Create mean/stddev constructors
parent
32c67892ed
commit
e690ff817a
|
@ -29,16 +29,20 @@
|
|||
|
||||
#include <cstddef>
|
||||
|
||||
#include "gtsam/linear/JacobianFactor.h"
|
||||
|
||||
namespace gtsam {
|
||||
/* *******************************************************************************/
|
||||
struct HybridGaussianConditional::ConstructorHelper {
|
||||
std::optional<size_t> nrFrontals;
|
||||
HybridGaussianFactor::FactorValuePairs pairs;
|
||||
FactorValuePairs pairs;
|
||||
Conditionals conditionals;
|
||||
double minNegLogConstant;
|
||||
|
||||
/// Compute all variables needed for the private constructor below.
|
||||
/// Construct from tree of GaussianConditionals.
|
||||
ConstructorHelper(const Conditionals &conditionals)
|
||||
: minNegLogConstant(std::numeric_limits<double>::infinity()) {
|
||||
: conditionals(conditionals),
|
||||
minNegLogConstant(std::numeric_limits<double>::infinity()) {
|
||||
auto func = [this](const GaussianConditional::shared_ptr &c)
|
||||
-> GaussianFactorValuePair {
|
||||
double value = 0.0;
|
||||
|
@ -51,38 +55,79 @@ struct HybridGaussianConditional::ConstructorHelper {
|
|||
}
|
||||
return {std::dynamic_pointer_cast<GaussianFactor>(c), value};
|
||||
};
|
||||
pairs = HybridGaussianFactor::FactorValuePairs(conditionals, func);
|
||||
pairs = FactorValuePairs(conditionals, func);
|
||||
if (!nrFrontals.has_value()) {
|
||||
throw std::runtime_error(
|
||||
"HybridGaussianConditional: need at least one frontal variable.");
|
||||
}
|
||||
}
|
||||
|
||||
/// Construct from means and a single sigma.
|
||||
ConstructorHelper(Key x, const DiscreteKey mode,
|
||||
const std::vector<Vector> &means, double sigma)
|
||||
: nrFrontals(1), minNegLogConstant(0) {
|
||||
std::vector<GaussianConditional::shared_ptr> gcs;
|
||||
for (const auto &mean : means) {
|
||||
auto c = GaussianConditional::sharedMeanAndStddev(x, mean, sigma);
|
||||
gcs.push_back(c);
|
||||
}
|
||||
conditionals = Conditionals({mode}, gcs);
|
||||
pairs = FactorValuePairs(conditionals, [](const auto &c) {
|
||||
return GaussianFactorValuePair{c, 0.0};
|
||||
});
|
||||
}
|
||||
|
||||
/// Construct from means and a sigmas.
|
||||
ConstructorHelper(Key x, const DiscreteKey mode,
|
||||
const std::vector<std::pair<Vector, double>> ¶meters)
|
||||
: nrFrontals(1),
|
||||
minNegLogConstant(std::numeric_limits<double>::infinity()) {
|
||||
std::vector<GaussianConditional::shared_ptr> gcs;
|
||||
std::vector<GaussianFactorValuePair> fvs;
|
||||
for (const auto &[mean, sigma] : parameters) {
|
||||
auto c = GaussianConditional::sharedMeanAndStddev(x, mean, sigma);
|
||||
double value = c->negLogConstant();
|
||||
minNegLogConstant = std::min(minNegLogConstant, value);
|
||||
gcs.push_back(c);
|
||||
fvs.push_back({c, value});
|
||||
}
|
||||
conditionals = Conditionals({mode}, gcs);
|
||||
pairs = FactorValuePairs({mode}, fvs);
|
||||
}
|
||||
};
|
||||
|
||||
/* *******************************************************************************/
|
||||
HybridGaussianConditional::HybridGaussianConditional(
|
||||
const DiscreteKeys &discreteParents,
|
||||
const HybridGaussianConditional::Conditionals &conditionals,
|
||||
const ConstructorHelper &helper)
|
||||
const DiscreteKeys &discreteParents, const ConstructorHelper &helper)
|
||||
: BaseFactor(discreteParents, helper.pairs),
|
||||
BaseConditional(*helper.nrFrontals),
|
||||
conditionals_(conditionals),
|
||||
