Cleaned up cpplint errors - no functionality change
parent
224299ccb9
commit
e6c0d7334f
|
@ -247,7 +247,7 @@ ISAM2::relinearizeAffectedFactors(const FastList<Key>& affectedKeys, const KeySe
|
|||
/* ************************************************************************* */
|
||||
// find intermediate (linearized) factors from cache that are passed into the affected area
|
||||
|
||||
GaussianFactorGraph ISAM2::getCachedBoundaryFactors(Cliques& orphans) {
|
||||
GaussianFactorGraph ISAM2::getCachedBoundaryFactors(const Cliques& orphans) {
|
||||
GaussianFactorGraph cachedBoundary;
|
||||
|
||||
for(sharedClique orphan: orphans) {
|
||||
|
|
|
@ -11,7 +11,8 @@
|
|||
|
||||
/**
|
||||
* @file ISAM2.h
|
||||
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
|
||||
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid
|
||||
* relinearization.
|
||||
* @author Michael Kaess, Richard Roberts
|
||||
*/
|
||||
|
||||
|
@ -19,9 +20,12 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
#include <boost/variant.hpp>
|
||||
|
||||
|
@ -34,21 +38,29 @@ namespace gtsam {
|
|||
* ISAM2Params, which should in turn be passed to ISAM2(const ISAM2Params&).
|
||||
*/
|
||||
struct GTSAM_EXPORT ISAM2GaussNewtonParams {
|
||||
double wildfireThreshold; ///< Continue updating the linear delta only when changes are above this threshold (default: 0.001)
|
||||
double
|
||||
wildfireThreshold; ///< Continue updating the linear delta only when
|
||||
///< changes are above this threshold (default: 0.001)
|
||||
|
||||
/** Specify parameters as constructor arguments */
|
||||
ISAM2GaussNewtonParams(
|
||||
double _wildfireThreshold = 0.001 ///< see ISAM2GaussNewtonParams public variables, ISAM2GaussNewtonParams::wildfireThreshold
|
||||
) : wildfireThreshold(_wildfireThreshold) {}
|
||||
double _wildfireThreshold =
|
||||
0.001 ///< see ISAM2GaussNewtonParams public variables,
|
||||
///< ISAM2GaussNewtonParams::wildfireThreshold
|
||||
)
|
||||
: wildfireThreshold(_wildfireThreshold) {}
|
||||
|
||||
void print(const std::string str = "") const {
|
||||
std::cout << str << "type: ISAM2GaussNewtonParams\n";
|
||||
std::cout << str << "wildfireThreshold: " << wildfireThreshold << "\n";
|
||||
std::cout.flush();
|
||||
using std::cout;
|
||||
cout << str << "type: ISAM2GaussNewtonParams\n";
|
||||
cout << str << "wildfireThreshold: " << wildfireThreshold << "\n";
|
||||
cout.flush();
|
||||
}
|
||||
|
||||
double getWildfireThreshold() const { return wildfireThreshold; }
|
||||
void setWildfireThreshold(double wildfireThreshold) { this->wildfireThreshold = wildfireThreshold; }
|
||||
void setWildfireThreshold(double wildfireThreshold) {
|
||||
this->wildfireThreshold = wildfireThreshold;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -58,51 +70,81 @@ struct GTSAM_EXPORT ISAM2GaussNewtonParams {
|
|||
* ISAM2Params, which should in turn be passed to ISAM2(const ISAM2Params&).
|
||||
*/
|
||||
struct GTSAM_EXPORT ISAM2DoglegParams {
|
||||
double initialDelta; ///< The initial trust region radius for Dogleg
|
||||
double wildfireThreshold; ///< Continue updating the linear delta only when changes are above this threshold (default: 1e-5)
|
||||
DoglegOptimizerImpl::TrustRegionAdaptationMode adaptationMode; ///< See description in DoglegOptimizerImpl::TrustRegionAdaptationMode
|
||||
bool verbose; ///< Whether Dogleg prints iteration and convergence information
|
||||
double initialDelta; ///< The initial trust region radius for Dogleg
|
||||
double
|
||||
wildfireThreshold; ///< Continue updating the linear delta only when
|
||||
///< changes are above this threshold (default: 1e-5)
|
||||
DoglegOptimizerImpl::TrustRegionAdaptationMode
|
||||
adaptationMode; ///< See description in
|
||||
///< DoglegOptimizerImpl::TrustRegionAdaptationMode
|
||||
bool
|
||||
verbose; ///< Whether Dogleg prints iteration and convergence information
|
||||
|
||||
/** Specify parameters as constructor arguments */
|
||||
ISAM2DoglegParams(
|
||||
double _initialDelta = 1.0, ///< see ISAM2DoglegParams::initialDelta
|
||||
double _wildfireThreshold = 1e-5, ///< see ISAM2DoglegParams::wildfireThreshold
|
||||
DoglegOptimizerImpl::TrustRegionAdaptationMode _adaptationMode = DoglegOptimizerImpl::SEARCH_EACH_ITERATION, ///< see ISAM2DoglegParams::adaptationMode
|
||||
bool _verbose = false ///< see ISAM2DoglegParams::verbose
|
||||
) : initialDelta(_initialDelta), wildfireThreshold(_wildfireThreshold),
|
||||
adaptationMode(_adaptationMode), verbose(_verbose) {}
|
||||
double _initialDelta = 1.0, ///< see ISAM2DoglegParams::initialDelta
|
||||
double _wildfireThreshold =
|
||||
1e-5, ///< see ISAM2DoglegParams::wildfireThreshold
|
||||
DoglegOptimizerImpl::TrustRegionAdaptationMode _adaptationMode =
|
||||
DoglegOptimizerImpl::
|
||||
SEARCH_EACH_ITERATION, ///< see ISAM2DoglegParams::adaptationMode
|
||||
bool _verbose = false ///< see ISAM2DoglegParams::verbose
|
||||
)
|
||||
: initialDelta(_initialDelta),
|
||||
wildfireThreshold(_wildfireThreshold),
|
||||
adaptationMode(_adaptationMode),
|
||||
verbose(_verbose) {}
|
||||
|
||||
void print(const std::string str = "") const {
|
||||
std::cout << str << "type: ISAM2DoglegParams\n";
|
||||
std::cout << str << "initialDelta: " << initialDelta << "\n";
|
||||
std::cout << str << "wildfireThreshold: " << wildfireThreshold << "\n";
|
||||
std::cout << str << "adaptationMode: " << adaptationModeTranslator(adaptationMode) << "\n";
|
||||
std::cout.flush();
|
||||
using std::cout;
|
||||
cout << str << "type: ISAM2DoglegParams\n";
|
||||
cout << str << "initialDelta: " << initialDelta << "\n";
|
||||
cout << str << "wildfireThreshold: " << wildfireThreshold << "\n";
|
||||
cout << str
|
||||
<< "adaptationMode: " << adaptationModeTranslator(adaptationMode)
|
||||
<< "\n";
|
||||
cout.flush();
|
||||
}
|
||||
|
||||
double getInitialDelta() const { return initialDelta; }
|
||||
double getWildfireThreshold() const { return wildfireThreshold; }
|
||||
std::string getAdaptationMode() const { return adaptationModeTranslator(adaptationMode); };
|
||||
bool isVerbose() const { return verbose; };
