ values which again will be
|
||||
// wrong] so instead we have to retrieve the original linearized factors AND
|
||||
// add the cached factors from the boundary
|
||||
|
||||
// BEGIN OF COPIED CODE
|
||||
|
||||
// ordering provides all keys in conditionals, there cannot be others because
|
||||
// path to root included
|
||||
// ordering provides all keys in conditionals, there cannot be others
|
||||
// because path to root included
|
||||
gttic(affectedKeys);
|
||||
FastList<Key> affectedKeys;
|
||||
for (const auto& conditional : affectedBayesNet)
|
||||
|
@ -268,12 +148,32 @@ boost::shared_ptr<KeySet> ISAM2::recalculate(
|
|||
conditional->endFrontals());
|
||||
gttoc(affectedKeys);
|
||||
|
||||
boost::shared_ptr<KeySet> affectedKeysSet(
|
||||
new KeySet()); // Will return this result
|
||||
|
||||
KeySet affectedKeysSet;
|
||||
static const double kBatchThreshold = 0.65;
|
||||
if (affectedKeys.size() >= theta_.size() * kBatchThreshold) {
|
||||
// Do a batch step - reorder and relinearize all variables
|
||||
gttic(batch);
|
||||
recalculateBatch(updateParams, &affectedKeysSet, result);
|
||||
} else {
|
||||
recalculateIncremental(updateParams, relinKeys, affectedKeys,
|
||||
&affectedKeysSet, &orphans, result);
|
||||
}
|
||||
|
||||
// Root clique variables for detailed results
|
||||
if (result->detail && params_.enableDetailedResults) {
|
||||
for (const auto& root : roots_)
|
||||
for (Key var : *root->conditional())
|
||||
result->detail->variableStatus[var].inRootClique = true;
|
||||
}
|
||||
|
||||
// Update replaced keys mask (accumulates until back-substitution happens)
|
||||
deltaReplacedMask_.insert(affectedKeysSet.begin(), affectedKeysSet.end());
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void ISAM2::recalculateBatch(const ISAM2UpdateParams& updateParams,
|
||||
KeySet* affectedKeysSet, ISAM2Result* result) {
|
||||
gttic(recalculateBatch);
|
||||
|
||||
gttic(add_keys);
|
||||
br::copy(variableIndex_ | br::map_keys,
|
||||
|
@ -282,24 +182,24 @@ boost::shared_ptr<KeySet> ISAM2::recalculate(
|
|||
// Removed unused keys:
|
||||
VariableIndex affectedFactorsVarIndex = variableIndex_;
|
||||
|
||||
affectedFactorsVarIndex.removeUnusedVariables(unusedIndices.begin(),
|
||||
unusedIndices.end());
|
||||
affectedFactorsVarIndex.removeUnusedVariables(result->unusedKeys.begin(),
|
||||
result->unusedKeys.end());
|
||||
|
||||
for (const Key key : unusedIndices) {
|
||||
for (const Key key : result->unusedKeys) {
|
||||
affectedKeysSet->erase(key);
|
||||
}
|
||||
gttoc(add_keys);
|
||||
|
||||
gttic(ordering);
|
||||
Ordering order;
|
||||
if (constrainKeys) {
|
||||
order =
|
||||
Ordering::ColamdConstrained(affectedFactorsVarIndex, *constrainKeys);
|
||||
if (updateParams.constrainedKeys) {
|
||||
order = Ordering::ColamdConstrained(affectedFactorsVarIndex,
|
||||
*updateParams.constrainedKeys);
|
||||
} else {
|
||||
if (theta_.size() > observedKeys.size()) {
|
||||
if (theta_.size() > result->observedKeys.size()) {
|
||||
// Only if some variables are unconstrained
|
||||
FastMap<Key, int> constraintGroups;
|
||||
for (Key var : observedKeys) constraintGroups[var] = 1;
|
||||
for (Key var : result->observedKeys) constraintGroups[var] = 1;
|
||||
order = Ordering::ColamdConstrained(affectedFactorsVarIndex,
|
||||
constraintGroups);
|
||||
} else {
|
||||
|
@ -309,62 +209,63 @@ boost::shared_ptr<KeySet> ISAM2::recalculate(
|
|||
gttoc(ordering);
|
||||
|
||||
gttic(linearize);
|
||||
GaussianFactorGraph linearized = *nonlinearFactors_.linearize(theta_);
|
||||
if (params_.cacheLinearizedFactors) linearFactors_ = linearized;
|
||||
auto linearized = nonlinearFactors_.linearize(theta_);
|
||||
if (params_.cacheLinearizedFactors) linearFactors_ = *linearized;
|
||||
gttoc(linearize);
|
||||
|
||||
gttic(eliminate);
|
||||
ISAM2BayesTree::shared_ptr bayesTree =
|
||||
ISAM2JunctionTree(
|
||||
GaussianEliminationTree(linearized, affectedFactorsVarIndex, order))
|
||||
GaussianEliminationTree(*linearized, affectedFactorsVarIndex, order))
|
||||
.eliminate(params_.getEliminationFunction())
|
||||
.first;
|
||||
gttoc(eliminate);
|
||||
|
||||
gttic(insert);
|
||||
this->clear();
|
||||
this->roots_.insert(this->roots_.end(), bayesTree->roots().begin(),
|
||||
roots_.clear();
|
||||
roots_.insert(roots_.end(), bayesTree->roots().begin(),
|
||||
bayesTree->roots().end());
|
||||
this->nodes_.insert(bayesTree->nodes().begin(), bayesTree->nodes().end());
|
||||
nodes_.clear();
|
||||
nodes_.insert(bayesTree->nodes().begin(), bayesTree->nodes().end());
|
||||
gttoc(insert);
|
||||
|
||||
result->variablesReeliminated = affectedKeysSet->size();
|
||||
result->factorsRecalculated = nonlinearFactors_.size();
|
||||
|
||||
lastAffectedMarkedCount = markedKeys.size();
|
||||
lastAffectedVariableCount = affectedKeysSet->size();
|
||||
lastAffectedFactorCount = linearized.size();
|
||||
|
||||
// Reeliminated keys for detailed results
|
||||
if (params_.enableDetailedResults) {
|
||||
for (Key key : theta_.keys()) {
|
||||
result->detail->variableStatus[key].isReeliminated = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
gttoc(batch);
|
||||
|
||||
} else {
|
||||
gttic(incremental);
|
||||
/* ************************************************************************* */
|
||||
void ISAM2::recalculateIncremental(const ISAM2UpdateParams& updateParams,
|
||||
const KeySet& relinKeys,
|
||||
const FastList<Key>& affectedKeys,
|
||||
KeySet* affectedKeysSet, Cliques* orphans,
|
||||
ISAM2Result* result) {
|
||||
gttic(recalculateIncremental);
|
||||
const bool debug = ISDEBUG("ISAM2 recalculate");
|
||||
|
||||
// 2. Add the new factors \Factors' into the resulting factor graph
|
||||
FastList<Key> affectedAndNewKeys;
|
||||
affectedAndNewKeys.insert(affectedAndNewKeys.end(), affectedKeys.begin(),
|
||||
affectedKeys.end());
|
||||
affectedAndNewKeys.insert(affectedAndNewKeys.end(), observedKeys.begin(),
|
||||
observedKeys.end());
|
||||
gttic(relinearizeAffected);
|
||||
GaussianFactorGraph factors(
|
||||
*relinearizeAffectedFactors(affectedAndNewKeys, relinKeys));
|
||||
if (debug) factors.print("Relinearized factors: ");
|
||||
gttoc(relinearizeAffected);
|
||||
affectedAndNewKeys.insert(affectedAndNewKeys.end(),
|
||||
result->observedKeys.begin(),
|
||||
result->observedKeys.end());
|
||||
GaussianFactorGraph factors =
|
||||
relinearizeAffectedFactors(updateParams, affectedAndNewKeys, relinKeys);
|
||||
|
||||
if (debug) {
|
||||
cout << "Affected keys: ";
|
||||
factors.print("Relinearized factors: ");
|
||||
std::cout << "Affected keys: ";
|
||||
for (const Key key : affectedKeys) {
|
||||
cout << key << " ";
|
||||
std::cout << key << " ";
|
||||
}
|
||||
cout << endl;
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
// Reeliminated keys for detailed results
|
||||
|
@ -376,34 +277,22 @@ boost::shared_ptr<KeySet> ISAM2::recalculate(
|
|||
|
||||
result->variablesReeliminated = affectedAndNewKeys.size();
|
||||
result->factorsRecalculated = factors.size();
|
||||
lastAffectedMarkedCount = markedKeys.size();
|
||||
lastAffectedVariableCount = affectedKeys.size();
|
||||
lastAffectedFactorCount = factors.size();
|
||||
|
||||
#ifdef PRINT_STATS
|
||||
// output for generating figures
|
||||
cout << "linear: #markedKeys: " << markedKeys.size()
|
||||
<< " #affectedVariables: " << affectedKeys.size()
|
||||
<< " #affectedFactors: " << factors.size()
|
||||
<< " maxCliqueSize: " << maxClique << " avgCliqueSize: " << avgClique
|
||||
<< " #Cliques: " << numCliques << " nnzR: " << nnzR << endl;
|
||||
#endif
|
||||
|
||||
gttic(cached);
|
||||
// add the cached intermediate results from the boundary of the orphans ...