conditionals_(helper.conditionals),
|
||||
negLogConstant_(helper.minNegLogConstant) {}
|
||||
|
||||
/* *******************************************************************************/
|
||||
HybridGaussianConditional::HybridGaussianConditional(
|
||||
const DiscreteKey &mode,
|
||||
const std::vector<GaussianConditional::shared_ptr> &conditionals)
|
||||
: HybridGaussianConditional(DiscreteKeys{mode},
|
||||
Conditionals({mode}, conditionals)) {}
|
||||
|
||||
HybridGaussianConditional::HybridGaussianConditional(
|
||||
Key x, const DiscreteKey mode, const std::vector<Vector> &means,
|
||||
double sigma)
|
||||
: HybridGaussianConditional(DiscreteKeys{mode},
|
||||
ConstructorHelper(x, mode, means, sigma)) {}
|
||||
|
||||
HybridGaussianConditional::HybridGaussianConditional(
|
||||
Key x, const DiscreteKey mode,
|
||||
const std::vector<std::pair<Vector, double>> ¶meters)
|
||||
: HybridGaussianConditional(DiscreteKeys{mode},
|
||||
ConstructorHelper(x, mode, parameters)) {}
|
||||
|
||||
HybridGaussianConditional::HybridGaussianConditional(
|
||||
const DiscreteKeys &discreteParents,
|
||||
const HybridGaussianConditional::Conditionals &conditionals)
|
||||
: HybridGaussianConditional(discreteParents, conditionals,
|
||||
: HybridGaussianConditional(discreteParents,
|
||||
ConstructorHelper(conditionals)) {}
|
||||
|
||||
/* *******************************************************************************/
|
||||
HybridGaussianConditional::HybridGaussianConditional(
|
||||
const DiscreteKey &discreteParent,
|
||||
const std::vector<GaussianConditional::shared_ptr> &conditionals)
|
||||
: HybridGaussianConditional(DiscreteKeys{discreteParent},
|
||||
Conditionals({discreteParent}, conditionals)) {}
|
||||
|
||||
/* *******************************************************************************/
|
||||
const HybridGaussianConditional::Conditionals &
|
||||
HybridGaussianConditional::conditionals() const {
|
||||
|
|
|
@ -79,14 +79,36 @@ class GTSAM_EXPORT HybridGaussianConditional
|
|||
/**
|
||||
* @brief Construct from one discrete key and vector of conditionals.
|
||||
*
|
||||
* @param discreteParent Single discrete parent variable
|
||||
* @param mode Single discrete parent variable
|
||||
* @param conditionals Vector of conditionals with the same size as the
|
||||
* cardinality of the discrete parent.
|
||||
*/
|
||||
HybridGaussianConditional(
|
||||
const DiscreteKey &discreteParent,
|
||||
const DiscreteKey &mode,
|
||||
const std::vector<GaussianConditional::shared_ptr> &conditionals);
|
||||
|
||||
/**
|
||||
* @brief Construct from vector of means and a single sigma.
|
||||
*
|
||||
* @param x The continuous key.
|
||||
* @param mode The discrete key.
|
||||
* @param means The means for the Gaussian conditionals.
|
||||
* @param sigma The standard deviation for the Gaussian conditionals.
|
||||
*/
|
||||
HybridGaussianConditional(Key x, const DiscreteKey mode,
|
||||
const std::vector<Vector> &means, double sigma);
|
||||
|
||||
/**
|
||||
* @brief Construct from vector of means and sigmas.
|
||||
*
|
||||
* @param x The continuous key.
|
||||
* @param mode The discrete key.
|
||||
* @param parameters The means and sigmas for the Gaussian conditionals.
|
||||
*/
|
||||
HybridGaussianConditional(
|
||||
Key x, const DiscreteKey mode,
|
||||
const std::vector<std::pair<Vector, double>> ¶meters);
|
||||
|
||||
/**
|
||||
* @brief Construct from multiple discrete keys and conditional tree.