|
||||
std::string getAdaptationMode() const {
|
||||
return adaptationModeTranslator(adaptationMode);
|
||||
}
|
||||
bool isVerbose() const { return verbose; }
|
||||
void setInitialDelta(double initialDelta) {
|
||||
this->initialDelta = initialDelta;
|
||||
}
|
||||
void setWildfireThreshold(double wildfireThreshold) {
|
||||
this->wildfireThreshold = wildfireThreshold;
|
||||
}
|
||||
void setAdaptationMode(const std::string& adaptationMode) {
|
||||
this->adaptationMode = adaptationModeTranslator(adaptationMode);
|
||||
}
|
||||
void setVerbose(bool verbose) { this->verbose = verbose; }
|
||||
|
||||
void setInitialDelta(double initialDelta) { this->initialDelta = initialDelta; }
|
||||
void setWildfireThreshold(double wildfireThreshold) { this->wildfireThreshold = wildfireThreshold; }
|
||||
void setAdaptationMode(const std::string& adaptationMode) { this->adaptationMode = adaptationModeTranslator(adaptationMode); }
|
||||
void setVerbose(bool verbose) { this->verbose = verbose; };
|
||||
|
||||
std::string adaptationModeTranslator(const DoglegOptimizerImpl::TrustRegionAdaptationMode& adaptationMode) const;
|
||||
DoglegOptimizerImpl::TrustRegionAdaptationMode adaptationModeTranslator(const std::string& adaptationMode) const;
|
||||
std::string adaptationModeTranslator(
|
||||
const DoglegOptimizerImpl::TrustRegionAdaptationMode& adaptationMode)
|
||||
const;
|
||||
DoglegOptimizerImpl::TrustRegionAdaptationMode adaptationModeTranslator(
|
||||
const std::string& adaptationMode) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* @addtogroup ISAM2
|
||||
* Parameters for the ISAM2 algorithm. Default parameter values are listed below.
|
||||
* Parameters for the ISAM2 algorithm. Default parameter values are listed
|
||||
* below.
|
||||
*/
|
||||
typedef FastMap<char,Vector> ISAM2ThresholdMap;
|
||||
typedef FastMap<char, Vector> ISAM2ThresholdMap;
|
||||
typedef ISAM2ThresholdMap::value_type ISAM2ThresholdMapValue;
|
||||
struct GTSAM_EXPORT ISAM2Params {
|
||||
typedef boost::variant<ISAM2GaussNewtonParams, ISAM2DoglegParams> OptimizationParams; ///< Either ISAM2GaussNewtonParams or ISAM2DoglegParams
|
||||
typedef boost::variant<double, FastMap<char,Vector> > RelinearizationThreshold; ///< Either a constant relinearization threshold or a per-variable-type set of thresholds
|
||||
typedef boost::variant<ISAM2GaussNewtonParams, ISAM2DoglegParams>
|
||||
OptimizationParams; ///< Either ISAM2GaussNewtonParams or
|
||||
///< ISAM2DoglegParams
|
||||
typedef boost::variant<double, FastMap<char, Vector> >
|
||||
RelinearizationThreshold; ///< Either a constant relinearization
|
||||
///< threshold or a per-variable-type set of
|
||||
///< thresholds
|
||||
|
||||
/** Optimization parameters, this both selects the nonlinear optimization
|
||||
* method and specifies its parameters, either ISAM2GaussNewtonParams or
|
||||
|
@ -122,27 +164,36 @@ struct GTSAM_EXPORT ISAM2Params {
|
|||
* entries would be added with:
|
||||
* \code
|
||||
FastMap<char,Vector> thresholds;
|
||||
thresholds['x'] = (Vector(6) << 0.1, 0.1, 0.1, 0.5, 0.5, 0.5).finished(); // 0.1 rad rotation threshold, 0.5 m translation threshold
|
||||
thresholds['l'] = Vector3(1.0, 1.0, 1.0); // 1.0 m landmark position threshold
|
||||
thresholds['x'] = (Vector(6) << 0.1, 0.1, 0.1, 0.5, 0.5, 0.5).finished();
|
||||
// 0.1 rad rotation threshold, 0.5 m translation threshold thresholds['l'] =
|
||||
Vector3(1.0, 1.0, 1.0); // 1.0 m landmark position threshold
|
||||
params.relinearizeThreshold = thresholds;
|
||||
\endcode
|
||||
*/
|
||||
RelinearizationThreshold relinearizeThreshold;
|
||||
|
||||
int relinearizeSkip; ///< Only relinearize any variables every relinearizeSkip calls to ISAM2::update (default: 10)
|
||||
int relinearizeSkip; ///< Only relinearize any variables every
|
||||
///< relinearizeSkip calls to ISAM2::update (default:
|
||||
///< 10)
|
||||
|
||||
bool enableRelinearization; ///< Controls whether ISAM2 will ever relinearize any variables (default: true)
|
||||
bool enableRelinearization; ///< Controls whether ISAM2 will ever relinearize
|
||||
///< any variables (default: true)
|
||||
|
||||
bool evaluateNonlinearError; ///< Whether to evaluate the nonlinear error before and after the update, to return in ISAM2Result from update()
|
||||
bool evaluateNonlinearError; ///< Whether to evaluate the nonlinear error
|
||||
///< before and after the update, to return in
|
||||
///< ISAM2Result from update()
|
||||
|
||||
enum Factorization { CHOLESKY, QR };
|
||||
/** Specifies whether to use QR or CHOESKY numerical factorization (default: CHOLESKY).
|
||||
* Cholesky is faster but potentially numerically unstable for poorly-conditioned problems, which can occur when
|
||||
* uncertainty is very low in some variables (or dimensions of variables) and very high in others. QR is
|
||||
* slower but more numerically stable in poorly-conditioned problems. We suggest using the default of Cholesky
|
||||
* unless gtsam sometimes throws IndefiniteLinearSystemException when your problem's Hessian is actually positive
|
||||
* definite. For positive definite problems, numerical error accumulation can cause the problem to become
|
||||
* numerically negative or indefinite as solving proceeds, especially when using Cholesky.
|
||||
/** Specifies whether to use QR or CHOESKY numerical factorization (default:
|
||||
* CHOLESKY). Cholesky is faster but potentially numerically unstable for
|
||||
* poorly-conditioned problems, which can occur when uncertainty is very low
|
||||
* in some variables (or dimensions of variables) and very high in others. QR
|
||||
* is slower but more numerically stable in poorly-conditioned problems. We
|
||||
* suggest using the default of Cholesky unless gtsam sometimes throws
|
||||
* IndefiniteLinearSystemException when your problem's Hessian is actually
|
||||
* positive definite. For positive definite problems, numerical error
|
||||
* accumulation can cause the problem to become numerically negative or
|
||||
* indefinite as solving proceeds, especially when using Cholesky.