|
||||
GaussianFactorGraph cachedBoundary = getCachedBoundaryFactors(orphans);
|
||||
// Add the cached intermediate results from the boundary of the orphans...
|
||||
GaussianFactorGraph cachedBoundary =
|
||||
UpdateImpl::GetCachedBoundaryFactors(*orphans);
|
||||
if (debug) cachedBoundary.print("Boundary factors: ");
|
||||
factors.push_back(cachedBoundary);
|
||||
gttoc(cached);
|
||||
|
||||
gttic(orphans);
|
||||
// Add the orphaned subtrees
|
||||
for (const sharedClique& orphan : orphans)
|
||||
factors += boost::make_shared<BayesTreeOrphanWrapper<Clique> >(orphan);
|
||||
for (const auto& orphan : *orphans)
|
||||
factors +=
|
||||
boost::make_shared<BayesTreeOrphanWrapper<ISAM2::Clique> >(orphan);
|
||||
gttoc(orphans);
|
||||
|
||||
// END OF COPIED CODE
|
||||
|
||||
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm
|
||||
// [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm
|
||||
// [alg:BayesTree])
|
||||
|
@ -412,9 +301,9 @@ boost::shared_ptr<KeySet> ISAM2::recalculate(
|
|||
|
||||
gttic(list_to_set);
|
||||
// create a partial reordering for the new and contaminated factors
|
||||
// markedKeys are passed in: those variables will be forced to the end in
|
||||
// the ordering
|
||||
affectedKeysSet->insert(markedKeys.begin(), markedKeys.end());
|
||||
// result->markedKeys are passed in: those variables will be forced to the
|
||||
// end in the ordering
|
||||
affectedKeysSet->insert(result->markedKeys.begin(), result->markedKeys.end());
|
||||
affectedKeysSet->insert(affectedKeys.begin(), affectedKeys.end());
|
||||
gttoc(list_to_set);
|
||||
|
||||
|
@ -423,21 +312,21 @@ boost::shared_ptr<KeySet> ISAM2::recalculate(
|
|||
gttic(ordering_constraints);
|
||||
// Create ordering constraints
|
||||
FastMap<Key, int> constraintGroups;
|
||||
if (constrainKeys) {
|
||||
constraintGroups = *constrainKeys;
|
||||
if (updateParams.constrainedKeys) {
|
||||
constraintGroups = *updateParams.constrainedKeys;
|
||||
} else {
|
||||
constraintGroups = FastMap<Key, int>();
|
||||
const int group =
|
||||
observedKeys.size() < affectedFactorsVarIndex.size() ? 1 : 0;
|
||||
for (Key var : observedKeys)
|
||||
constraintGroups.insert(make_pair(var, group));
|
||||
result->observedKeys.size() < affectedFactorsVarIndex.size() ? 1 : 0;
|
||||
for (Key var : result->observedKeys)
|
||||
constraintGroups.insert(std::make_pair(var, group));
|
||||
}
|
||||
|
||||
// Remove unaffected keys from the constraints
|
||||
for (FastMap<Key, int>::iterator iter = constraintGroups.begin();
|
||||
iter != constraintGroups.end();
|
||||
/*Incremented in loop ++iter*/) {
|
||||
if (unusedIndices.exists(iter->first) ||
|
||||
if (result->unusedKeys.exists(iter->first) ||
|
||||
!affectedKeysSet->exists(iter->first))
|
||||
constraintGroups.erase(iter++);
|
||||
else
|
||||
|
@ -447,53 +336,50 @@ boost::shared_ptr<KeySet> ISAM2::recalculate(
|
|||
|
||||
// Generate ordering
|
||||
gttic(Ordering);
|
||||
Ordering ordering =
|
||||
const Ordering ordering =
|
||||
Ordering::ColamdConstrained(affectedFactorsVarIndex, constraintGroups);
|
||||
gttoc(Ordering);
|
||||
|
||||
ISAM2BayesTree::shared_ptr bayesTree =
|
||||
ISAM2JunctionTree(
|
||||
GaussianEliminationTree(factors, affectedFactorsVarIndex, ordering))
|
||||
// Do elimination
|
||||
GaussianEliminationTree etree(factors, affectedFactorsVarIndex, ordering);
|
||||
auto bayesTree = ISAM2JunctionTree(etree)
|
||||
.eliminate(params_.getEliminationFunction())
|
||||
.first;
|
||||
|
||||
gttoc(reorder_and_eliminate);
|
||||
|
||||
gttic(reassemble);
|
||||
this->roots_.insert(this->roots_.end(), bayesTree->roots().begin(),
|
||||
roots_.insert(roots_.end(), bayesTree->roots().begin(),
|
||||
bayesTree->roots().end());
|
||||
this->nodes_.insert(bayesTree->nodes().begin(), bayesTree->nodes().end());
|
||||
nodes_.insert(bayesTree->nodes().begin(), bayesTree->nodes().end());
|
||||
gttoc(reassemble);
|
||||
|
||||
// 4. The orphans have already been inserted during elimination
|
||||
|
||||
gttoc(incremental);
|
||||
}
|
||||
|
||||
// Root clique variables for detailed results
|
||||
if (params_.enableDetailedResults) {
|
||||
for (const sharedNode& root : this->roots())
|
||||
for (Key var : *root->conditional())
|
||||
result->detail->variableStatus[var].inRootClique = true;
|
||||
}
|
||||
|
||||
return affectedKeysSet;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void ISAM2::addVariables(const Values& newTheta) {
|
||||
const bool debug = ISDEBUG("ISAM2 AddVariables");
|
||||
void ISAM2::addVariables(const Values& newTheta,
|
||||
ISAM2Result::DetailedResults* detail) {
|
||||
gttic(addNewVariables);
|
||||
|
||||
theta_.insert(newTheta);
|
||||
if (debug) newTheta.print("The new variables are: ");
|
||||
if (ISDEBUG("ISAM2 AddVariables")) newTheta.print("The new variables are: ");
|
||||
// Add zeros into the VectorValues
|
||||
delta_.insert(newTheta.zeroVectors());
|
||||
deltaNewton_.insert(newTheta.zeroVectors());
|
||||
RgProd_.insert(newTheta.zeroVectors());
|
||||
|
||||
// New keys for detailed results
|
||||
if (detail && params_.enableDetailedResults) {
|
||||
for (Key key : newTheta.keys()) {
|
||||
detail->variableStatus[key].isNew = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void ISAM2::removeVariables(const KeySet& unusedKeys) {
|
||||
gttic(removeVariables);
|
||||
|
||||
variableIndex_.removeUnusedVariables(unusedKeys.begin(), unusedKeys.end());
|
||||
for (Key key : unusedKeys) {
|
||||
delta_.erase(key);
|
||||
|
@ -506,36 +392,6 @@ void ISAM2::removeVariables(const KeySet& unusedKeys) {
|
|||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void ISAM2::expmapMasked(const KeySet& mask) {
|
||||
assert(theta_.size() == delta_.size());
|
||||
Values::iterator key_value;
|
||||
VectorValues::const_iterator key_delta;
|
||||
#ifdef GTSAM_USE_TBB
|
||||
for (key_value = theta_.begin(); key_value != theta_.end(); ++key_value) {
|
||||
key_delta = delta_.find(key_value->key);
|
||||
#else
|
||||
for (key_value = theta_.begin(), key_delta = delta_.begin();
|
||||
key_value != theta_.end(); ++key_value, ++key_delta) {
|
||||
assert(key_value->key == key_delta->first);
|
||||
#endif
|
||||
Key var = key_value->key;
|
||||
assert(static_cast<size_t>(delta_[var].size()) == key_value->value.dim());
|
||||
assert(delta_[var].allFinite());
|
||||
if (mask.exists(var)) {
|
||||
Value* retracted = key_value->value.retract_(delta_[var]);
|
||||
key_value->value = *retracted;
|
||||
retracted->deallocate_();
|
||||
#ifndef NDEBUG
|
||||
// If debugging, invalidate delta_ entries to Inf, to trigger assertions
|
||||
// if we try to re-use them.
