constructor API change after review1
parent
62ba551830
commit
e7214a7777
|
|
@ -5,76 +5,53 @@ using std::pair;
|
|||
using std::vector;
|
||||
|
||||
MFAS::MFAS(const std::shared_ptr<vector<Key>> &nodes,
|
||||
const std::shared_ptr<TranslationEdges> &relativeTranslations,
|
||||
const TranslationEdges& relativeTranslations,
|
||||
const Unit3 &projection_direction)
|
||||
: nodes_(nodes), relativeTranslations_(relativeTranslations),
|
||||
relativeTranslationsForWeights_(std::make_shared<TranslationEdges>()) {
|
||||
// iterate over edges and flip all edges that have negative weights,
|
||||
// while storing the magnitude of the weights.
|
||||
for (auto it = relativeTranslations->begin();
|
||||
it != relativeTranslations->end(); it++) {
|
||||
KeyPair edge = it->first;
|
||||
double weight = it->second.dot(projection_direction);
|
||||
if (weight < 0.0) {
|
||||
std::swap(edge.first, edge.second);
|
||||
weight *= -1;
|
||||
}
|
||||
positiveEdgeWeights_[edge] = weight;
|
||||
: nodes_(nodes) {
|
||||
// iterate over edges, obtain weights by projecting
|
||||
// their relativeTranslations along the projection direction
|
||||
for (auto it = relativeTranslations.begin();
|
||||
it != relativeTranslations.end(); it++) {
|
||||
edgeWeights_[it->first] = it->second.dot(projection_direction);
|
||||
}
|
||||
}
|
||||
|
||||
MFAS::MFAS(const std::shared_ptr<std::vector<Key>> &nodes,
|
||||
const std::map<KeyPair, double> &edgeWeights) : nodes_(nodes),
|
||||
relativeTranslations_(std::make_shared<TranslationEdges>()),
|
||||
relativeTranslationsForWeights_(std::make_shared<
|
||||
TranslationEdges>()) {
|
||||
// similar to the above direction constructor, but here weights are
|
||||
// provided as input.
|
||||
for (auto it = edgeWeights.begin(); it != edgeWeights.end(); it++) {
|
||||
KeyPair edge = it->first;
|
||||
|
||||
// When constructed like this, we do not have access to the relative translations.
|
||||
// So, we store the unswapped edge in the relativeTranslationsForWeights_ map with a default
|
||||
// Unit3 value. This helps retain the original direction of the edge in the returned result
|
||||
// of computeOutlierWeights
|
||||
relativeTranslationsForWeights_->insert({edge, Unit3()});
|
||||
|
||||
double weight = it->second;
|
||||
if (weight < 0.0) {
|
||||
// change the direction of the edge to make weight positive
|
||||
std::swap(edge.first, edge.second);
|
||||
weight *= -1;
|
||||
}
|
||||
positiveEdgeWeights_[edge] = weight;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<Key> MFAS::computeOrdering() {
|
||||
std::vector<Key> MFAS::computeOrdering() const {
|
||||
FastMap<Key, double> in_weights; // sum on weights of incoming edges for a node
|
||||
FastMap<Key, double> out_weights; // sum on weights of outgoing edges for a node
|
||||
FastMap<Key, vector<Key> > in_neighbors;
|
||||
FastMap<Key, vector<Key> > out_neighbors;
|
||||
|
||||
vector<Key> ordered_nodes; // nodes in MFAS order (result)
|
||||
FastMap<Key, int> ordered_positions; // map from node to its position in the output order
|
||||
|
||||
// populate neighbors and weights
|
||||
for (auto it = positiveEdgeWeights_.begin(); it != positiveEdgeWeights_.end(); it++) {
|
||||
for (auto it = edgeWeights_.begin(); it != edgeWeights_.end(); it++) {
|
||||
const KeyPair &edge = it->first;