|
||||
*/
|
||||
Factorization factorization;
|
||||
|
||||
|
@ -153,97 +204,156 @@ struct GTSAM_EXPORT ISAM2Params {
|
|||
*/
|
||||
bool cacheLinearizedFactors;
|
||||
|
||||
KeyFormatter keyFormatter; ///< A KeyFormatter for when keys are printed during debugging (default: DefaultKeyFormatter)
|
||||
KeyFormatter
|
||||
keyFormatter; ///< A KeyFormatter for when keys are printed during
|
||||
///< debugging (default: DefaultKeyFormatter)
|
||||
|
||||
bool enableDetailedResults; ///< Whether to compute and return ISAM2Result::detailedResults, this can increase running time (default: false)
|
||||
bool enableDetailedResults; ///< Whether to compute and return
|
||||
///< ISAM2Result::detailedResults, this can
|
||||
///< increase running time (default: false)
|
||||
|
||||
/** Check variables for relinearization in tree-order, stopping the check once a variable does not need to be relinearized (default: false).
|
||||
* This can improve speed by only checking a small part of the top of the tree. However, variables below the check cut-off can accumulate
|
||||
* significant deltas without triggering relinearization. This is particularly useful in exploration scenarios where real-time performance
|
||||
* is desired over correctness. Use with caution.
|
||||
/** Check variables for relinearization in tree-order, stopping the check once
|
||||
* a variable does not need to be relinearized (default: false). This can
|
||||
* improve speed by only checking a small part of the top of the tree.
|
||||
* However, variables below the check cut-off can accumulate significant
|
||||
* deltas without triggering relinearization. This is particularly useful in
|
||||
* exploration scenarios where real-time performance is desired over
|
||||
* correctness. Use with caution.
|
||||
*/
|
||||
bool enablePartialRelinearizationCheck;
|
||||
|
||||
/// When you will be removing many factors, e.g. when using ISAM2 as a fixed-lag smoother, enable this option to
|
||||
/// add factors in the first available factor slots, to avoid accumulating NULL factor slots, at the cost of
|
||||
/// having to search for slots every time a factor is added.
|
||||
/// When you will be removing many factors, e.g. when using ISAM2 as a
|
||||
/// fixed-lag smoother, enable this option to add factors in the first
|
||||
/// available factor slots, to avoid accumulating NULL factor slots, at the
|
||||
/// cost of having to search for slots every time a factor is added.
|
||||
bool findUnusedFactorSlots;
|
||||
|
||||
/** Specify parameters as constructor arguments */
|
||||
ISAM2Params(
|
||||
OptimizationParams _optimizationParams = ISAM2GaussNewtonParams(), ///< see ISAM2Params::optimizationParams
|
||||
RelinearizationThreshold _relinearizeThreshold = 0.1, ///< see ISAM2Params::relinearizeThreshold
|
||||
int _relinearizeSkip = 10, ///< see ISAM2Params::relinearizeSkip
|
||||
bool _enableRelinearization = true, ///< see ISAM2Params::enableRelinearization
|
||||
bool _evaluateNonlinearError = false, ///< see ISAM2Params::evaluateNonlinearError
|
||||
Factorization _factorization = ISAM2Params::CHOLESKY, ///< see ISAM2Params::factorization
|
||||
bool _cacheLinearizedFactors = true, ///< see ISAM2Params::cacheLinearizedFactors
|
||||
const KeyFormatter& _keyFormatter = DefaultKeyFormatter ///< see ISAM2::Params::keyFormatter
|
||||
) : optimizationParams(_optimizationParams), relinearizeThreshold(_relinearizeThreshold),
|
||||
relinearizeSkip(_relinearizeSkip), enableRelinearization(_enableRelinearization),
|
||||
evaluateNonlinearError(_evaluateNonlinearError), factorization(_factorization),
|
||||
cacheLinearizedFactors(_cacheLinearizedFactors), keyFormatter(_keyFormatter),
|
||||
enableDetailedResults(false), enablePartialRelinearizationCheck(false),
|
||||
findUnusedFactorSlots(false) {}
|
||||
/**
|
||||
* Specify parameters as constructor arguments
|
||||
* See the documentation of member variables above.
|
||||
*/
|
||||
ISAM2Params(OptimizationParams _optimizationParams = ISAM2GaussNewtonParams(),
|
||||
RelinearizationThreshold _relinearizeThreshold = 0.1,
|
||||
int _relinearizeSkip = 10, bool _enableRelinearization = true,
|
||||
bool _evaluateNonlinearError = false,
|
||||
Factorization _factorization = ISAM2Params::CHOLESKY,
|
||||
bool _cacheLinearizedFactors = true,
|
||||
const KeyFormatter& _keyFormatter =
|
||||
DefaultKeyFormatter ///< see ISAM2::Params::keyFormatter
|
||||
)
|
||||
: optimizationParams(_optimizationParams),
|
||||
relinearizeThreshold(_relinearizeThreshold),
|
||||
relinearizeSkip(_relinearizeSkip),
|
||||
enableRelinearization(_enableRelinearization),
|
||||
evaluateNonlinearError(_evaluateNonlinearError),
|
||||
factorization(_factorization),
|
||||
cacheLinearizedFactors(_cacheLinearizedFactors),
|
||||
keyFormatter(_keyFormatter),
|
||||
enableDetailedResults(false),
|
||||
enablePartialRelinearizationCheck(false),
|
||||
findUnusedFactorSlots(false) {}
|
||||
|
||||
/// print iSAM2 parameters
|
||||
void print(const std::string& str = "") const {
|
||||
std::cout << str << "\n";
|
||||
if(optimizationParams.type() == typeid(ISAM2GaussNewtonParams))
|
||||
boost::get<ISAM2GaussNewtonParams>(optimizationParams).print("optimizationParams: ");
|
||||
else if(optimizationParams.type() == typeid(ISAM2DoglegParams))
|
||||
boost::get<ISAM2DoglegParams>(optimizationParams).print("optimizationParams: ");
|
||||
using std::cout;
|
||||
cout << str << "\n";
|
||||
|
||||
static const std::string kStr("optimizationParams: ");
|
||||
if (optimizationParams.type() == typeid(ISAM2GaussNewtonParams))
|
||||
boost::get<ISAM2GaussNewtonParams>(optimizationParams).print();
|
||||
else if (optimizationParams.type() == typeid(ISAM2DoglegParams))
|
||||
boost::get<ISAM2DoglegParams>(optimizationParams).print(kStr);
|
||||
else
|
||||
std::cout << "optimizationParams: " << "{unknown type}" << "\n";
|
||||
if(relinearizeThreshold.type() == typeid(double))
|
||||
std::cout << "relinearizeThreshold: " << boost::get<double>(relinearizeThreshold) << "\n";
|
||||
else
|
||||
{
|
||||
std::cout << "relinearizeThreshold: " << "{mapped}" << "\n";
|
||||
for(const ISAM2ThresholdMapValue& value: boost::get<ISAM2ThresholdMap>(relinearizeThreshold)) {
|
||||
std::cout << " '" << value.first << "' -> [" << value.second.transpose() << " ]\n";
|
||||
cout << kStr << "{unknown type}\n";
|