|
||||
delta_[var] = Vector::Constant(delta_[var].rows(),
|
||||
numeric_limits<double>::infinity());
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
ISAM2Result ISAM2::update(
|
||||
const NonlinearFactorGraph& newFactors, const Values& newTheta,
|
||||
|
@ -544,7 +400,6 @@ ISAM2Result ISAM2::update(
|
|||
const boost::optional<FastList<Key> >& noRelinKeys,
|
||||
const boost::optional<FastList<Key> >& extraReelimKeys,
|
||||
bool force_relinearize) {
|
||||
|
||||
ISAM2UpdateParams params;
|
||||
params.constrainedKeys = constrainedKeys;
|
||||
params.extraReelimKeys = extraReelimKeys;
|
||||
|
@ -559,279 +414,64 @@ ISAM2Result ISAM2::update(
|
|||
ISAM2Result ISAM2::update(const NonlinearFactorGraph& newFactors,
|
||||
const Values& newTheta,
|
||||
const ISAM2UpdateParams& updateParams) {
|
||||
const bool debug = ISDEBUG("ISAM2 update");
|
||||
const bool verbose = ISDEBUG("ISAM2 update verbose");
|
||||
|
||||
gttic(ISAM2_update);
|
||||
|
||||
this->update_count_++;
|
||||
|
||||
lastAffectedVariableCount = 0;
|
||||
lastAffectedFactorCount = 0;
|
||||
lastAffectedCliqueCount = 0;
|
||||
lastAffectedMarkedCount = 0;
|
||||
lastBacksubVariableCount = 0;
|
||||
lastNnzTop = 0;
|
||||
ISAM2Result result;
|
||||
if (params_.enableDetailedResults)
|
||||
result.detail = ISAM2Result::DetailedResults();
|
||||
const bool relinearizeThisStep =
|
||||
updateParams.force_relinearize || (params_.enableRelinearization &&
|
||||
update_count_ % params_.relinearizeSkip == 0);
|
||||
|
||||
if (verbose) {
|
||||
cout << "ISAM2::update\n";
|
||||
this->print("ISAM2: ");
|
||||
}
|
||||
this->update_count_ += 1;
|
||||
UpdateImpl::LogStartingUpdate(newFactors, *this);
|
||||
ISAM2Result result(params_.enableDetailedResults);
|
||||
UpdateImpl update(params_, updateParams);
|
||||
|
||||
// Update delta if we need it to check relinearization later
|
||||
if (relinearizeThisStep) {
|
||||
gttic(updateDelta);
|
||||
updateDelta(kDisableReordering);
|
||||
gttoc(updateDelta);
|
||||
}
|
||||
if (update.relinarizationNeeded(update_count_))
|
||||
updateDelta(updateParams.forceFullSolve);
|
||||
|
||||
gttic(push_back_factors);
|
||||
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
|
||||
// Add the new factor indices to the result struct
|
||||
if (debug || verbose) newFactors.print("The new factors are: ");
|
||||
Impl::AddFactorsStep1(newFactors, params_.findUnusedFactorSlots,
|
||||
&nonlinearFactors_, &result.newFactorsIndices);
|
||||
update.pushBackFactors(newFactors, &nonlinearFactors_, &linearFactors_,
|
||||
&variableIndex_, &result.newFactorsIndices,
|
||||
&result.keysWithRemovedFactors);
|
||||
update.computeUnusedKeys(newFactors, variableIndex_,
|
||||
result.keysWithRemovedFactors, &result.unusedKeys);
|
||||
|
||||
// Remove the removed factors
|
||||
NonlinearFactorGraph removeFactors;
|
||||
removeFactors.reserve(updateParams.removeFactorIndices.size());
|
||||
for (const auto index : updateParams.removeFactorIndices) {
|
||||
removeFactors.push_back(nonlinearFactors_[index]);
|
||||
nonlinearFactors_.remove(index);
|
||||
if (params_.cacheLinearizedFactors) linearFactors_.remove(index);
|
||||
}
|
||||
|
||||
// Remove removed factors from the variable index so we do not attempt to
|
||||
// relinearize them
|
||||
variableIndex_.remove(updateParams.removeFactorIndices.begin(),
|
||||
updateParams.removeFactorIndices.end(),
|
||||
removeFactors);
|
||||
|
||||
// Compute unused keys and indices
|
||||
KeySet unusedKeys;
|
||||
KeySet unusedIndices;
|
||||
{
|
||||
// Get keys from removed factors and new factors, and compute unused keys,
|
||||
// i.e., keys that are empty now and do not appear in the new factors.
|
||||
KeySet removedAndEmpty;
|
||||
for (Key key : removeFactors.keys()) {
|
||||
if (variableIndex_[key].empty())
|
||||
removedAndEmpty.insert(removedAndEmpty.end(), key);
|
||||
}
|
||||
KeySet newFactorSymbKeys = newFactors.keys();
|
||||
std::set_difference(removedAndEmpty.begin(), removedAndEmpty.end(),
|
||||
newFactorSymbKeys.begin(), newFactorSymbKeys.end(),
|
||||
std::inserter(unusedKeys, unusedKeys.end()));
|
||||
|
||||
// Get indices for unused keys
|
||||
for (Key key : unusedKeys) {
|
||||
unusedIndices.insert(unusedIndices.end(), key);
|
||||
}
|
||||
}
|
||||
gttoc(push_back_factors);
|
||||
|
||||
gttic(add_new_variables);
|
||||
// 2. Initialize any new variables \Theta_{new} and add
|
||||
// \Theta:=\Theta\cup\Theta_{new}.
