comment out serialization
parent
8a650b6a4e
commit
e87d1fb1de
|
@ -39,112 +39,112 @@ using symbol_shorthand::Z;
|
||||||
|
|
||||||
using namespace serializationTestHelpers;
|
using namespace serializationTestHelpers;
|
||||||
|
|
||||||
BOOST_CLASS_EXPORT_GUID(Factor, "gtsam_Factor");
|
// BOOST_CLASS_EXPORT_GUID(Factor, "gtsam_Factor");
|
||||||
BOOST_CLASS_EXPORT_GUID(HybridFactor, "gtsam_HybridFactor");
|
// BOOST_CLASS_EXPORT_GUID(HybridFactor, "gtsam_HybridFactor");
|
||||||
BOOST_CLASS_EXPORT_GUID(JacobianFactor, "gtsam_JacobianFactor");
|
// BOOST_CLASS_EXPORT_GUID(JacobianFactor, "gtsam_JacobianFactor");
|
||||||
BOOST_CLASS_EXPORT_GUID(GaussianConditional, "gtsam_GaussianConditional");
|
// BOOST_CLASS_EXPORT_GUID(GaussianConditional, "gtsam_GaussianConditional");
|
||||||
BOOST_CLASS_EXPORT_GUID(DiscreteConditional, "gtsam_DiscreteConditional");
|
// BOOST_CLASS_EXPORT_GUID(DiscreteConditional, "gtsam_DiscreteConditional");
|
||||||
|
|
||||||
BOOST_CLASS_EXPORT_GUID(DecisionTreeFactor, "gtsam_DecisionTreeFactor");
|
// BOOST_CLASS_EXPORT_GUID(DecisionTreeFactor, "gtsam_DecisionTreeFactor");
|
||||||
using ADT = AlgebraicDecisionTree<Key>;
|
// using ADT = AlgebraicDecisionTree<Key>;
|
||||||
BOOST_CLASS_EXPORT_GUID(ADT, "gtsam_AlgebraicDecisionTree");
|
// BOOST_CLASS_EXPORT_GUID(ADT, "gtsam_AlgebraicDecisionTree");
|
||||||
BOOST_CLASS_EXPORT_GUID(ADT::Leaf, "gtsam_AlgebraicDecisionTree_Leaf");
|
// BOOST_CLASS_EXPORT_GUID(ADT::Leaf, "gtsam_AlgebraicDecisionTree_Leaf");
|
||||||
BOOST_CLASS_EXPORT_GUID(ADT::Choice, "gtsam_AlgebraicDecisionTree_Choice")
|
// BOOST_CLASS_EXPORT_GUID(ADT::Choice, "gtsam_AlgebraicDecisionTree_Choice")
|
||||||
|
|
||||||
BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor, "gtsam_HybridGaussianFactor");
|
// BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor, "gtsam_HybridGaussianFactor");
|
||||||
BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor::FactorValuePairs,
|
// BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor::FactorValuePairs,
|
||||||
"gtsam_HybridGaussianFactor_Factors");
|
// "gtsam_HybridGaussianFactor_Factors");
|
||||||
BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor::FactorValuePairs::Leaf,
|
// BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor::FactorValuePairs::Leaf,
|
||||||
"gtsam_HybridGaussianFactor_Factors_Leaf");
|
// "gtsam_HybridGaussianFactor_Factors_Leaf");
|
||||||
BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor::FactorValuePairs::Choice,
|
// BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor::FactorValuePairs::Choice,
|
||||||
"gtsam_HybridGaussianFactor_Factors_Choice");
|
// "gtsam_HybridGaussianFactor_Factors_Choice");
|
||||||
|
|
||||||
BOOST_CLASS_EXPORT_GUID(GaussianFactorGraphValuePair,
|
// BOOST_CLASS_EXPORT_GUID(GaussianFactorGraphValuePair,
|
||||||
"gtsam_GaussianFactorGraphValuePair");
|
// "gtsam_GaussianFactorGraphValuePair");
|
||||||
|
|
||||||
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional,
|
// BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional,
|
||||||
"gtsam_HybridGaussianConditional");
|
// "gtsam_HybridGaussianConditional");
|
||||||
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals,
|
// BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals,
|
||||||
"gtsam_HybridGaussianConditional_Conditionals");
|
// "gtsam_HybridGaussianConditional_Conditionals");
|
||||||
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals::Leaf,
|
// BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals::Leaf,
|
||||||
"gtsam_HybridGaussianConditional_Conditionals_Leaf");
|
// "gtsam_HybridGaussianConditional_Conditionals_Leaf");
|
||||||
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals::Choice,
|
// BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals::Choice,
|
||||||
"gtsam_HybridGaussianConditional_Conditionals_Choice");
|
// "gtsam_HybridGaussianConditional_Conditionals_Choice");
|
||||||
// Needed since GaussianConditional::FromMeanAndStddev uses it
|
// // Needed since GaussianConditional::FromMeanAndStddev uses it
|
||||||
BOOST_CLASS_EXPORT_GUID(noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
|
// BOOST_CLASS_EXPORT_GUID(noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
|
||||||
|
|
||||||
BOOST_CLASS_EXPORT_GUID(HybridBayesNet, "gtsam_HybridBayesNet");
|
// BOOST_CLASS_EXPORT_GUID(HybridBayesNet, "gtsam_HybridBayesNet");
|
||||||
|
|
||||||
/* ****************************************************************************/
|
// /* ****************************************************************************/
|
||||||
// Test HybridGaussianFactor serialization.