|
||||
in_weights[edge.second] += it->second;
|
||||
out_weights[edge.first] += it->second;
|
||||
in_neighbors[edge.second].push_back(edge.first);
|
||||
out_neighbors[edge.first].push_back(edge.second);
|
||||
const double weight = it->second;
|
||||
Key edge_source = weight >= 0 ? edge.first : edge.second;
|
||||
Key edge_dest = weight >= 0 ? edge.second : edge.first;
|
||||
|
||||
in_weights[edge_dest] += weight;
|
||||
out_weights[edge_source] += weight;
|
||||
in_neighbors[edge_dest].push_back(edge_source);
|
||||
out_neighbors[edge_source].push_back(edge_dest);
|
||||
}
|
||||
|
||||
// in each iteration, one node is appended to the ordered list
|
||||
while (orderedNodes_.size() < nodes_->size()) {
|
||||
while (ordered_nodes.size() < nodes_->size()) {
|
||||
|
||||
// finding the node with the max heuristic score
|
||||
Key choice;
|
||||
double max_score = 0.0;
|
||||
|
||||
for (const Key &node : *nodes_) {
|
||||
if (orderedPositions_.find(node) == orderedPositions_.end()) {
|
||||
// is this a source
|
||||
// if this node has not been chosen so far
|
||||
if (ordered_positions.find(node) == ordered_positions.end()) {
|
||||
// is this a root node
|
||||
if (in_weights[node] < 1e-8) {
|
||||
// TODO(akshay-krishnan) if there are multiple roots, it is better to choose the
|
||||
// one with highest heuristic. This is missing in the 1dsfm solution.
|
||||
choice = node;
|
||||
break;
|
||||
} else {
|
||||
|
|
@ -86,53 +63,54 @@ std::vector<Key> MFAS::computeOrdering() {
|
|||
}
|
||||
}
|
||||
}
|
||||
// find its inbrs, adjust their wout_deg
|
||||
// find its in_neighbors, adjust their out_weights
|
||||
for (auto it = in_neighbors[choice].begin();
|
||||
it != in_neighbors[choice].end(); ++it)
|
||||
out_weights[*it] -= positiveEdgeWeights_[KeyPair(*it, choice)];
|
||||
// find its onbrs, adjust their win_deg
|
||||
// the edge could be either (*it, choice) with a positive weight or (choice, *it) with a negative weight
|
||||
out_weights[*it] -= edgeWeights_.find(KeyPair(*it, choice)) == edgeWeights_.end() ? -edgeWeights_.at(KeyPair(choice, *it)) : edgeWeights_.at(KeyPair(*it, choice));
|
||||
|
||||
// find its out_neighbors, adjust their in_weights
|
||||
for (auto it = out_neighbors[choice].begin();
|
||||
it != out_neighbors[choice].end(); ++it)
|
||||
in_weights[*it] -= positiveEdgeWeights_[KeyPair(choice, *it)];
|
||||
in_weights[*it] -= edgeWeights_.find(KeyPair(choice, *it)) == edgeWeights_.end() ? -edgeWeights_.at(KeyPair(*it, choice)) : edgeWeights_.at(KeyPair(choice, *it));
|
||||
|
||||
orderedPositions_[choice] = orderedNodes_.size();
|
||||
orderedNodes_.push_back(choice);
|
||||
ordered_positions[choice] = ordered_nodes.size();
|
||||
ordered_nodes.push_back(choice);
|
||||
}
|
||||
return orderedNodes_;
|
||||
return ordered_nodes;
|
||||
}
|
||||
|
||||
std::map<KeyPair, double> MFAS::computeOutlierWeights() {
|
||||
// if ordering has not been computed yet
|
||||
if (orderedNodes_.size() != nodes_->size()) {
|
||||
computeOrdering();
|
||||
}
|
||||
// iterate over all edges
|
||||
// start and end iterators depend on whether we are using relativeTranslations_ or
|
||||
// relativeTranslationsForWeights_ to store the original edge directions
|
||||
TranslationEdges::iterator start, end;
|
||||