|
||||
addVariables(newTheta);
|
||||
// New keys for detailed results
|
||||
if (params_.enableDetailedResults) {
|
||||
for (Key key : newTheta.keys()) {
|
||||
result.detail->variableStatus[key].isNew = true;
|
||||
}
|
||||
}
|
||||
gttoc(add_new_variables);
|
||||
|
||||
gttic(evaluate_error_before);
|
||||
addVariables(newTheta, result.details());
|
||||
if (params_.evaluateNonlinearError)
|
||||
result.errorBefore.reset(nonlinearFactors_.error(calculateEstimate()));
|
||||
gttoc(evaluate_error_before);
|
||||
update.error(nonlinearFactors_, calculateEstimate(), &result.errorBefore);
|
||||
|
||||
gttic(gather_involved_keys);
|
||||
// 3. Mark linear update
|
||||
KeySet markedKeys = newFactors.keys(); // Get keys from new factors
|
||||
// Also mark keys involved in removed factors
|
||||
{
|
||||
KeySet markedRemoveKeys =
|
||||
removeFactors.keys(); // Get keys involved in removed factors
|
||||
markedKeys.insert(
|
||||
markedRemoveKeys.begin(),
|
||||
markedRemoveKeys.end()); // Add to the overall set of marked keys
|
||||
}
|
||||
// Also mark any provided extra re-eliminate keys
|
||||
if (updateParams.extraReelimKeys) {
|
||||
for (Key key : *updateParams.extraReelimKeys) {
|
||||
markedKeys.insert(key);
|
||||
}
|
||||
}
|
||||
// Also, keys that were not observed in existing factors, but whose affected
|
||||
// keys have been extended now (e.g. smart factors)
|
||||
if (updateParams.newAffectedKeys) {
|
||||
for (const auto &factorAddedKeys : *updateParams.newAffectedKeys) {
|
||||
const auto factorIdx = factorAddedKeys.first;
|
||||
const auto& affectedKeys = nonlinearFactors_.at(factorIdx)->keys();
|
||||
markedKeys.insert(affectedKeys.begin(),affectedKeys.end());
|
||||
}
|
||||
}
|
||||
update.gatherInvolvedKeys(newFactors, nonlinearFactors_,
|
||||
result.keysWithRemovedFactors, &result.markedKeys);
|
||||
update.updateKeys(result.markedKeys, &result);
|
||||
|
||||
// Observed keys for detailed results
|
||||
if (params_.enableDetailedResults) {
|
||||
for (Key key : markedKeys) {
|
||||
result.detail->variableStatus[key].isObserved = true;
|
||||
}
|
||||
}
|
||||
|
||||
KeyVector observedKeys;
|
||||
for (Key index : markedKeys) {
|
||||
// Only add if not unused
|
||||
if (unusedIndices.find(index) == unusedIndices.end())
|
||||
// Make a copy of these, as we'll soon add to them
|
||||
observedKeys.push_back(index);
|
||||
}
|
||||
gttoc(gather_involved_keys);
|
||||
|
||||
// Check relinearization if we're at the nth step, or we are using a looser
|
||||
// loop relin threshold
|
||||
KeySet relinKeys;
|
||||
if (relinearizeThisStep) {
|
||||
gttic(gather_relinearize_keys);
|
||||
result.variablesRelinearized = 0;
|
||||
if (update.relinarizationNeeded(update_count_)) {
|
||||
// 4. Mark keys in \Delta above threshold \beta:
|
||||
// J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
|
||||
if (params_.enablePartialRelinearizationCheck)
|
||||
relinKeys = Impl::CheckRelinearizationPartial(
|
||||
roots_, delta_, params_.relinearizeThreshold);
|
||||
else
|
||||
relinKeys =
|
||||
Impl::CheckRelinearizationFull(delta_, params_.relinearizeThreshold);
|
||||
if (kDisableReordering)
|
||||
relinKeys = Impl::CheckRelinearizationFull(
|
||||
delta_, 0.0); // This is used for debugging
|
||||
|
||||
// Remove from relinKeys any keys whose linearization points are fixed
|
||||
for (Key key : fixedVariables_) {
|
||||
relinKeys.erase(key);
|
||||
}
|
||||
if (updateParams.noRelinKeys) {
|
||||
for (Key key : *updateParams.noRelinKeys) {
|
||||
relinKeys.erase(key);
|
||||
}
|
||||
}
|
||||
|
||||
// Above relin threshold keys for detailed results
|
||||
if (params_.enableDetailedResults) {
|
||||
for (Key key : relinKeys) {
|
||||
result.detail->variableStatus[key].isAboveRelinThreshold = true;
|
||||
result.detail->variableStatus[key].isRelinearized = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Add the variables being relinearized to the marked keys
|
||||
KeySet markedRelinMask;
|
||||
for (const Key key : relinKeys) markedRelinMask.insert(key);
|
||||
markedKeys.insert(relinKeys.begin(), relinKeys.end());
|
||||
gttoc(gather_relinearize_keys);
|
||||
|
||||
gttic(fluid_find_all);
|
||||
// 5. Mark all cliques that involve marked variables \Theta_{J} and all
|
||||
// their ancestors.
|
||||
relinKeys = update.gatherRelinearizeKeys(roots_, delta_, fixedVariables_,
|
||||
&result.markedKeys);
|
||||
update.recordRelinearizeDetail(relinKeys, result.details());
|
||||
if (!relinKeys.empty()) {
|
||||
for (const sharedClique& root : roots_)
|
||||
// add other cliques that have the marked ones in the separator
|
||||
root->findAll(markedRelinMask, &markedKeys);
|
||||
|
||||
// Relin involved keys for detailed results
|
||||
if (params_.enableDetailedResults) {
|
||||
KeySet involvedRelinKeys;
|
||||
for (const sharedClique& root : roots_)
|
||||
root->findAll(markedRelinMask, &involvedRelinKeys);
|
||||
for (Key key : involvedRelinKeys) {
|
||||
if (!result.detail->variableStatus[key].isAboveRelinThreshold) {
|
||||
result.detail->variableStatus[key].isRelinearizeInvolved = true;
|
||||
result.detail->variableStatus[key].isRelinearized = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
gttoc(fluid_find_all);
|
||||
|
||||
gttic(expmap);
|
||||
// 5. Mark cliques that involve marked variables \Theta_{J} and ancestors.
|
||||
update.findFluid(roots_, relinKeys, &result.markedKeys, result.details());
|
||||
// 6. Update linearization point for marked variables:
|
||||
// \Theta_{J}:=\Theta_{J}+\Delta_{J}.
|
||||
if (!relinKeys.empty()) expmapMasked(markedRelinMask);
|
||||
gttoc(expmap);
|
||||
|
||||
result.variablesRelinearized = markedKeys.size();
|
||||
} else {
|
||||
result.variablesRelinearized = 0;
|
||||
UpdateImpl::ExpmapMasked(delta_, relinKeys, &theta_);
|
||||
}
|
||||
result.variablesRelinearized = result.markedKeys.size();
|
||||
}
|
||||
|
||||
gttic(linearize_new);
|
||||
// 7. Linearize new factors
|
||||
if (params_.cacheLinearizedFactors) {
|
||||
gttic(linearize);
|
||||
auto linearFactors = newFactors.linearize(theta_);
|
||||
if (params_.findUnusedFactorSlots) {
|
||||
linearFactors_.resize(nonlinearFactors_.size());
|
||||
for (size_t newFactorI = 0; newFactorI < newFactors.size(); ++newFactorI)
|
||||
linearFactors_[result.newFactorsIndices[newFactorI]] =
|
||||
(*linearFactors)[newFactorI];
|
||||
} else {
|
||||
linearFactors_.push_back(*linearFactors);
|
||||
}
|
||||
assert(nonlinearFactors_.size() == linearFactors_.size());
|
||||
gttoc(linearize);
|
||||
}
|
||||
gttoc(linearize_new);
|
||||
update.linearizeNewFactors(newFactors, theta_, nonlinearFactors_.size(),
|
||||
result.newFactorsIndices, &linearFactors_);
|
||||
update.augmentVariableIndex(newFactors, result.newFactorsIndices,
|
||||
&variableIndex_);
|
||||
|
||||
gttic(augment_VI);
|
||||
// Augment the variable index with the new factors
|
||||
if (params_.findUnusedFactorSlots)
|
||||
variableIndex_.augment(newFactors, result.newFactorsIndices);
|
||||
else
|
||||
variableIndex_.augment(newFactors);
|
||||
|
||||
// Augment it with existing factors which now affect to more variables:
|
||||
if (updateParams.newAffectedKeys) {
|
||||