||||
|
||||
cout << "relinearizeThreshold: ";
|
||||
if (relinearizeThreshold.type() == typeid(double)) {
|
||||
cout << boost::get<double>(relinearizeThreshold) << "\n";
|
||||
} else {
|
||||
cout << "{mapped}\n";
|
||||
for (const ISAM2ThresholdMapValue& value :
|
||||
boost::get<ISAM2ThresholdMap>(relinearizeThreshold)) {
|
||||
cout << " '" << value.first
|
||||
<< "' -> [" << value.second.transpose() << " ]\n";
|
||||
}
|
||||
}
|
||||
std::cout << "relinearizeSkip: " << relinearizeSkip << "\n";
|
||||
std::cout << "enableRelinearization: " << enableRelinearization << "\n";
|
||||
std::cout << "evaluateNonlinearError: " << evaluateNonlinearError << "\n";
|
||||
std::cout << "factorization: " << factorizationTranslator(factorization) << "\n";
|
||||
std::cout << "cacheLinearizedFactors: " << cacheLinearizedFactors << "\n";
|
||||
std::cout << "enableDetailedResults: " << enableDetailedResults << "\n";
|
||||
std::cout << "enablePartialRelinearizationCheck: " << enablePartialRelinearizationCheck << "\n";
|
||||
std::cout << "findUnusedFactorSlots: " << findUnusedFactorSlots << "\n";
|
||||
std::cout.flush();
|
||||
|
||||
cout << "relinearizeSkip: " << relinearizeSkip << "\n";
|
||||
cout << "enableRelinearization: " << enableRelinearization
|
||||
<< "\n";
|
||||
cout << "evaluateNonlinearError: " << evaluateNonlinearError
|
||||
<< "\n";
|
||||
cout << "factorization: "
|
||||
<< factorizationTranslator(factorization) << "\n";
|
||||
cout << "cacheLinearizedFactors: " << cacheLinearizedFactors
|
||||
<< "\n";
|
||||
cout << "enableDetailedResults: " << enableDetailedResults
|
||||
<< "\n";
|
||||
cout << "enablePartialRelinearizationCheck: "
|
||||
<< enablePartialRelinearizationCheck << "\n";
|
||||
cout << "findUnusedFactorSlots: " << findUnusedFactorSlots
|
||||
<< "\n";
|
||||
cout.flush();
|
||||
}
|
||||
|
||||
/// @name Getters and Setters for all properties
|
||||
/// @{
|
||||
|
||||
OptimizationParams getOptimizationParams() const { return this->optimizationParams; }
|
||||
RelinearizationThreshold getRelinearizeThreshold() const { return relinearizeThreshold; }
|
||||
OptimizationParams getOptimizationParams() const {
|
||||
return this->optimizationParams;
|
||||
}
|
||||
RelinearizationThreshold getRelinearizeThreshold() const {
|
||||
return relinearizeThreshold;
|
||||
}
|
||||
int getRelinearizeSkip() const { return relinearizeSkip; }
|
||||
bool isEnableRelinearization() const { return enableRelinearization; }
|
||||
bool isEvaluateNonlinearError() const { return evaluateNonlinearError; }
|
||||
std::string getFactorization() const { return factorizationTranslator(factorization); }
|
||||
std::string getFactorization() const {
|
||||
return factorizationTranslator(factorization);
|
||||
}
|
||||
bool isCacheLinearizedFactors() const { return cacheLinearizedFactors; }
|
||||
KeyFormatter getKeyFormatter() const { return keyFormatter; }
|
||||
bool isEnableDetailedResults() const { return enableDetailedResults; }
|
||||
bool isEnablePartialRelinearizationCheck() const { return enablePartialRelinearizationCheck; }
|
||||
bool isEnablePartialRelinearizationCheck() const {
|
||||
return enablePartialRelinearizationCheck;
|
||||
}
|
||||
|
||||
void setOptimizationParams(OptimizationParams optimizationParams) { this->optimizationParams = optimizationParams; }
|
||||
void setRelinearizeThreshold(RelinearizationThreshold relinearizeThreshold) { this->relinearizeThreshold = relinearizeThreshold; }
|
||||
void setRelinearizeSkip(int relinearizeSkip) { this->relinearizeSkip = relinearizeSkip; }
|
||||
void setEnableRelinearization(bool enableRelinearization) { this->enableRelinearization = enableRelinearization; }
|
||||
void setEvaluateNonlinearError(bool evaluateNonlinearError) { this->evaluateNonlinearError = evaluateNonlinearError; }
|
||||
void setFactorization(const std::string& factorization) { this->factorization = factorizationTranslator(factorization); }
|
||||
void setCacheLinearizedFactors(bool cacheLinearizedFactors) { this->cacheLinearizedFactors = cacheLinearizedFactors; }
|
||||
void setKeyFormatter(KeyFormatter keyFormatter) { this->keyFormatter = keyFormatter; }
|
||||
void setEnableDetailedResults(bool enableDetailedResults) { this->enableDetailedResults = enableDetailedResults; }
|
||||
void setEnablePartialRelinearizationCheck(bool enablePartialRelinearizationCheck) { this->enablePartialRelinearizationCheck = enablePartialRelinearizationCheck; }
|
||||
void setOptimizationParams(OptimizationParams optimizationParams) {
|
||||
this->optimizationParams = optimizationParams;
|
||||
}
|
||||
void setRelinearizeThreshold(RelinearizationThreshold relinearizeThreshold) {
|
||||
this->relinearizeThreshold = relinearizeThreshold;
|
||||
}
|
||||
void setRelinearizeSkip(int relinearizeSkip) {
|
||||
this->relinearizeSkip = relinearizeSkip;
|
||||
}
|
||||
void setEnableRelinearization(bool enableRelinearization) {
|
||||
this->enableRelinearization = enableRelinearization;
|
||||
}
|
||||
void setEvaluateNonlinearError(bool evaluateNonlinearError) {
|
||||
this->evaluateNonlinearError = evaluateNonlinearError;
|
||||
}
|
||||
void setFactorization(const std::string& factorization) {
|
||||
this->factorization = factorizationTranslator(factorization);
|
||||
}
|
||||
void setCacheLinearizedFactors(bool cacheLinearizedFactors) {
|
||||
this->cacheLinearizedFactors = cacheLinearizedFactors;
|
||||
}
|
||||
void setKeyFormatter(KeyFormatter keyFormatter) {
|
||||
this->keyFormatter = keyFormatter;
|
||||
}
|
||||
void setEnableDetailedResults(bool enableDetailedResults) {
|
||||
this->enableDetailedResults = enableDetailedResults;
|
||||
}
|
||||
void setEnablePartialRelinearizationCheck(
|
||||
bool enablePartialRelinearizationCheck) {
|
||||
this->enablePartialRelinearizationCheck = enablePartialRelinearizationCheck;
|
||||
}
|
||||
|
||||
GaussianFactorGraph::Eliminate getEliminationFunction() const {
|
||||
return factorization == CHOLESKY
|
||||
? (GaussianFactorGraph::Eliminate)EliminatePreferCholesky
|
||||
: (GaussianFactorGraph::Eliminate)EliminateQR;
|
||||
? (GaussianFactorGraph::Eliminate)EliminatePreferCholesky
|
||||
: (GaussianFactorGraph::Eliminate)EliminateQR;
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
@ -275,8 +385,9 @@ struct GTSAM_EXPORT ISAM2Result {
|
|||
* delta, as computed by ISAM2::calculateEstimate().