if (relativeTranslationsForWeights_->size() == 0) {
|
||||
start = relativeTranslations_->begin();
|
||||
end = relativeTranslations_->end();
|
||||
} else {
|
||||
start = relativeTranslationsForWeights_->begin();
|
||||
end = relativeTranslationsForWeights_->end();
|
||||
std::map<MFAS::KeyPair, double> MFAS::computeOutlierWeights() const {
|
||||
vector<Key> ordered_nodes = computeOrdering();
|
||||
FastMap<Key, int> ordered_positions;
|
||||
std::map<KeyPair, double> outlier_weights;
|
||||
|
||||
// create a map becuase it is much faster to lookup the position of each node
|
||||
// TODO(akshay-krishnan) this is already computed in computeOrdering. Would be nice if
|
||||
// we could re-use. Either use an optional argument or change the output of
|
||||
// computeOrdering
|
||||
for(unsigned int i = 0; i < ordered_nodes.size(); i++) {
|
||||
ordered_positions[ordered_nodes[i]] = i;
|
||||
}
|
||||
|
||||
for (auto it = start; it != end; it++) {
|
||||
// relativeTranslations may have negative weight edges, we make sure all edges
|
||||
// are along the positive direction by flipping them if they are not.
|
||||
KeyPair edge = it->first;
|
||||
if (positiveEdgeWeights_.find(edge) == positiveEdgeWeights_.end()) {
|
||||
std::swap(edge.first, edge.second);
|
||||
// iterate over all edges
|
||||
for (auto it = edgeWeights_.begin(); it != edgeWeights_.end(); it++) {
|
||||
Key edge_source, edge_dest;
|
||||
if(it->second > 0) {
|
||||
edge_source = it->first.first;
|
||||
edge_dest = it->first.second;
|
||||
} else {
|
||||
edge_source = it->first.second;
|
||||
edge_dest = it->first.first;
|
||||
}
|
||||
|
||||
// if the ordered position of nodes is not consistent with the edge
|
||||
// direction for consistency second should be greater than first
|
||||
if (orderedPositions_.at(edge.second) < orderedPositions_.at(edge.first)) {
|
||||
outlierWeights_[it->first] = std::abs(positiveEdgeWeights_[edge]);
|
||||
if (ordered_positions.at(edge_dest) < ordered_positions.at(edge_source)) {
|
||||
outlier_weights[it->first] = std::abs(edgeWeights_.at(it->first));
|
||||
} else {
|
||||
outlierWeights_[it->first] = 0;
|
||||
outlier_weights[it->first] = 0;
|
||||
}
|
||||
}
|
||||
return outlierWeights_;
|
||||
return outlier_weights;
|
||||
}
|
||||
|
|
@ -9,8 +9,7 @@
|
|||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
#ifndef __MFAS_H__
|
||||
#define __MFAS_H__
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Unit3.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
|
|
@ -21,10 +20,6 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
// used to represent edges between two nodes in the graph
|
||||
using KeyPair = std::pair<Key, Key>;
|
||||
using TranslationEdges = std::map<KeyPair, Unit3>;
|
||||
|
||||
/**
|
||||
The MFAS class to solve a Minimum feedback arc set (MFAS)
|
||||
problem. We implement the solution from:
|
||||
|
|
@ -32,77 +27,64 @@ using TranslationEdges = std::map<KeyPair, Unit3>;
|
|||
Proceedings of the European Conference on Computer Vision, ECCV 2014
|
||||
|
||||
Given a weighted directed graph, the objective in a Minimum feedback arc set
|
||||
problem is to obtain a graph that does not contain any cycles by removing
|
||||
problem is to obtain a directed acyclic graph by removing
|
||||
edges such that the total weight of removed edges is minimum.