for (const auto &factorAddedKeys : *updateParams.newAffectedKeys) {
|
||||
const auto factorIdx = factorAddedKeys.first;
|
||||
variableIndex_.augmentExistingFactor(
|
||||
factorIdx, factorAddedKeys.second);
|
||||
}
|
||||
}
|
||||
gttoc(augment_VI);
|
||||
|
||||
gttic(recalculate);
|
||||
// 8. Redo top of Bayes tree
|
||||
boost::shared_ptr<KeySet> replacedKeys;
|
||||
if (!markedKeys.empty() || !observedKeys.empty())
|
||||
replacedKeys = recalculate(
|
||||
markedKeys, relinKeys, observedKeys, unusedIndices,
|
||||
updateParams.constrainedKeys, &result);
|
||||
|
||||
// Update replaced keys mask (accumulates until back-substitution takes place)
|
||||
if (replacedKeys)
|
||||
deltaReplacedMask_.insert(replacedKeys->begin(), replacedKeys->end());
|
||||
gttoc(recalculate);
|
||||
|
||||
// Update data structures to remove unused keys
|
||||
if (!unusedKeys.empty()) {
|
||||
gttic(remove_variables);
|
||||
removeVariables(unusedKeys);
|
||||
gttoc(remove_variables);
|
||||
}
|
||||
// 8. Redo top of Bayes tree and update data structures
|
||||
recalculate(updateParams, relinKeys, &result);
|
||||
if (!result.unusedKeys.empty()) removeVariables(result.unusedKeys);
|
||||
result.cliques = this->nodes().size();
|
||||
|
||||
gttic(evaluate_error_after);
|
||||
if (params_.evaluateNonlinearError)
|
||||
result.errorAfter.reset(nonlinearFactors_.error(calculateEstimate()));
|
||||
gttoc(evaluate_error_after);
|
||||
|
||||
update.error(nonlinearFactors_, calculateEstimate(), &result.errorAfter);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -1057,6 +697,7 @@ void ISAM2::marginalizeLeaves(
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Marked const but actually changes mutable delta
|
||||
void ISAM2::updateDelta(bool forceFullSolve) const {
|
||||
gttic(updateDelta);
|
||||
if (params_.optimizationParams.type() == typeid(ISAM2GaussNewtonParams)) {
|
||||
|
@ -1066,8 +707,8 @@ void ISAM2::updateDelta(bool forceFullSolve) const {
|
|||
const double effectiveWildfireThreshold =
|
||||
forceFullSolve ? 0.0 : gaussNewtonParams.wildfireThreshold;
|
||||
gttic(Wildfire_update);
|
||||
lastBacksubVariableCount = Impl::UpdateGaussNewtonDelta(
|
||||
roots_, deltaReplacedMask_, effectiveWildfireThreshold, &delta_);
|
||||
DeltaImpl::UpdateGaussNewtonDelta(roots_, deltaReplacedMask_,
|
||||
effectiveWildfireThreshold, &delta_);
|
||||
deltaReplacedMask_.clear();
|
||||
gttoc(Wildfire_update);
|
||||
|
||||
|
@ -1083,15 +724,15 @@ void ISAM2::updateDelta(bool forceFullSolve) const {
|
|||
|
||||
// Compute Newton's method step
|
||||
gttic(Wildfire_update);
|
||||
lastBacksubVariableCount = Impl::UpdateGaussNewtonDelta(
|
||||
DeltaImpl::UpdateGaussNewtonDelta(
|
||||
roots_, deltaReplacedMask_, effectiveWildfireThreshold, &deltaNewton_);
|
||||
gttoc(Wildfire_update);
|
||||
|
||||
// Compute steepest descent step
|
||||
const VectorValues gradAtZero = this->gradientAtZero(); // Compute gradient
|
||||
Impl::UpdateRgProd(roots_, deltaReplacedMask_, gradAtZero,
|
||||
DeltaImpl::UpdateRgProd(roots_, deltaReplacedMask_, gradAtZero,
|
||||
&RgProd_); // Update RgProd
|
||||
const VectorValues dx_u = Impl::ComputeGradientSearch(
|
||||
const VectorValues dx_u = DeltaImpl::ComputeGradientSearch(
|
||||
gradAtZero, RgProd_); // Compute gradient search point
|
||||
|
||||
// Clear replaced keys mask because now we've updated deltaNewton_ and
|
||||
|
@ -1113,6 +754,8 @@ void ISAM2::updateDelta(bool forceFullSolve) const {
|
|||
doglegResult
|
||||
.dx_d; // Copy the VectorValues containing with the linear solution
|
||||
gttoc(Copy_dx_d);
|
||||
} else {
|
||||
throw std::runtime_error("iSAM2: unknown ISAM2Params type");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1155,37 +798,13 @@ double ISAM2::error(const VectorValues& x) const {
|
|||
return GaussianFactorGraph(*this).error(x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static void gradientAtZeroTreeAdder(const boost::shared_ptr<ISAM2Clique>& root,
|
||||
VectorValues* g) {
|
||||
// Loop through variables in each clique, adding contributions
|
||||
DenseIndex variablePosition = 0;
|
||||
for (GaussianConditional::const_iterator jit = root->conditional()->begin();
|
||||
jit != root->conditional()->end(); ++jit) {
|
||||
const DenseIndex dim = root->conditional()->getDim(jit);
|
||||
pair<VectorValues::iterator, bool> pos_ins = g->tryInsert(
|
||||
*jit, root->gradientContribution().segment(variablePosition, dim));
|
||||
if (!pos_ins.second)
|
||||
pos_ins.first->second +=
|
||||
root->gradientContribution().segment(variablePosition, dim);
|
||||
variablePosition += dim;
|
||||
}
|
||||
|
||||
// Recursively add contributions from children
|
||||
typedef boost::shared_ptr<ISAM2Clique> sharedClique;
|
||||
for (const sharedClique& child : root->children) {
|
||||
gradientAtZeroTreeAdder(child, g);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues ISAM2::gradientAtZero() const {
|
||||
// Create result
|
||||
VectorValues g;
|
||||
|
||||
// Sum up contributions for each clique
|
||||
for (const ISAM2::sharedClique& root : this->roots())
|
||||
gradientAtZeroTreeAdder(root, &g);
|
||||
for (const auto& root : this->roots()) root->addGradientAtZero(&g);
|
||||
|
||||
return g;
|
||||
}
|
||||
|
|
|
@ -20,12 +20,12 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/nonlinear/ISAM2Clique.h>
|
||||
#include <gtsam/nonlinear/ISAM2Params.h>
|
||||
#include <gtsam/nonlinear/ISAM2Result.h>
|
||||
#include <gtsam/nonlinear/ISAM2Clique.h>
|
||||
#include <gtsam/nonlinear/ISAM2UpdateParams.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
|
@ -73,8 +73,8 @@ class GTSAM_EXPORT ISAM2 : public BayesTree<ISAM2Clique> {
|
|||
* This is \c mutable because it is used internally to not update delta_
|
||||
* until it is needed.
|
||||
*/
|
||||
mutable KeySet
|
||||
deltaReplacedMask_; // TODO(dellaert): Make sure accessed in the right way
|
||||
mutable KeySet deltaReplacedMask_; // TODO(dellaert): Make sure accessed in
|
||||
// the right way
|
||||
|
||||
/** All original nonlinear factors are stored here to use during
|
||||
* relinearization */
|
||||
|
@ -97,11 +97,11 @@ class GTSAM_EXPORT ISAM2 : public BayesTree<ISAM2Clique> {
|
|||
///< periodic relinearization
|
||||
|
||||
public:
|
||||
typedef ISAM2 This; ///< This class
|
||||
typedef BayesTree<ISAM2Clique> Base; ///< The BayesTree base class
|
||||
typedef Base::Clique Clique; ///< A clique
|
||||
typedef Base::sharedClique sharedClique; ///< Shared pointer to a clique
|
||||
typedef Base::Cliques Cliques; ///< List of Clique typedef from base class
|
||||
using This = ISAM2; ///< This class
|
||||
using Base = BayesTree<ISAM2Clique>; ///< The BayesTree base class
|
||||
using Clique = Base::Clique; ///< A clique
|
||||
using sharedClique = Base::sharedClique; ///< Shared pointer to a clique
|
||||
using Cliques = Base::Cliques; ///< List of Cliques
|
||||
|
||||
/** Create an empty ISAM2 instance */
|
||||
explicit ISAM2(const ISAM2Params& params);
|
||||
|
@ -175,8 +175,8 @@ class GTSAM_EXPORT ISAM2 : public BayesTree<ISAM2Clique> {
|
|||
* @return An ISAM2Result struct containing information about the update
|
||||
* @note No default parameters to avoid ambiguous call errors.