|
||||
* \li New variables will be evaluated at their initialization points passed
|
||||
* into the current call to update.
|
||||
* \par Note: This will only be computed if ISAM2Params::evaluateNonlinearError
|
||||
* is set to \c true, because there is some cost to this computation.
|
||||
* \par Note: This will only be computed if
|
||||
* ISAM2Params::evaluateNonlinearError is set to \c true, because there is
|
||||
* some cost to this computation.
|
||||
*/
|
||||
boost::optional<double> errorBefore;
|
||||
|
||||
|
@ -286,8 +397,9 @@ struct GTSAM_EXPORT ISAM2Result {
|
|||
* variables have undergone one linear update. Variable values are
|
||||
* again computed by combining their linearization points with their
|
||||
* partial linear deltas, by ISAM2::calculateEstimate().
|
||||
* \par Note: This will only be computed if ISAM2Params::evaluateNonlinearError
|
||||
* is set to \c true, because there is some cost to this computation.
|
||||
* \par Note: This will only be computed if
|
||||
* ISAM2Params::evaluateNonlinearError is set to \c true, because there is
|
||||
* some cost to this computation.
|
||||
*/
|
||||
boost::optional<double> errorAfter;
|
||||
|
||||
|
@ -309,7 +421,8 @@ struct GTSAM_EXPORT ISAM2Result {
|
|||
*/
|
||||
size_t variablesReeliminated;
|
||||
|
||||
/** The number of factors that were included in reelimination of the Bayes' tree. */
|
||||
/** The number of factors that were included in reelimination of the Bayes'
|
||||
* tree. */
|
||||
size_t factorsRecalculated;
|
||||
|
||||
/** The number of cliques in the Bayes' Tree */
|
||||
|
@ -332,14 +445,29 @@ struct GTSAM_EXPORT ISAM2Result {
|
|||
* observed, new, or on the path up to the root clique from another
|
||||
* reeliminated variable. */
|
||||
bool isReeliminated;
|
||||
bool isAboveRelinThreshold; ///< Whether the variable was just relinearized due to being above the relinearization threshold
|
||||
bool isRelinearizeInvolved; ///< Whether the variable was below the relinearization threshold but was relinearized by being involved in a factor with a variable above the relinearization threshold
|
||||
bool isRelinearized; /// Whether the variable was relinearized, either by being above the relinearization threshold or by involvement.
|
||||
bool isObserved; ///< Whether the variable was just involved in new factors
|
||||
bool isNew; ///< Whether the variable itself was just added
|
||||
bool inRootClique; ///< Whether the variable is in the root clique
|
||||
VariableStatus(): isReeliminated(false), isAboveRelinThreshold(false), isRelinearizeInvolved(false),
|
||||
isRelinearized(false), isObserved(false), isNew(false), inRootClique(false) {}
|
||||
bool isAboveRelinThreshold; ///< Whether the variable was just
|
||||
///< relinearized due to being above the
|
||||
///< relinearization threshold
|
||||
bool isRelinearizeInvolved; ///< Whether the variable was below the
|
||||
///< relinearization threshold but was
|
||||
///< relinearized by being involved in a
|
||||
///< factor with a variable above the
|
||||
///< relinearization threshold
|
||||
bool isRelinearized; /// Whether the variable was relinearized, either by
|
||||
/// being above the relinearization threshold or by
|
||||
/// involvement.
|
||||
bool isObserved; ///< Whether the variable was just involved in new
|
||||
///< factors
|
||||
bool isNew; ///< Whether the variable itself was just added
|
||||
bool inRootClique; ///< Whether the variable is in the root clique
|
||||
VariableStatus()
|
||||
: isReeliminated(false),
|
||||
isAboveRelinThreshold(false),
|
||||
isRelinearizeInvolved(false),
|
||||
isRelinearized(false),
|
||||
isObserved(false),
|
||||
isNew(false),
|
||||
inRootClique(false) {}
|
||||
};
|
||||
|
||||
/** The status of each variable during this update, see VariableStatus.
|
||||
|
@ -351,24 +479,27 @@ struct GTSAM_EXPORT ISAM2Result {
|
|||
* Detail for information about the results data stored here. */
|
||||
boost::optional<DetailedResults> detail;
|
||||
|
||||
|
||||
void print(const std::string str = "") const {
|
||||
std::cout << str << " Reelimintated: " << variablesReeliminated << " Relinearized: " << variablesRelinearized << " Cliques: " << cliques << std::endl;
|
||||
using std::cout;
|
||||
cout << str << " Reelimintated: " << variablesReeliminated
|
||||
<< " Relinearized: " << variablesRelinearized
|
||||
<< " Cliques: " << cliques << std::endl;
|
||||
}
|
||||
|
||||
/** Getters and Setters */
|
||||
size_t getVariablesRelinearized() const { return variablesRelinearized; };
|
||||
size_t getVariablesReeliminated() const { return variablesReeliminated; };
|
||||
size_t getCliques() const { return cliques; };
|
||||
size_t getVariablesRelinearized() const { return variablesRelinearized; }
|
||||
size_t getVariablesReeliminated() const { return variablesReeliminated; }
|
||||
size_t getCliques() const { return cliques; }
|
||||
};
|
||||
|
||||
/**
|
||||
* Specialized Clique structure for ISAM2, incorporating caching and gradient contribution
|
||||
* Specialized Clique structure for ISAM2, incorporating caching and gradient
|
||||
* contribution
|
||||
* TODO: more documentation
|
||||
*/
|
||||
class GTSAM_EXPORT ISAM2Clique : public BayesTreeCliqueBase<ISAM2Clique, GaussianFactorGraph>
|
||||
{
|
||||
public:
|
||||
class GTSAM_EXPORT ISAM2Clique
|
||||
: public BayesTreeCliqueBase<ISAM2Clique, GaussianFactorGraph> {
|
||||
public:
|
||||
typedef ISAM2Clique This;
|
||||
typedef BayesTreeCliqueBase<This, GaussianFactorGraph> Base;
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
@ -383,13 +514,16 @@ public:
|
|||
/// Default constructor
|
||||
ISAM2Clique() : Base() {}
|
||||
|
||||
/// Copy constructor, does *not* copy solution pointers as these are invalid in different trees.