|
||||
*
|
||||
|
@ -186,10 +208,8 @@ class GTSAM_EXPORT HybridGaussianConditional
|
|||
struct ConstructorHelper;
|
||||
|
||||
/// Private constructor that uses helper struct above.
|
||||
HybridGaussianConditional(
|
||||
const DiscreteKeys &discreteParents,
|
||||
const HybridGaussianConditional::Conditionals &conditionals,
|
||||
const ConstructorHelper &helper);
|
||||
HybridGaussianConditional(const DiscreteKeys &discreteParents,
|
||||
const ConstructorHelper &helper);
|
||||
|
||||
/// Convert to a DecisionTree of Gaussian factor graphs.
|
||||
GaussianFactorGraphTree asGaussianFactorGraphTree() const;
|
||||
|
|
|
@ -43,26 +43,6 @@ const DiscreteValues m1Assignment{{M(0), 1}};
|
|||
DiscreteConditional::shared_ptr mixing =
|
||||
std::make_shared<DiscreteConditional>(m, "60/40");
|
||||
|
||||
/**
|
||||
* Create a simple Gaussian Mixture Model represented as p(z|m)P(m)
|
||||
* where m is a discrete variable and z is a continuous variable.
|
||||
* The "mode" m is binary and depending on m, we have 2 different means
|
||||
* μ1 and μ2 for the Gaussian density p(z|m).
|
||||
*/
|
||||
HybridBayesNet GaussianMixtureModel(double mu0, double mu1, double sigma0,
|
||||
double sigma1) {
|
||||
HybridBayesNet hbn;
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, sigma0);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, sigma1);
|
||||
auto c0 = std::make_shared<GaussianConditional>(Z(0), Vector1(mu0), I_1x1,
|
||||
model0),
|
||||
c1 = std::make_shared<GaussianConditional>(Z(0), Vector1(mu1), I_1x1,
|
||||
model1);
|
||||
hbn.emplace_shared<HybridGaussianConditional>(m, std::vector{c0, c1});
|
||||
hbn.push_back(mixing);
|
||||
return hbn;
|
||||
}
|
||||
|
||||
/// Gaussian density function
|
||||
double Gaussian(double mu, double sigma, double z) {
|
||||
return exp(-0.5 * pow((z - mu) / sigma, 2)) / sqrt(2 * M_PI * sigma * sigma);
|
||||
|
@ -99,7 +79,10 @@ TEST(GaussianMixture, GaussianMixtureModel) {
|
|||
double mu0 = 1.0, mu1 = 3.0;
|
||||
double sigma = 2.0;
|
||||
|
||||
auto hbn = GaussianMixtureModel(mu0, mu1, sigma, sigma);
|
||||
HybridBayesNet hbn;
|
||||
std::vector<Vector> means{Vector1(mu0), Vector1(mu1)};
|
||||
hbn.emplace_shared<HybridGaussianConditional>(Z(0), m, means, sigma);
|
||||
hbn.push_back(mixing);
|
||||
|
||||
// At the halfway point between the means, we should get P(m|z)=0.5
|
||||
double midway = mu1 - mu0;
|
||||
|
@ -133,7 +116,11 @@ TEST(GaussianMixture, GaussianMixtureModel2) {
|
|||
double mu0 = 1.0, mu1 = 3.0;
|
||||
double sigma0 = 8.0, sigma1 = 4.0;
|
||||
|
||||
auto hbn = GaussianMixtureModel(mu0, mu1, sigma0, sigma1);
|
||||
HybridBayesNet hbn;
|
||||
std::vector<std::pair<Vector, double>> parameters{{Vector1(mu0), sigma0},
|
||||
{Vector1(mu1), sigma1}};
|
||||
hbn.emplace_shared<HybridGaussianConditional>(Z(0), m, parameters);
|
||||
hbn.push_back(mixing);
|
||||
|
||||
// We get zMax=3.1333 by finding the maximum value of the function, at which
|
||||
// point the mode m==1 is about twice as probable as m==0.
|
||||
|
|
Loading…
Reference in New Issue