|
||||
*/
|
||||
virtual ISAM2Result update(
|
||||
const NonlinearFactorGraph& newFactors, const Values& newTheta,
|
||||
virtual ISAM2Result update(const NonlinearFactorGraph& newFactors,
|
||||
const Values& newTheta,
|
||||
const ISAM2UpdateParams& updateParams);
|
||||
|
||||
/** Marginalize out variables listed in leafKeys. These keys must be leaves
|
||||
|
@ -226,7 +226,6 @@ class GTSAM_EXPORT ISAM2 : public BayesTree<ISAM2Clique> {
|
|||
return traits<VALUE>::Retract(theta_.at<VALUE>(key), delta);
|
||||
}
|
||||
|
||||
|
||||
/** Compute an estimate for a single variable using its incomplete linear
|
||||
* delta computed during the last update. This is faster than calling the
|
||||
* no-argument version of calculateEstimate, which operates on all variables.
|
||||
|
@ -243,9 +242,6 @@ class GTSAM_EXPORT ISAM2 : public BayesTree<ISAM2Clique> {
|
|||
/// @name Public members for non-typical usage
|
||||
/// @{
|
||||
|
||||
/** Internal implementation functions */
|
||||
struct Impl;
|
||||
|
||||
/** Compute an estimate using a complete delta computed by a full
|
||||
* back-substitution.
|
||||
*/
|
||||
|
@ -268,13 +264,6 @@ class GTSAM_EXPORT ISAM2 : public BayesTree<ISAM2Clique> {
|
|||
/** Access the nonlinear variable index */
|
||||
const KeySet& getFixedVariables() const { return fixedVariables_; }
|
||||
|
||||
size_t lastAffectedVariableCount;
|
||||
size_t lastAffectedFactorCount;
|
||||
size_t lastAffectedCliqueCount;
|
||||
size_t lastAffectedMarkedCount;
|
||||
mutable size_t lastBacksubVariableCount;
|
||||
size_t lastNnzTop;
|
||||
|
||||
const ISAM2Params& params() const { return params_; }
|
||||
|
||||
/** prints out clique statistics */
|
||||
|
@ -292,40 +281,39 @@ class GTSAM_EXPORT ISAM2 : public BayesTree<ISAM2Clique> {
|
|||
/// @}
|
||||
|
||||
protected:
|
||||
/// Remove marked top and either recalculate in batch or incrementally.
|
||||
void recalculate(const ISAM2UpdateParams& updateParams,
|
||||
const KeySet& relinKeys, ISAM2Result* result);
|
||||
|
||||
// Do a batch step - reorder and relinearize all variables
|
||||
void recalculateBatch(const ISAM2UpdateParams& updateParams,
|
||||
KeySet* affectedKeysSet, ISAM2Result* result);
|
||||
|
||||
// retrieve all factors that ONLY contain the affected variables
|
||||
// (note that the remaining stuff is summarized in the cached factors)
|
||||
GaussianFactorGraph relinearizeAffectedFactors(
|
||||
const ISAM2UpdateParams& updateParams, const FastList<Key>& affectedKeys,
|
||||
const KeySet& relinKeys);
|
||||
|
||||
void recalculateIncremental(const ISAM2UpdateParams& updateParams,
|
||||
const KeySet& relinKeys,
|
||||
const FastList<Key>& affectedKeys,
|
||||
KeySet* affectedKeysSet, Cliques* orphans,
|
||||
ISAM2Result* result);
|
||||
|
||||
/**
|
||||
* Add new variables to the ISAM2 system.
|
||||
* @param newTheta Initial values for new variables
|
||||
* @param theta Current solution to be augmented with new initialization
|
||||
* @param delta Current linear delta to be augmented with zeros
|
||||
* @param deltaNewton
|
||||
* @param RgProd
|
||||
* @param keyFormatter Formatter for printing nonlinear keys during debugging
|
||||
* @param variableStatus optional detailed result structure
|
||||
*/
|
||||
void addVariables(const Values& newTheta);
|
||||
void addVariables(const Values& newTheta,
|
||||
ISAM2Result::DetailedResults* detail = 0);
|
||||
|
||||
/**
|
||||
* Remove variables from the ISAM2 system.
|
||||
*/
|
||||
void removeVariables(const KeySet& unusedKeys);
|
||||
|
||||
/**
|
||||
* Apply expmap to the given values, but only for indices appearing in
|
||||
* \c mask. Values are expmapped in-place.
|
||||
* \param mask Mask on linear indices, only \c true entries are expmapped
|
||||
*/
|
||||
void expmapMasked(const KeySet& mask);
|
||||
|
||||
FactorIndexSet getAffectedFactors(const FastList<Key>& keys) const;
|
||||
GaussianFactorGraph::shared_ptr relinearizeAffectedFactors(
|
||||
const FastList<Key>& affectedKeys, const KeySet& relinKeys) const;
|
||||
GaussianFactorGraph getCachedBoundaryFactors(const Cliques& orphans);
|
||||
|
||||
virtual boost::shared_ptr<KeySet> recalculate(
|
||||
const KeySet& markedKeys, const KeySet& relinKeys,
|
||||
const KeyVector& observedKeys, const KeySet& unusedIndices,
|
||||
const boost::optional<FastMap<Key, int> >& constrainKeys,
|
||||
ISAM2Result* result);
|
||||
|
||||
void updateDelta(bool forceFullSolve = false) const;
|
||||
}; // ISAM2
|
||||
|
||||
|
@ -334,5 +322,3 @@ template <>
|
|||
struct traits<ISAM2> : public Testable<ISAM2> {};
|
||||
|
||||
} // namespace gtsam
|
||||
|
||||
#include <gtsam/nonlinear/ISAM2-impl.h>
|
||||
|
|
|
@ -19,7 +19,9 @@
|
|||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/linear/linearAlgorithms-inst.h>
|
||||
#include <gtsam/nonlinear/ISAM2Clique.h>
|
||||
|
||||
#include <stack>
|
||||
#include <utility>
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
@ -304,7 +306,7 @@ void ISAM2Clique::findAll(const KeySet& markedMask, KeySet* keys) const {
|
|||
static const bool debug = false;
|
||||
// does the separator contain any of the variables?
|
||||
bool found = false;
|
||||
for (Key key : conditional()->parents()) {
|
||||
for (Key key : conditional_->parents()) {
|
||||
if (markedMask.exists(key)) {
|
||||
found = true;
|
||||
break;
|
||||
|
@ -312,14 +314,34 @@ void ISAM2Clique::findAll(const KeySet& markedMask, KeySet* keys) const {
|
|||
}
|
||||
if (found) {
|
||||
// then add this clique
|
||||
keys->insert(conditional()->beginFrontals(), conditional()->endFrontals());
|
||||
keys->insert(conditional_->beginFrontals(), conditional_->endFrontals());
|
||||
if (debug) print("Key(s) marked in clique ");
|
||||
if (debug) cout << "so marking key " << conditional()->front() << endl;
|
||||
if (debug) cout << "so marking key " << conditional_->front() << endl;
|
||||
}
|
||||
for (const auto& child : children) {
|
||||
child->findAll(markedMask, keys);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void ISAM2Clique::addGradientAtZero(VectorValues* g) const {
|
||||
// Loop through variables in each clique, adding contributions
|
||||
DenseIndex position = 0;
|
||||
for (auto it = conditional_->begin(); it != conditional_->end(); ++it) {
|
||||
const DenseIndex dim = conditional_->getDim(it);
|
||||
const Vector contribution = gradientContribution_.segment(position, dim);
|
||||
VectorValues::iterator values_it;
|
||||
bool success;
|
||||
std::tie(values_it, success) = g->tryInsert(*it, contribution);
|
||||
if (!success) values_it->second += contribution;
|
||||
position += dim;
|
||||
}
|
||||
|
||||
// Recursively add contributions from children
|
||||
for (const auto& child : children) {
|
||||
child->addGradientAtZero(g);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -75,9 +75,12 @@ class GTSAM_EXPORT ISAM2Clique
|
|||
/** Access the cached factor */
|
||||
Base::FactorType::shared_ptr& cachedFactor() { return cachedFactor_; }
|
||||
|
||||
/** Access the gradient contribution */
|
||||
/// Access the gradient contribution
|
||||
const Vector& gradientContribution() const { return gradientContribution_; }
|
||||
|
||||
/// Recursively add gradient at zero to g
|
||||
void addGradientAtZero(VectorValues* g) const;
|
||||
|
||||
bool equals(const This& other, double tol = 1e-9) const;
|
||||
|
||||
/** print this node */
|
||||
|
|
|
@ -234,8 +234,8 @@ struct GTSAM_EXPORT ISAM2Params {
|
|||
Factorization _factorization = ISAM2Params::CHOLESKY,
|
||||
bool _cacheLinearizedFactors = true,
|
||||
const KeyFormatter& _keyFormatter =
|
||||
DefaultKeyFormatter ///< see ISAM2::Params::keyFormatter
|
||||
)
|
||||
DefaultKeyFormatter, ///< see ISAM2::Params::keyFormatter,
|
||||
bool _enableDetailedResults = false)
|
||||
: optimizationParams(_optimizationParams),
|
||||
relinearizeThreshold(_relinearizeThreshold),
|
||||
relinearizeSkip(_relinearizeSkip),
|
||||
|
@ -244,7 +244,7 @@ struct GTSAM_EXPORT ISAM2Params {
|
|||
factorization(_factorization),
|
||||
cacheLinearizedFactors(_cacheLinearizedFactors),
|
||||
keyFormatter(_keyFormatter),
|
||||
enableDetailedResults(false),
|
||||
enableDetailedResults(_enableDetailedResults),
|
||||
enablePartialRelinearizationCheck(false),
|
||||
findUnusedFactorSlots(false) {}
|
||||
|
||||
|
|
|
@ -24,8 +24,8 @@
|
|||
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/ISAM2Params.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
#include <boost/variant.hpp>
|
||||
|
||||
|
@ -96,7 +96,22 @@ struct GTSAM_EXPORT ISAM2Result {
|
|||
*/
|
||||
FactorIndices newFactorsIndices;
|
||||
|
||||
/** A struct holding detailed results, which must be enabled with
|
||||
/** Unused keys, and indices for unused keys,
|
||||
* i.e., keys that are empty now and do not appear in the new factors.
