Fix the subgraph preconditioner solver
parent
989ab9a94f
commit
e9b93fe007
|
|
@ -41,30 +41,31 @@ namespace gtsam {
|
|||
return x;
|
||||
}
|
||||
|
||||
SubgraphPreconditioner SubgraphPreconditioner::add_priors(double sigma) const {
|
||||
SubgraphPreconditioner result = *this ;
|
||||
result.Ab2_ = sharedFG(new GaussianFactorGraph(Ab2_->add_priors(sigma))) ;
|
||||
return result ;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
double SubgraphPreconditioner::error(const VectorValues& y) const {
|
||||
|
||||
// Errors e;
|
||||
//
|
||||
// // Use BayesNet order to add y contributions in order
|
||||
// BOOST_FOREACH(GaussianConditional::shared_ptr cg, *Rc1_) {
|
||||
// const Symbol& j = cg->key();
|
||||
// e.push_back(y[j]); // append y
|
||||
// }
|
||||
//
|
||||
// // Add A2 contribution
|
||||
// VectorValues x = this->x(y);
|
||||
// Errors e2 = Ab2_->errors(x);
|
||||
// e.splice(e.end(), e2);
|
||||
//
|
||||
// return 0.5 * dot(e, e);
|
||||
|
||||
Errors e(y);
|
||||
|
||||
// Add A2 contribution
|
||||
Errors e(y);
|
||||
VectorValues x = this->x(y);
|
||||
Errors e2 = Ab2_->errors(x);
|
||||
|
||||
return 0.5 * (dot(e, e) + dot(e2,e2));
|
||||
}
|
||||
|
||||
|
|
@ -107,21 +108,19 @@ namespace gtsam {
|
|||
void SubgraphPreconditioner::multiplyInPlace(const VectorValues& y, Errors& e) const {
|
||||
|
||||
// Errors::iterator ei = e.begin();
|
||||
//
|
||||
// // Use BayesNet order to add y contributions in order
|
||||
// BOOST_FOREACH(GaussianConditional::shared_ptr cg, *Rc1_) {
|
||||
// const Symbol& j = cg->key();
|
||||
// *ei = y[j]; // append y
|
||||
// ei++;
|
||||
// }
|
||||
//
|
||||
// // Add A2 contribution
|
||||
// VectorValues x = y; // TODO avoid ?
|
||||
// gtsam::backSubstituteInPlace(*Rc1_, x); // x=inv(R1)*y
|
||||
// Ab2_->multiplyInPlace(x,ei); // use iterator version
|
||||
|
||||
Errors::iterator ei = e.begin();
|
||||
for ( int i = 0 ; i < y.size() ; ++i, ++ei ) {
|
||||
for ( Index i = 0 ; i < y.size() ; ++i, ++ei ) {
|
||||
*ei = y[i];
|
||||
}
|
||||
|
||||
|
|
@ -152,7 +151,7 @@ namespace gtsam {
|
|||
|
||||
Errors::const_iterator it = e.begin();
|
||||
VectorValues y = zero();
|
||||
for ( int i = 0 ; i < y.size() ; ++i, ++it )
|
||||
for ( Index i = 0 ; i < y.size() ; ++i, ++it )
|
||||
y[i] = *it ;
|
||||
transposeMultiplyAdd2(1.0,it,e.end(),y);
|
||||
return y;
|
||||
|
|
@ -170,12 +169,11 @@ namespace gtsam {
|
|||
// const Vector& ej = *(it++);
|
||||
// axpy(alpha,ej,y[j]);
|
||||
// }
|
||||
//
|
||||
// // get A2 part
|
||||
// transposeMultiplyAdd2(alpha,it,e.end(),y);
|
||||
|
||||
Errors::const_iterator it = e.begin();
|
||||
for ( int i = 0 ; i < y.size() ; ++i, ++it ) {
|
||||
for ( Index i = 0 ; i < y.size() ; ++i, ++it ) {
|
||||
const Vector& ei = *it;
|
||||
axpy(alpha,ei,y[i]) ;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -63,6 +63,12 @@ namespace gtsam {
|
|||
// Vector b2() const { return Ab2_->rhsVector(); }
|
||||
// VectorValues assembleValues(const Vector& v, const Ordering& ordering) const { return Ab1_->assembleValues(v, ordering); }
|
||||
|
||||
/**
|
||||
* Add zero-mean i.i.d. Gaussian prior terms to each variable
|
||||
* @param sigma Standard deviation of Gaussian
|
||||
*/
|
||||
SubgraphPreconditioner add_priors(double sigma) const;
|
||||
|
||||
/* x = xbar + inv(R1)*y */
|
||||
VectorValues x(const VectorValues& y) const;
|
||||
|
||||
|
|
|
|||
|
|
@ -21,9 +21,8 @@
|
|||
|
||||
#include <boost/tuple/tuple.hpp>
|
||||
#include <gtsam/linear/SubgraphSolver.h>
|
||||
|
||||
#include <gtsam/inference/graph-inl.h>
|
||||
#include <gtsam/linear/iterative-inl.h>
|
||||
#include <gtsam/inference/graph-inl.h>
|
||||
#include <gtsam/inference/FactorGraph-inl.h>
|
||||
|
||||
using namespace std;
|
||||
|
|