|
||||
@addtogroup SFM
|
||||
*/
|
||||
class MFAS {
|
||||
public:
|
||||
// used to represent edges between two nodes in the graph
|
||||
using KeyPair = std::pair<Key, Key>;
|
||||
using TranslationEdges = std::map<KeyPair, Unit3>;
|
||||
private:
|
||||
// pointer to nodes in the graph
|
||||
const std::shared_ptr<std::vector<Key>> nodes_;
|
||||
|
||||
// edges with a direction such that all weights are positive
|
||||
// i.e, edges that originally had negative weights are flipped
|
||||
std::map<KeyPair, double> edgeWeights_;
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Construct from the nodes in a graph (points in 3D), edges
|
||||
* that are translation directions in 3D and the direction in
|
||||
* which edges are to be projected.
|
||||
* @brief Construct from the nodes in a graph and weighted directed edges
|
||||
* between the graph. A shared pointer to the nodes is used as input parameter.
|
||||
* This is because, MFAS ordering is usually used to compute the ordering of a
|
||||
* large graph that is already stored in memory. It is unnecessary to copy the
|
||||
* set of nodes in this class.
|
||||
* @param nodes: Nodes in the graph
|
||||
* @param edgeWeights: weights of edges in the graph (map from pair of keys
|
||||
* to signed double)
|
||||
*/
|
||||
MFAS(const std::shared_ptr<std::vector<Key>> &nodes,
|
||||
const std::map<KeyPair, double> &edgeWeights) :
|
||||
nodes_(nodes), edgeWeights_(edgeWeights) {}
|
||||
|
||||
/**
|
||||
* @brief Constructor for using in the context of translation averaging. Here,
|
||||
* the nodes of the graph are cameras in 3D and the edges have a unit translation
|
||||
* direction between them. The weights of the edges is computed by projecting
|
||||
* them along a projection direction.
|
||||
* @param nodes Nodes in the graph
|
||||
* @param relativeTranslations translation directions between nodes
|
||||
* @param projectionDirection direction in which edges are to be projected
|
||||
*/
|
||||
MFAS(const std::shared_ptr<std::vector<Key>> &nodes,
|
||||
const std::shared_ptr<TranslationEdges> &relativeTranslations,
|
||||
const TranslationEdges& relativeTranslations,
|
||||
const Unit3 &projectionDirection);
|
||||
|
||||
/**
|
||||
* @brief Construct from the nodes in a graph and weighted directed edges
|
||||
* between the graph. Not recommended for any purpose other than unit testing.
|
||||
* The computeOutlierWeights method will return an empty output if this constructor
|
||||
* is used.
|
||||
* When used in a translation averaging context, these weights are obtained
|
||||
* by projecting edges in a particular direction.
|
||||
* @param nodes: Nodes in the graph
|
||||
* @param edgeWeights: weights of edges in the graph (map from edge to signed double)
|
||||
*/
|
||||
MFAS(const std::shared_ptr<std::vector<Key>> &nodes,
|
||||
const std::map<KeyPair, double> &edgeWeights);
|
||||
|
||||
/**
|
||||
* @brief Computes the "outlier weights" of the graph. We define the outlier weight
|
||||
* of a edge to be zero if the edge in an inlier and the magnitude of its edgeWeight
|
||||
* if it is an outlier. This function can only be used when constructing the
|
||||
* of a edge to be zero if the edge is an inlier and the magnitude of its edgeWeight
|
||||
* if it is an outlier.
|
||||
* @return outlierWeights: map from an edge to its outlier weight.
|
||||
*/
|
||||
std::map<KeyPair, double> computeOutlierWeights();
|
||||
std::map<KeyPair, double> computeOutlierWeights() const;
|
||||
|
||||
/**
|
||||
* @brief Computes the 1D MFAS ordering of nodes in the graph
|
||||
* @return orderedNodes: vector of nodes in the obtained order
|
||||
*/
|
||||
std::vector<Key> computeOrdering();
|
||||
|
||||
private:
|
||||
// pointer to nodes in the graph
|
||||
const std::shared_ptr<std::vector<Key>> nodes_;
|
||||
// pointer to translation edges (translation directions between two node points)
|
||||
const std::shared_ptr<TranslationEdges> relativeTranslations_;
|
||||
|
||||
// relative translations when the object is initialized without using the actual
|
||||
// relative translations, but with the weights from projecting in a certain
|
||||
// direction. This is used for unit testing, but not in practice.