|
||||
*/
|
||||
KeySet unusedKeys;
|
||||
|
||||
/** keys for variables that were observed, i.e., not unused. */
|
||||
KeyVector observedKeys;
|
||||
|
||||
/** Keys of variables that had factors removed. */
|
||||
KeySet keysWithRemovedFactors;
|
||||
|
||||
/** All keys that were marked during the update process. */
|
||||
KeySet markedKeys;
|
||||
|
||||
/**
|
||||
* A struct holding detailed results, which must be enabled with
|
||||
* ISAM2Params::enableDetailedResults.
|
||||
*/
|
||||
struct DetailedResults {
|
||||
|
@ -132,15 +147,24 @@ struct GTSAM_EXPORT ISAM2Result {
|
|||
inRootClique(false) {}
|
||||
};
|
||||
|
||||
/** The status of each variable during this update, see VariableStatus.
|
||||
*/
|
||||
FastMap<Key, VariableStatus> variableStatus;
|
||||
using StatusMap = FastMap<Key, VariableStatus>;
|
||||
|
||||
/// The status of each variable during this update, see VariableStatus.
|
||||
StatusMap variableStatus;
|
||||
};
|
||||
|
||||
/** Detailed results, if enabled by ISAM2Params::enableDetailedResults. See
|
||||
* Detail for information about the results data stored here. */
|
||||
boost::optional<DetailedResults> detail;
|
||||
|
||||
explicit ISAM2Result(bool enableDetailedResults = false) {
|
||||
if (enableDetailedResults) detail.reset(DetailedResults());
|
||||
}
|
||||
|
||||
/// Return pointer to detail, 0 if no detail requested
|
||||
DetailedResults* details() { return detail.get_ptr(); }
|
||||
|
||||
/// Print results
|
||||
void print(const std::string str = "") const {
|
||||
using std::cout;
|
||||
cout << str << " Reelimintated: " << variablesReeliminated
|
||||
|
|
|
@ -16,11 +16,11 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <boost/optional.hpp>
|
||||
#include <gtsam/base/FastList.h>
|
||||
#include <gtsam/dllexport.h> // GTSAM_EXPORT
|
||||
#include <gtsam/inference/Key.h> // Key, KeySet
|
||||
#include <gtsam/nonlinear/ISAM2Result.h> //FactorIndices
|
||||
#include <boost/optional.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -65,6 +65,10 @@ struct GTSAM_EXPORT ISAM2UpdateParams {
|
|||
*/
|
||||
boost::optional<FastMap<FactorIndex, KeySet>> newAffectedKeys{boost::none};
|
||||
|
||||
/** By default, iSAM2 uses a wildfire update scheme that stops updating when
|
||||
* the deltas become too small down in the tree. This flagg forces a full
|
||||
* solve instead. */
|
||||
bool forceFullSolve{false};
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -18,6 +18,8 @@
|
|||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
|
||||
#include <string>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
|
@ -70,10 +72,14 @@ namespace gtsam {
|
|||
/** implement functions needed for Testable */
|
||||
|
||||
/** print */
|
||||
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
virtual void print(const std::string& s, const KeyFormatter& keyFormatter =
|
||||
DefaultKeyFormatter) const {
|
||||
std::cout << s << "PriorFactor on " << keyFormatter(this->key()) << "\n";
|
||||
traits<T>::Print(prior_, " prior mean: ");
|
||||
if (this->noiseModel_)
|
||||
this->noiseModel_->print(" noise model: ");
|
||||
else
|
||||
std::cout << "no noise model" << std::endl;
|
||||
}
|
||||
|
||||
/** equals */
|
||||
|
|
|
@ -43,7 +43,7 @@ namespace gtsam {
|
|||
// keep track of which domains changed
|
||||
changed[v] = false;
|
||||
// loop over all factors/constraints for variable v
|
||||
const VariableIndex::Factors& factors = index[v];
|
||||
const FactorIndices& factors = index[v];
|
||||
for(size_t f: factors) {
|
||||
// if not already a singleton
|
||||
if (!domains[v].isSingleton()) {
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
* @author Michael Kaess
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
|
||||
#include <tests/smallExample.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
|
@ -14,7 +14,6 @@
|
|||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/nonlinear/Marginals.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
|
@ -23,10 +22,12 @@
|
|||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/base/treeTraversal-inst.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
#include <gtsam/base/deprecated/LieScalar.h>
|
||||
using namespace boost::assign;
|
||||
#include <boost/range/adaptor/map.hpp>
|
||||
using namespace boost::assign;
|
||||
namespace br { using namespace boost::adaptors; using namespace boost::range; }
|
||||
|
||||
using namespace std;
|
||||
|
@ -34,7 +35,6 @@ using namespace gtsam;
|
|||
using boost::shared_ptr;
|
||||
|
||||
static const SharedNoiseModel model;
|
||||
static const LieScalar Zero(0);
|
||||
|
||||
// SETDEBUG("ISAM2 update", true);
|
||||
// SETDEBUG("ISAM2 update verbose", true);
|
||||
|
@ -47,9 +47,11 @@ SharedDiagonal brNoise = noiseModel::Diagonal::Sigmas((Vector(2) << M_PI/100.0,
|
|||
ISAM2 createSlamlikeISAM2(
|
||||
boost::optional<Values&> init_values = boost::none,
|
||||
boost::optional<NonlinearFactorGraph&> full_graph = boost::none,
|
||||
const ISAM2Params& params = ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, true),
|
||||
const ISAM2Params& params = ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0,
|
||||
0, false, true,
|
||||
ISAM2Params::CHOLESKY, true,
|
||||
DefaultKeyFormatter, true),
|
||||
size_t maxPoses = 10) {
|
||||
|
||||
// These variables will be reused and accumulate factors and values
|
||||
ISAM2 isam(params);
|
||||
Values fullinit;
|
||||
|
@ -282,34 +284,6 @@ bool isam_check(const NonlinearFactorGraph& fullgraph, const Values& fullinit, c
|
|||
return nodeGradientsOk && expectedGradOk && totalGradOk && isamEqual && isamTreeEqual && consistent;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(ISAM2, AddFactorsStep1)
|
||||
{
|
||||
NonlinearFactorGraph nonlinearFactors;
|
||||
nonlinearFactors += PriorFactor<LieScalar>(10, Zero, model);
|
||||
nonlinearFactors += NonlinearFactor::shared_ptr();
|
||||
nonlinearFactors += PriorFactor<LieScalar>(11, Zero, model);
|
||||