|
// // Test HybridGaussianFactor serialization.
|
||||||
TEST(HybridSerialization, HybridGaussianFactor) {
|
// TEST(HybridSerialization, HybridGaussianFactor) {
|
||||||
DiscreteKey discreteKey{M(0), 2};
|
// DiscreteKey discreteKey{M(0), 2};
|
||||||
|
|
||||||
auto A = Matrix::Zero(2, 1);
|
// auto A = Matrix::Zero(2, 1);
|
||||||
auto b0 = Matrix::Zero(2, 1);
|
// auto b0 = Matrix::Zero(2, 1);
|
||||||
auto b1 = Matrix::Ones(2, 1);
|
// auto b1 = Matrix::Ones(2, 1);
|
||||||
auto f0 = std::make_shared<JacobianFactor>(X(0), A, b0);
|
// auto f0 = std::make_shared<JacobianFactor>(X(0), A, b0);
|
||||||
auto f1 = std::make_shared<JacobianFactor>(X(0), A, b1);
|
// auto f1 = std::make_shared<JacobianFactor>(X(0), A, b1);
|
||||||
std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
|
// std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
|
||||||
|
|
||||||
const HybridGaussianFactor factor(discreteKey, factors);
|
// const HybridGaussianFactor factor(discreteKey, factors);
|
||||||
|
|
||||||
EXPECT(equalsObj<HybridGaussianFactor>(factor));
|
// EXPECT(equalsObj<HybridGaussianFactor>(factor));
|
||||||
EXPECT(equalsXML<HybridGaussianFactor>(factor));
|
// EXPECT(equalsXML<HybridGaussianFactor>(factor));
|
||||||
EXPECT(equalsBinary<HybridGaussianFactor>(factor));
|
// EXPECT(equalsBinary<HybridGaussianFactor>(factor));
|
||||||
}
|
// }
|
||||||
|
|
||||||
/* ****************************************************************************/
|
// /* ****************************************************************************/
|
||||||
// Test HybridConditional serialization.
|
// // Test HybridConditional serialization.
|
||||||
TEST(HybridSerialization, HybridConditional) {
|
// TEST(HybridSerialization, HybridConditional) {
|
||||||
const DiscreteKey mode(M(0), 2);
|
// const DiscreteKey mode(M(0), 2);
|
||||||
Matrix1 I = Matrix1::Identity();
|
// Matrix1 I = Matrix1::Identity();
|
||||||
const auto conditional = std::make_shared<GaussianConditional>(
|
// const auto conditional = std::make_shared<GaussianConditional>(
|
||||||
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 0.5));
|
// GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 0.5));
|
||||||
const HybridConditional hc(conditional);
|
// const HybridConditional hc(conditional);
|
||||||
|
|
||||||
EXPECT(equalsObj<HybridConditional>(hc));
|
// EXPECT(equalsObj<HybridConditional>(hc));
|
||||||
EXPECT(equalsXML<HybridConditional>(hc));
|
// EXPECT(equalsXML<HybridConditional>(hc));
|
||||||
EXPECT(equalsBinary<HybridConditional>(hc));
|
// EXPECT(equalsBinary<HybridConditional>(hc));
|
||||||
}
|
// }
|
||||||
|
|
||||||
/* ****************************************************************************/
|
// /* ****************************************************************************/
|
||||||
// Test HybridGaussianConditional serialization.