|
||||
ISAM2Clique(const ISAM2Clique& other) :
|
||||
Base(other), cachedFactor_(other.cachedFactor_), gradientContribution_(other.gradientContribution_) {}
|
||||
/// Copy constructor, does *not* copy solution pointers as these are invalid
|
||||
/// in different trees.
|
||||
ISAM2Clique(const ISAM2Clique& other)
|
||||
: Base(other),
|
||||
cachedFactor_(other.cachedFactor_),
|
||||
gradientContribution_(other.gradientContribution_) {}
|
||||
|
||||
/// Assignment operator, does *not* copy solution pointers as these are invalid in different trees.
|
||||
ISAM2Clique& operator=(const ISAM2Clique& other)
|
||||
{
|
||||
/// Assignment operator, does *not* copy solution pointers as these are
|
||||
/// invalid in different trees.
|
||||
ISAM2Clique& operator=(const ISAM2Clique& other) {
|
||||
Base::operator=(other);
|
||||
cachedFactor_ = other.cachedFactor_;
|
||||
gradientContribution_ = other.gradientContribution_;
|
||||
|
@ -397,7 +531,8 @@ public:
|
|||
}
|
||||
|
||||
/// Overridden to also store the remaining factor and gradient contribution
|
||||
void setEliminationResult(const FactorGraphType::EliminationResult& eliminationResult);
|
||||
void setEliminationResult(
|
||||
const FactorGraphType::EliminationResult& eliminationResult);
|
||||
|
||||
/** Access the cached factor */
|
||||
Base::FactorType::shared_ptr& cachedFactor() { return cachedFactor_; }
|
||||
|
@ -405,44 +540,45 @@ public:
|
|||
/** Access the gradient contribution */
|
||||
const Vector& gradientContribution() const { return gradientContribution_; }
|
||||
|
||||
bool equals(const This& other, double tol=1e-9) const;
|
||||
bool equals(const This& other, double tol = 1e-9) const;
|
||||
|
||||
/** print this node */
|
||||
void print(const std::string& s = "", const KeyFormatter& formatter = DefaultKeyFormatter) const;
|
||||
|
||||
private:
|
||||
void print(const std::string& s = "",
|
||||
const KeyFormatter& formatter = DefaultKeyFormatter) const;
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar & BOOST_SERIALIZATION_NVP(cachedFactor_);
|
||||
ar & BOOST_SERIALIZATION_NVP(gradientContribution_);
|
||||
template <class ARCHIVE>
|
||||
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
||||
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar& BOOST_SERIALIZATION_NVP(cachedFactor_);
|
||||
ar& BOOST_SERIALIZATION_NVP(gradientContribution_);
|
||||
}
|
||||
}; // \struct ISAM2Clique
|
||||
}; // \struct ISAM2Clique
|
||||
|
||||
/**
|
||||
* @addtogroup ISAM2
|
||||
* Implementation of the full ISAM2 algorithm for incremental nonlinear optimization.
|
||||
* Implementation of the full ISAM2 algorithm for incremental nonlinear
|
||||
* optimization.
|
||||
*
|
||||
* The typical cycle of using this class to create an instance by providing ISAM2Params
|
||||
* to the constructor, then add measurements and variables as they arrive using the update()
|
||||
* method. At any time, calculateEstimate() may be called to obtain the current
|
||||
* estimate of all variables.
|
||||
* The typical cycle of using this class to create an instance by providing
|
||||
* ISAM2Params to the constructor, then add measurements and variables as they
|
||||
* arrive using the update() method. At any time, calculateEstimate() may be
|
||||
* called to obtain the current estimate of all variables.
|
||||
*
|
||||
*/
|
||||
class GTSAM_EXPORT ISAM2: public BayesTree<ISAM2Clique> {
|
||||
|
||||
protected:
|
||||
|
||||
class GTSAM_EXPORT ISAM2 : public BayesTree<ISAM2Clique> {
|
||||
protected:
|
||||
/** The current linearization point */
|
||||
Values theta_;
|
||||
|
||||
/** VariableIndex lets us look up factors by involved variable and keeps track of dimensions */
|
||||
/** VariableIndex lets us look up factors by involved variable and keeps track
|
||||
* of dimensions */
|
||||
VariableIndex variableIndex_;
|
||||
|
||||
/** The linear delta from the last linear solution, an update to the estimate in theta
|
||||
/** The linear delta from the last linear solution, an update to the estimate
|
||||
* in theta
|
||||
*
|
||||
* This is \c mutable because it is a "cached" variable - it is not updated
|
||||
* until either requested with getDelta() or calculateEstimate(), or needed
|
||||
|
@ -450,8 +586,10 @@ protected:
|
|||
*/
|
||||
mutable VectorValues delta_;
|
||||
|
||||
mutable VectorValues deltaNewton_; // Only used when using Dogleg - stores the Gauss-Newton update
|
||||
mutable VectorValues RgProd_; // Only used when using Dogleg - stores R*g and is updated incrementally
|
||||
mutable VectorValues deltaNewton_; // Only used when using Dogleg - stores
|
||||
// the Gauss-Newton update
|
||||
mutable VectorValues RgProd_; // Only used when using Dogleg - stores R*g and
|
||||
// is updated incrementally
|
||||
|
||||
/** A cumulative mask for the variables that were replaced and have not yet
|
||||
* been updated in the linear solution delta_, this is only used internally,
|
||||
|
@ -461,9 +599,11 @@ protected:
|
|||
* This is \c mutable because it is used internally to not update delta_
|
||||
* until it is needed.
|
||||
*/
|
||||
mutable KeySet deltaReplacedMask_; // TODO: Make sure accessed in the right way
|
||||
mutable KeySet
|
||||
deltaReplacedMask_; // TODO: Make sure accessed in the right way
|
||||
|
||||
/** All original nonlinear factors are stored here to use during relinearization */
|
||||
/** All original nonlinear factors are stored here to use during
|
||||
* relinearization */
|
||||
NonlinearFactorGraph nonlinearFactors_;
|
||||
|
||||
/** The current linear factors, which are only updated as needed */
|
||||
|
@ -479,20 +619,21 @@ protected:
|
|||
* variables and thus cannot have their linearization points changed. */
|
||||
KeySet fixedVariables_;
|
||||
|
||||
int update_count_; ///< Counter incremented every update(), used to determine periodic relinearization
|
||||
int update_count_; ///< Counter incremented every update(), used to determine
|
||||
///< periodic relinearization
|
||||
|
||||
public:
|
||||
|
||||
typedef ISAM2 This; ///< This class
|
||||
typedef BayesTree<ISAM2Clique> Base; ///< The BayesTree base class
|
||||
typedef Base::Clique Clique; ///< A clique
|
||||
typedef Base::sharedClique sharedClique; ///< Shared pointer to a clique
|
||||
typedef Base::Cliques Cliques; ///< List of Clique typedef from base class
|
||||
public:
|
||||
typedef ISAM2 This; ///< This class
|
||||
typedef BayesTree<ISAM2Clique> Base; ///< The BayesTree base class
|
||||
typedef Base::Clique Clique; ///< A clique
|
||||
typedef Base::sharedClique sharedClique; ///< Shared pointer to a clique
|
||||
typedef Base::Cliques Cliques; ///< List of Clique typedef from base class
|
||||
|
||||
/** Create an empty ISAM2 instance */
|
||||
ISAM2(const ISAM2Params& params);
|
||||
explicit ISAM2(const ISAM2Params& params);
|
||||
|
||||
/** Create an empty ISAM2 instance using the default set of parameters (see ISAM2Params) */
|
||||
/** Create an empty ISAM2 instance using the default set of parameters (see
|
||||
* ISAM2Params) */
|
||||
ISAM2();
|
||||
|
||||
/** default virtual destructor */
|
||||
|
@ -513,26 +654,31 @@ public:
|
|||
* thresholds.