|
||||
NonlinearFactorGraph newFactors;
|
||||
newFactors += PriorFactor<LieScalar>(1, Zero, model);
|
||||
newFactors += PriorFactor<LieScalar>(2, Zero, model);
|
||||
|
||||
NonlinearFactorGraph expectedNonlinearFactors;
|
||||
expectedNonlinearFactors += PriorFactor<LieScalar>(10, Zero, model);
|
||||
expectedNonlinearFactors += PriorFactor<LieScalar>(1, Zero, model);
|
||||
expectedNonlinearFactors += PriorFactor<LieScalar>(11, Zero, model);
|
||||
expectedNonlinearFactors += PriorFactor<LieScalar>(2, Zero, model);
|
||||
|
||||
const FactorIndices expectedNewFactorIndices = list_of(1)(3);
|
||||
|
||||
FactorIndices actualNewFactorIndices;
|
||||
|
||||
ISAM2::Impl::AddFactorsStep1(newFactors, true, &nonlinearFactors, &actualNewFactorIndices);
|
||||
|
||||
EXPECT(assert_equal(expectedNonlinearFactors, nonlinearFactors));
|
||||
EXPECT(assert_container_equality(expectedNewFactorIndices, actualNewFactorIndices));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(ISAM2, simple)
|
||||
{
|
||||
|
@ -692,20 +666,19 @@ namespace {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(ISAM2, marginalizeLeaves1)
|
||||
{
|
||||
TEST(ISAM2, marginalizeLeaves1) {
|
||||
ISAM2 isam;
|
||||
NonlinearFactorGraph factors;
|
||||
factors += PriorFactor<LieScalar>(0, Zero, model);
|
||||
factors += PriorFactor<double>(0, 0.0, model);
|
||||
|
||||
factors += BetweenFactor<LieScalar>(0, 1, Zero, model);
|
||||
factors += BetweenFactor<LieScalar>(1, 2, Zero, model);
|
||||
factors += BetweenFactor<LieScalar>(0, 2, Zero, model);
|
||||
factors += BetweenFactor<double>(0, 1, 0.0, model);
|
||||
factors += BetweenFactor<double>(1, 2, 0.0, model);
|
||||
factors += BetweenFactor<double>(0, 2, 0.0, model);
|
||||
|
||||
Values values;
|
||||
values.insert(0, Zero);
|
||||
values.insert(1, Zero);
|
||||
values.insert(2, Zero);
|
||||
values.insert(0, 0.0);
|
||||
values.insert(1, 0.0);
|
||||
values.insert(2, 0.0);
|
||||
|
||||
FastMap<Key, int> constrainedKeys;
|
||||
constrainedKeys.insert(make_pair(0, 0));
|
||||
|
@ -719,23 +692,22 @@ TEST(ISAM2, marginalizeLeaves1)
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(ISAM2, marginalizeLeaves2)
|
||||
{
|
||||
TEST(ISAM2, marginalizeLeaves2) {
|
||||
ISAM2 isam;
|
||||
|
||||
NonlinearFactorGraph factors;
|
||||
factors += PriorFactor<LieScalar>(0, Zero, model);
|
||||
factors += PriorFactor<double>(0, 0.0, model);
|
||||
|
||||
factors += BetweenFactor<LieScalar>(0, 1, Zero, model);
|
||||
factors += BetweenFactor<LieScalar>(1, 2, Zero, model);
|
||||
factors += BetweenFactor<LieScalar>(0, 2, Zero, model);
|
||||
factors += BetweenFactor<LieScalar>(2, 3, Zero, model);
|
||||
factors += BetweenFactor<double>(0, 1, 0.0, model);
|
||||
factors += BetweenFactor<double>(1, 2, 0.0, model);
|
||||
factors += BetweenFactor<double>(0, 2, 0.0, model);
|
||||
factors += BetweenFactor<double>(2, 3, 0.0, model);
|
||||
|
||||
Values values;
|
||||
values.insert(0, Zero);
|
||||
values.insert(1, Zero);
|
||||
values.insert(2, Zero);
|
||||
values.insert(3, Zero);
|
||||
values.insert(0, 0.0);
|
||||
values.insert(1, 0.0);
|
||||
values.insert(2, 0.0);
|
||||
values.insert(3, 0.0);
|
||||
|
||||
FastMap<Key, int> constrainedKeys;
|
||||
constrainedKeys.insert(make_pair(0, 0));
|
||||
|
@ -750,30 +722,29 @@ TEST(ISAM2, marginalizeLeaves2)
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(ISAM2, marginalizeLeaves3)
|
||||
{
|
||||
TEST(ISAM2, marginalizeLeaves3) {
|
||||
ISAM2 isam;
|
||||
|
||||
NonlinearFactorGraph factors;
|
||||
factors += PriorFactor<LieScalar>(0, Zero, model);
|
||||
factors += PriorFactor<double>(0, 0.0, model);
|
||||
|
||||
factors += BetweenFactor<LieScalar>(0, 1, Zero, model);
|
||||
factors += BetweenFactor<LieScalar>(1, 2, Zero, model);
|
||||
factors += BetweenFactor<LieScalar>(0, 2, Zero, model);
|
||||
factors += BetweenFactor<double>(0, 1, 0.0, model);
|
||||
factors += BetweenFactor<double>(1, 2, 0.0, model);
|
||||
factors += BetweenFactor<double>(0, 2, 0.0, model);
|
||||
|
||||
factors += BetweenFactor<LieScalar>(2, 3, Zero, model);
|
||||
factors += BetweenFactor<double>(2, 3, 0.0, model);
|
||||
|
||||
factors += BetweenFactor<LieScalar>(3, 4, Zero, model);
|
||||
factors += BetweenFactor<LieScalar>(4, 5, Zero, model);
|
||||
factors += BetweenFactor<LieScalar>(3, 5, Zero, model);
|
||||
factors += BetweenFactor<double>(3, 4, 0.0, model);
|
||||
factors += BetweenFactor<double>(4, 5, 0.0, model);
|
||||
factors += BetweenFactor<double>(3, 5, 0.0, model);
|
||||
|
||||
Values values;
|
||||
values.insert(0, Zero);
|
||||
values.insert(1, Zero);
|
||||
values.insert(2, Zero);
|
||||
values.insert(3, Zero);
|
||||
values.insert(4, Zero);
|
||||
values.insert(5, Zero);
|
||||
values.insert(0, 0.0);
|
||||
values.insert(1, 0.0);
|
||||
values.insert(2, 0.0);
|
||||
values.insert(3, 0.0);
|
||||
values.insert(4, 0.0);
|
||||
values.insert(5, 0.0);
|
||||
|
||||
FastMap<Key, int> constrainedKeys;
|
||||
constrainedKeys.insert(make_pair(0, 0));
|
||||
|
@ -790,19 +761,18 @@ TEST(ISAM2, marginalizeLeaves3)
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(ISAM2, marginalizeLeaves4)
|
||||
{
|
||||
TEST(ISAM2, marginalizeLeaves4) {
|
||||
ISAM2 isam;
|
||||
|
||||
NonlinearFactorGraph factors;
|
||||
factors += PriorFactor<LieScalar>(0, Zero, model);
|
||||
factors += BetweenFactor<LieScalar>(0, 2, Zero, model);
|
||||
factors += BetweenFactor<LieScalar>(1, 2, Zero, model);
|
||||
factors += PriorFactor<double>(0, 0.0, model);
|
||||
factors += BetweenFactor<double>(0, 2, 0.0, model);
|
||||
factors += BetweenFactor<double>(1, 2, 0.0, model);
|
||||
|
||||
Values values;
|
||||
values.insert(0, Zero);
|
||||
values.insert(1, Zero);
|
||||
values.insert(2, Zero);
|
||||
values.insert(0, 0.0);
|
||||
values.insert(1, 0.0);
|
||||
values.insert(2, 0.0);
|
||||
|
||||
FastMap<Key, int> constrainedKeys;
|
||||
constrainedKeys.insert(make_pair(0, 0));
|
||||
|
|
Loading…
Reference in New Issue