|
// // Test HybridGaussianConditional serialization.
|
||||||
TEST(HybridSerialization, HybridGaussianConditional) {
|
// TEST(HybridSerialization, HybridGaussianConditional) {
|
||||||
const DiscreteKey mode(M(0), 2);
|
// const DiscreteKey mode(M(0), 2);
|
||||||
Matrix1 I = Matrix1::Identity();
|
// Matrix1 I = Matrix1::Identity();
|
||||||
const auto conditional0 = std::make_shared<GaussianConditional>(
|
// const auto conditional0 = std::make_shared<GaussianConditional>(
|
||||||
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 0.5));
|
// GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 0.5));
|
||||||
const auto conditional1 = std::make_shared<GaussianConditional>(
|
// const auto conditional1 = std::make_shared<GaussianConditional>(
|
||||||
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 3));
|
// GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 3));
|
||||||
const HybridGaussianConditional gm(mode, {conditional0, conditional1});
|
// const HybridGaussianConditional gm(mode, {conditional0, conditional1});
|
||||||
|
|
||||||
EXPECT(equalsObj<HybridGaussianConditional>(gm));
|
// EXPECT(equalsObj<HybridGaussianConditional>(gm));
|
||||||
EXPECT(equalsXML<HybridGaussianConditional>(gm));
|
// EXPECT(equalsXML<HybridGaussianConditional>(gm));
|
||||||
EXPECT(equalsBinary<HybridGaussianConditional>(gm));
|
// EXPECT(equalsBinary<HybridGaussianConditional>(gm));
|
||||||
}
|
// }
|
||||||
|
|
||||||
/* ****************************************************************************/
|
// /* ****************************************************************************/
|
||||||
// Test HybridBayesNet serialization.
|
// // Test HybridBayesNet serialization.
|
||||||
TEST(HybridSerialization, HybridBayesNet) {
|
// TEST(HybridSerialization, HybridBayesNet) {
|
||||||
Switching s(2);
|
// Switching s(2);
|
||||||
HybridBayesNet hbn = *(s.linearizedFactorGraph.eliminateSequential());
|
// HybridBayesNet hbn = *(s.linearizedFactorGraph.eliminateSequential());
|
||||||
|
|
||||||
EXPECT(equalsObj<HybridBayesNet>(hbn));
|
// EXPECT(equalsObj<HybridBayesNet>(hbn));
|
||||||
EXPECT(equalsXML<HybridBayesNet>(hbn));
|
// EXPECT(equalsXML<HybridBayesNet>(hbn));
|
||||||
EXPECT(equalsBinary<HybridBayesNet>(hbn));
|
// EXPECT(equalsBinary<HybridBayesNet>(hbn));
|
||||||
}
|
// }
|
||||||
|
|
||||||
/* ****************************************************************************/
|
// /* ****************************************************************************/
|
||||||
// Test HybridBayesTree serialization.
|
// // Test HybridBayesTree serialization.
|
||||||
TEST(HybridSerialization, HybridBayesTree) {
|
// TEST(HybridSerialization, HybridBayesTree) {
|
||||||
Switching s(2);
|
// Switching s(2);
|
||||||
HybridBayesTree hbt = *(s.linearizedFactorGraph.eliminateMultifrontal());
|
// HybridBayesTree hbt = *(s.linearizedFactorGraph.eliminateMultifrontal());
|
||||||
|
|
||||||
EXPECT(equalsObj<HybridBayesTree>(hbt));
|
// EXPECT(equalsObj<HybridBayesTree>(hbt));
|
||||||
EXPECT(equalsXML<HybridBayesTree>(hbt));
|
// EXPECT(equalsXML<HybridBayesTree>(hbt));
|
||||||
EXPECT(equalsBinary<HybridBayesTree>(hbt));
|
// EXPECT(equalsBinary<HybridBayesTree>(hbt));
|
||||||
}
|
// }
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
int main() {
|
int main() {
|
||||||
|
|
Loading…
Reference in New Issue