@ -41,36 +40,37 @@ namespace gtsam {
|
|||
void SubgraphSolver<Graph, Values>::initialize(const Graph& G, const Values& theta0) {
|
||||
|
||||
// generate spanning tree
|
||||
PredecessorMap<Key> tree = G.template findMinimumSpanningTree<Key, Constraint>();
|
||||
list<Key> keys = predecessorMap2Keys(tree);
|
||||
PredecessorMap<Key> tree = gtsam::findMinimumSpanningTree<Graph, Key, Constraint>(G);
|
||||
|
||||
// split the graph
|
||||
if (verbose_) cout << "generating spanning tree and split the graph ...";
|
||||
G.template split<Key, Constraint>(tree, T_, C_);
|
||||
// G.template split<Key, Constraint>(tree, T_, C_);
|
||||
gtsam::split<Graph,Key,Constraint>(G, tree, T_, C_) ;
|
||||
if (verbose_) cout << T_.size() << " and " << C_.size() << " factors" << endl;
|
||||
|
||||
// make the ordering
|
||||
list<Symbol> symbols;
|
||||
symbols.resize(keys.size());
|
||||
std::transform(keys.begin(), keys.end(), symbols.begin(), key2symbol<Key>);
|
||||
ordering_ = boost::shared_ptr<Ordering>(new Ordering(symbols));
|
||||
list<Key> keys = predecessorMap2Keys(tree);
|
||||
ordering_ = boost::shared_ptr<Ordering>(new Ordering(list<Symbol>(keys.begin(), keys.end())));
|
||||
|
||||
// Add a HardConstraint to the root, otherwise the root will be singular
|
||||
Key root = keys.back();
|
||||
T_.addHardConstraint(root, theta0[root]);
|
||||
|
||||
// compose the approximate solution
|
||||
Key root = keys.back();
|
||||
theta_bar_ = composePoses<Graph, Constraint, Pose, Values> (T_, tree, theta0[root]);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class Graph, class Values>
|
||||
boost::shared_ptr<SubgraphPreconditioner> SubgraphSolver<Graph, Values>::linearize(const Graph& G, const Values& theta_bar) const {
|
||||
SubgraphPreconditioner::sharedFG Ab1 = T_.linearize(theta_bar);
|
||||
SubgraphPreconditioner::sharedFG Ab2 = C_.linearize(theta_bar);
|
||||
SubgraphPreconditioner::sharedFG Ab1 = T_.linearize(theta_bar, *ordering_);
|
||||
SubgraphPreconditioner::sharedFG Ab2 = C_.linearize(theta_bar, *ordering_);
|
||||
#ifdef TIMING
|
||||
SubgraphPreconditioner::sharedBayesNet Rc1;
|
||||
SubgraphPreconditioner::sharedValues xbar;
|
||||
#else
|
||||
GaussianFactorGraph sacrificialAb1 = *Ab1; // duplicate !!!!!
|
||||
SubgraphPreconditioner::sharedBayesNet Rc1 = sacrificialAb1.eliminate_(*ordering_);
|
||||
SubgraphPreconditioner::sharedBayesNet Rc1 = Inference::Eliminate(sacrificialAb1) ;
|
||||
SubgraphPreconditioner::sharedValues xbar = gtsam::optimize_(*Rc1);
|
||||
#endif
|
||||
// TODO: there does not seem to be a good reason to have Ab1_
|
||||
|
|
|
|||
|
|
@ -19,8 +19,8 @@
|
|||
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/inference/Ordering.h>
|
||||
#include <gtsam/linear/SubgraphPreconditioner.h>
|
||||
#include <gtsam/nonlinear/Ordering.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
|
@ -67,6 +67,7 @@ namespace gtsam {
|
|||
*/
|
||||
boost::shared_ptr<SubgraphPreconditioner> linearize(const Graph& G, const Values& theta_bar) const;
|
||||
|
||||
|
||||
/**
|
||||
* solve for the optimal displacement in the tangent space, and then solve
|
||||
* the resulted linear system
|
||||
|
|
@ -76,6 +77,12 @@ namespace gtsam {
|
|||
boost::shared_ptr<SubgraphSolver> prepareLinear(const SubgraphPreconditioner& fg) const {
|
||||
return boost::shared_ptr<SubgraphSolver>(new SubgraphSolver(*this));
|
||||
}
|
||||
|
||||
|
||||
/** expmap the Values given the stored Ordering */
|
||||
Values expmap(const Values& config, const VectorValues& delta) const {
|
||||
return config.expmap(delta, *ordering_);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Graph, class Values> const size_t SubgraphSolver<Graph,Values>::maxIterations_;
|
||||
|
|
|
|||
Loading…
Reference in New Issue