|
||||
*
|
||||
* @param newFactors The new factors to be added to the system
|
||||
* @param newTheta Initialization points for new variables to be added to the system.
|
||||
* You must include here all new variables occuring in newFactors (which were not already
|
||||
* in the system). There must not be any variables here that do not occur in newFactors,
|
||||
* and additionally, variables that were already in the system must not be included here.
|
||||
* @param newTheta Initialization points for new variables to be added to the
|
||||
* system. You must include here all new variables occuring in newFactors
|
||||
* (which were not already in the system). There must not be any variables
|
||||
* here that do not occur in newFactors, and additionally, variables that were
|
||||
* already in the system must not be included here.
|
||||
* @param removeFactorIndices Indices of factors to remove from system
|
||||
* @param force_relinearize Relinearize any variables whose delta magnitude is sufficiently
|
||||
* large (Params::relinearizeThreshold), regardless of the relinearization interval
|
||||
* (Params::relinearizeSkip).
|
||||
* @param constrainedKeys is an optional map of keys to group labels, such that a variable can
|
||||
* be constrained to a particular grouping in the BayesTree
|
||||
* @param noRelinKeys is an optional set of nonlinear keys that iSAM2 will hold at a constant linearization
|
||||
* point, regardless of the size of the linear delta
|
||||
* @param extraReelimKeys is an optional set of nonlinear keys that iSAM2 will re-eliminate, regardless
|
||||
* of the size of the linear delta. This allows the provided keys to be reordered.
|
||||
* @param force_relinearize Relinearize any variables whose delta magnitude is
|
||||
* sufficiently large (Params::relinearizeThreshold), regardless of the
|
||||
* relinearization interval (Params::relinearizeSkip).
|
||||
* @param constrainedKeys is an optional map of keys to group labels, such
|
||||
* that a variable can be constrained to a particular grouping in the
|
||||
* BayesTree
|
||||
* @param noRelinKeys is an optional set of nonlinear keys that iSAM2 will
|
||||
* hold at a constant linearization point, regardless of the size of the
|
||||
* linear delta
|
||||
* @param extraReelimKeys is an optional set of nonlinear keys that iSAM2 will
|
||||
* re-eliminate, regardless of the size of the linear delta. This allows the
|
||||
* provided keys to be reordered.
|
||||
* @return An ISAM2Result struct containing information about the update
|
||||
*/
|
||||
virtual ISAM2Result update(const NonlinearFactorGraph& newFactors = NonlinearFactorGraph(),
|
||||
virtual ISAM2Result update(
|
||||
const NonlinearFactorGraph& newFactors = NonlinearFactorGraph(),
|
||||
const Values& newTheta = Values(),
|
||||
const FactorIndices& removeFactorIndices = FactorIndices(),
|
||||
const boost::optional<FastMap<Key,int> >& constrainedKeys = boost::none,
|
||||
const boost::optional<FastMap<Key, int> >& constrainedKeys = boost::none,
|
||||
const boost::optional<FastList<Key> >& noRelinKeys = boost::none,
|
||||
const boost::optional<FastList<Key> >& extraReelimKeys = boost::none,
|
||||
bool force_relinearize = false);
|
||||
|
@ -542,48 +688,50 @@ public:
|
|||
* requested to be marginalized. Marginalization leaves a linear
|
||||
* approximation of the marginal in the system, and the linearization points
|
||||
* of any variables involved in this linear marginal become fixed. The set
|
||||
* fixed variables will include any key involved with the marginalized variables
|
||||
* in the original factors, and possibly additional ones due to fill-in.
|
||||
* fixed variables will include any key involved with the marginalized
|
||||
* variables in the original factors, and possibly additional ones due to
|
||||
* fill-in.
|
||||
*
|
||||
* If provided, 'marginalFactorsIndices' will be augmented with the factor graph
|
||||
* indices of the marginal factors added during the 'marginalizeLeaves' call
|
||||
* If provided, 'marginalFactorsIndices' will be augmented with the factor
|
||||
* graph indices of the marginal factors added during the 'marginalizeLeaves'
|
||||
* call
|
||||
*
|
||||
* If provided, 'deletedFactorsIndices' will be augmented with the factor graph
|
||||
* indices of any factor that was removed during the 'marginalizeLeaves' call
|
||||
* If provided, 'deletedFactorsIndices' will be augmented with the factor
|
||||
* graph indices of any factor that was removed during the 'marginalizeLeaves'
|
||||
* call
|
||||
*/
|
||||
void marginalizeLeaves(const FastList<Key>& leafKeys,
|
||||
boost::optional<FactorIndices&> marginalFactorsIndices = boost::none,
|
||||
boost::optional<FactorIndices&> deletedFactorsIndices = boost::none);
|
||||
void marginalizeLeaves(
|
||||
const FastList<Key>& leafKeys,
|
||||
boost::optional<FactorIndices&> marginalFactorsIndices = boost::none,
|
||||
boost::optional<FactorIndices&> deletedFactorsIndices = boost::none);
|
||||
|
||||
/// Access the current linearization point
|
||||
const Values& getLinearizationPoint() const {
|
||||
return theta_;
|
||||
}
|
||||
const Values& getLinearizationPoint() const { return theta_; }
|
||||
|
||||
/// Check whether variable with given key exists in linearization point
|
||||
bool valueExists(Key key) const {
|
||||
return theta_.exists(key);
|
||||
}
|
||||
bool valueExists(Key key) const { return theta_.exists(key); }
|
||||
|
||||
/** Compute an estimate from the incomplete linear delta computed during the last update.
|
||||
* This delta is incomplete because it was not updated below wildfire_threshold. If only
|
||||
* a single variable is needed, it is faster to call calculateEstimate(const KEY&).
|
||||
/** Compute an estimate from the incomplete linear delta computed during the
|
||||
* last update. This delta is incomplete because it was not updated below
|
||||
* wildfire_threshold. If only a single variable is needed, it is faster to
|
||||
* call calculateEstimate(const KEY&).
|
||||
*/
|
||||
Values calculateEstimate() const;
|
||||
|
||||
/** Compute an estimate for a single variable using its incomplete linear delta computed
|
||||
* during the last update. This is faster than calling the no-argument version of
|
||||
* calculateEstimate, which operates on all variables.