|
||||
std::shared_ptr<TranslationEdges> relativeTranslationsForWeights_;
|
||||
|
||||
// edges with a direction such that all weights are positive
|
||||
// i.e, edges that originally had negative weights are flipped
|
||||
std::map<KeyPair, double> positiveEdgeWeights_;
|
||||
|
||||
// map from edges to their outlier weight
|
||||
std::map<KeyPair, double> outlierWeights_;
|
||||
|
||||
// nodes arranged in the MFAS order
|
||||
std::vector<Key> orderedNodes_;
|
||||
|
||||
// map from nodes to their position in the MFAS order
|
||||
// used to speed up computation (lookup) when computing outlierWeights_
|
||||
FastMap<Key, int> orderedPositions_;
|
||||
std::vector<Key> computeOrdering() const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
||||
#endif // __MFAS_H__
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ using namespace gtsam;
|
|||
*/
|
||||
|
||||
// edges in the graph - last edge from node 3 to 0 is an outlier
|
||||
vector<KeyPair> graph = {make_pair(3, 2), make_pair(0, 1), make_pair(3, 1),
|
||||
vector<MFAS::KeyPair> graph = {make_pair(3, 2), make_pair(0, 1), make_pair(3, 1),
|
||||
make_pair(1, 2), make_pair(0, 2), make_pair(3, 0)};
|
||||
// nodes in the graph
|
||||
vector<Key> nodes = {Key(0), Key(1), Key(2), Key(3)};
|
||||
|
|
@ -26,9 +26,9 @@ vector<double> weights2 = {0.5, 0.75, -0.25, 0.75, 1, 0.5};
|
|||
|
||||
// helper function to obtain map from keypairs to weights from the
|
||||
// vector representations
|
||||
std::map<KeyPair, double> getEdgeWeights(const vector<KeyPair> &graph,
|
||||
std::map<MFAS::KeyPair, double> getEdgeWeights(const vector<MFAS::KeyPair> &graph,
|
||||
const vector<double> &weights) {
|
||||
std::map<KeyPair, double> edgeWeights;
|
||||
std::map<MFAS::KeyPair, double> edgeWeights;
|
||||
for (size_t i = 0; i < graph.size(); i++) {
|
||||
edgeWeights[graph[i]] = weights[i];
|
||||
}
|
||||
|
|
@ -51,7 +51,7 @@ TEST(MFAS, OrderingWeights2) {
|
|||
EXPECT_LONGS_EQUAL(gt_ordered_nodes[i], ordered_nodes[i]);
|
||||
}
|
||||
|
||||
map<KeyPair, double> outlier_weights = mfas_obj.computeOutlierWeights();
|
||||
map<MFAS::KeyPair, double> outlier_weights = mfas_obj.computeOutlierWeights();
|
||||
|
||||
// since edge between 3 and 0 is inconsistent with the ordering, it must have
|
||||
// positive outlier weight, other outlier weights must be zero
|
||||
|
|
@ -81,7 +81,7 @@ TEST(MFAS, OrderingWeights1) {
|
|||
EXPECT_LONGS_EQUAL(gt_ordered_nodes[i], ordered_nodes[i]);
|
||||
}
|
||||
|
||||
map<KeyPair, double> outlier_weights = mfas_obj.computeOutlierWeights();
|
||||
map<MFAS::KeyPair, double> outlier_weights = mfas_obj.computeOutlierWeights();
|
||||
|
||||
// since edge between 3 and 0 is inconsistent with the ordering, it must have
|
||||
// positive outlier weight, other outlier weights must be zero
|
||||
|
|
|
|||
Loading…
Reference in New Issue