|
||||
/** Compute an estimate for a single variable using its incomplete linear
|
||||
* delta computed during the last update. This is faster than calling the
|
||||
* no-argument version of calculateEstimate, which operates on all variables.
|
||||
* @param key
|
||||
* @return
|
||||
*/
|
||||
template<class VALUE>
|
||||
template <class VALUE>
|
||||
VALUE calculateEstimate(Key key) const;
|
||||
|
||||
/** Compute an estimate for a single variable using its incomplete linear delta computed
|
||||
* during the last update. This is faster than calling the no-argument version of
|
||||
* calculateEstimate, which operates on all variables. This is a non-templated version
|
||||
* that returns a Value base class for use with the MATLAB wrapper.
|
||||
/** Compute an estimate for a single variable using its incomplete linear
|
||||
* delta computed during the last update. This is faster than calling the
|
||||
* no-argument version of calculateEstimate, which operates on all variables.
|
||||
* This is a non-templated version that returns a Value base class for use
|
||||
* with the MATLAB wrapper.
|
||||
* @param key
|
||||
* @return
|
||||
*/
|
||||
|
@ -598,7 +746,8 @@ public:
|
|||
/** Internal implementation functions */
|
||||
struct Impl;
|
||||
|
||||
/** Compute an estimate using a complete delta computed by a full back-substitution.
|
||||
/** Compute an estimate using a complete delta computed by a full
|
||||
* back-substitution.
|
||||
*/
|
||||
Values calculateBestEstimate() const;
|
||||
|
||||
|
@ -609,7 +758,9 @@ public:
|
|||
double error(const VectorValues& x) const;
|
||||
|
||||
/** Access the set of nonlinear factors */
|
||||
const NonlinearFactorGraph& getFactorsUnsafe() const { return nonlinearFactors_; }
|
||||
const NonlinearFactorGraph& getFactorsUnsafe() const {
|
||||
return nonlinearFactors_;
|
||||
}
|
||||
|
||||
/** Access the nonlinear variable index */
|
||||
const VariableIndex& getVariableIndex() const { return variableIndex_; }
|
||||
|
@ -628,31 +779,36 @@ public:
|
|||
|
||||
/** prints out clique statistics */
|
||||
void printStats() const { getCliqueData().getStats().print(); }
|
||||
|
||||
/** Compute the gradient of the energy function, \f$ \nabla_{x=0} \left\Vert \Sigma^{-1} R x - d
|
||||
* \right\Vert^2 \f$, centered around zero. The gradient about zero is \f$ -R^T d \f$. See also
|
||||
* gradient(const GaussianBayesNet&, const VectorValues&).
|
||||
|
||||
/** Compute the gradient of the energy function, \f$ \nabla_{x=0} \left\Vert
|
||||
* \Sigma^{-1} R x - d \right\Vert^2 \f$, centered around zero. The gradient
|
||||
* about zero is \f$ -R^T d \f$. See also gradient(const GaussianBayesNet&,
|
||||
* const VectorValues&).
|
||||
*
|
||||
* @return A VectorValues storing the gradient.
|
||||
*/
|
||||
VectorValues gradientAtZero() const;
|
||||
|
||||
|
||||
/// @}
|
||||
|
||||
protected:
|
||||
|
||||
protected:
|
||||
FastSet<Key> getAffectedFactors(const FastList<Key>& keys) const;
|
||||
GaussianFactorGraph::shared_ptr relinearizeAffectedFactors(const FastList<Key>& affectedKeys, const KeySet& relinKeys) const;
|
||||
GaussianFactorGraph getCachedBoundaryFactors(Cliques& orphans);
|
||||
GaussianFactorGraph::shared_ptr relinearizeAffectedFactors(
|
||||
const FastList<Key>& affectedKeys, const KeySet& relinKeys) const;
|
||||
GaussianFactorGraph getCachedBoundaryFactors(const Cliques& orphans);
|
||||
|
||||
virtual boost::shared_ptr<KeySet > recalculate(const KeySet& markedKeys, const KeySet& relinKeys,
|
||||
const std::vector<Key>& observedKeys, const KeySet& unusedIndices, const boost::optional<FastMap<Key,int> >& constrainKeys, ISAM2Result& result);
|
||||
virtual boost::shared_ptr<KeySet> recalculate(
|
||||
const KeySet& markedKeys, const KeySet& relinKeys,
|
||||
const std::vector<Key>& observedKeys, const KeySet& unusedIndices,
|
||||
const boost::optional<FastMap<Key, int> >& constrainKeys,
|
||||
ISAM2Result& result);
|
||||
void updateDelta(bool forceFullSolve = false) const;
|
||||
|
||||
}; // ISAM2
|
||||
}; // ISAM2
|
||||
|
||||
/// traits
|
||||
template<> struct traits<ISAM2> : public Testable<ISAM2> {};
|
||||
template <>
|
||||
struct traits<ISAM2> : public Testable<ISAM2> {};
|
||||
|
||||
/// Optimize the BayesTree, starting from the root.
|
||||
/// @param replaced Needs to contain
|
||||
|
@ -665,19 +821,21 @@ template<> struct traits<ISAM2> : public Testable<ISAM2> {};
|
|||
/// and recursive backsubstitution might eventually stop if none of the changed
|
||||
/// variables are contained in the subtree.
|
||||
/// @return The number of variables that were solved for
|
||||
template<class CLIQUE>
|
||||
size_t optimizeWildfire(const boost::shared_ptr<CLIQUE>& root,
|
||||
double threshold, const KeySet& replaced, VectorValues& delta);
|
||||
template <class CLIQUE>
|
||||
size_t optimizeWildfire(const boost::shared_ptr<CLIQUE>& root, double threshold,
|
||||
const KeySet& replaced, VectorValues& delta);
|
||||
|
||||
template<class CLIQUE>
|
||||
template <class CLIQUE>
|
||||
size_t optimizeWildfireNonRecursive(const boost::shared_ptr<CLIQUE>& root,
|
||||
double threshold, const KeySet& replaced, VectorValues& delta);
|
||||
double threshold, const KeySet& replaced,
|
||||
VectorValues& delta);
|
||||
|
||||
/// calculate the number of non-zero entries for the tree starting at clique (use root for complete matrix)
|
||||
template<class CLIQUE>
|
||||
/// calculate the number of non-zero entries for the tree starting at clique
|
||||
/// (use root for complete matrix)
|
||||
template <class CLIQUE>
|
||||
int calculate_nnz(const boost::shared_ptr<CLIQUE>& clique);
|
||||
|
||||
} /// namespace gtsam
|
||||
} // namespace gtsam
|
||||
|
||||
#include <gtsam/nonlinear/ISAM2-inl.h>
|
||||
#include <gtsam/nonlinear/ISAM2-impl.h>
|
||||
#include <gtsam/nonlinear/ISAM2-inl.h>
|
||||
|
|
Loading…
Reference in New Issue