Merge pull request #869 from borglab/fix/imu-factor-example

release/4.3a0
Varun Agrawal 2021-09-06 19:03:21 -04:00 committed by GitHub
commit e5bad525a6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 84 additions and 60 deletions

View File

@ -16,9 +16,9 @@ virtual class Base {
}; };
virtual class Gaussian : gtsam::noiseModel::Base { virtual class Gaussian : gtsam::noiseModel::Base {
static gtsam::noiseModel::Gaussian* Information(Matrix R); static gtsam::noiseModel::Gaussian* Information(Matrix R, bool smart = true);
static gtsam::noiseModel::Gaussian* SqrtInformation(Matrix R); static gtsam::noiseModel::Gaussian* SqrtInformation(Matrix R, bool smart = true);
static gtsam::noiseModel::Gaussian* Covariance(Matrix R); static gtsam::noiseModel::Gaussian* Covariance(Matrix R, bool smart = true);
bool equals(gtsam::noiseModel::Base& expected, double tol); bool equals(gtsam::noiseModel::Base& expected, double tol);
@ -37,9 +37,9 @@ virtual class Gaussian : gtsam::noiseModel::Base {
}; };
virtual class Diagonal : gtsam::noiseModel::Gaussian { virtual class Diagonal : gtsam::noiseModel::Gaussian {
static gtsam::noiseModel::Diagonal* Sigmas(Vector sigmas); static gtsam::noiseModel::Diagonal* Sigmas(Vector sigmas, bool smart = true);
static gtsam::noiseModel::Diagonal* Variances(Vector variances); static gtsam::noiseModel::Diagonal* Variances(Vector variances, bool smart = true);
static gtsam::noiseModel::Diagonal* Precisions(Vector precisions); static gtsam::noiseModel::Diagonal* Precisions(Vector precisions, bool smart = true);
Matrix R() const; Matrix R() const;
// access to noise model // access to noise model
@ -69,9 +69,9 @@ virtual class Constrained : gtsam::noiseModel::Diagonal {
}; };
virtual class Isotropic : gtsam::noiseModel::Diagonal { virtual class Isotropic : gtsam::noiseModel::Diagonal {
static gtsam::noiseModel::Isotropic* Sigma(size_t dim, double sigma); static gtsam::noiseModel::Isotropic* Sigma(size_t dim, double sigma, bool smart = true);
static gtsam::noiseModel::Isotropic* Variance(size_t dim, double varianace); static gtsam::noiseModel::Isotropic* Variance(size_t dim, double varianace, bool smart = true);
static gtsam::noiseModel::Isotropic* Precision(size_t dim, double precision); static gtsam::noiseModel::Isotropic* Precision(size_t dim, double precision, bool smart = true);
// access to noise model // access to noise model
double sigma() const; double sigma() const;

View File

@ -819,7 +819,6 @@ struct ImuFactorMergeTest {
loop_(Vector3(0, -kAngularVelocity, 0), Vector3(kVelocity, 0, 0)) { loop_(Vector3(0, -kAngularVelocity, 0), Vector3(kVelocity, 0, 0)) {
// arbitrary noise values // arbitrary noise values
p_->gyroscopeCovariance = I_3x3 * 0.01; p_->gyroscopeCovariance = I_3x3 * 0.01;
p_->accelerometerCovariance = I_3x3 * 0.02;
p_->accelerometerCovariance = I_3x3 * 0.03; p_->accelerometerCovariance = I_3x3 * 0.03;
} }

View File

@ -10,28 +10,30 @@ A script validating and demonstrating the ImuFactor inference.
Author: Frank Dellaert, Varun Agrawal Author: Frank Dellaert, Varun Agrawal
""" """
# pylint: disable=no-name-in-module,unused-import,arguments-differ
from __future__ import print_function from __future__ import print_function
import argparse import argparse
import math import math
import gtsam
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam.symbol_shorthand import B, V, X from gtsam.symbol_shorthand import B, V, X
from gtsam.utils.plot import plot_pose3 from gtsam.utils.plot import plot_pose3
from mpl_toolkits.mplot3d import Axes3D
from PreintegrationExample import POSES_FIG, PreintegrationExample from PreintegrationExample import POSES_FIG, PreintegrationExample
BIAS_KEY = B(0) BIAS_KEY = B(0)
np.set_printoptions(precision=3, suppress=True) np.set_printoptions(precision=3, suppress=True)
class ImuFactorExample(PreintegrationExample): class ImuFactorExample(PreintegrationExample):
"""Class to run example of the Imu Factor."""
def __init__(self, twist_scenario="sick_twist"): def __init__(self, twist_scenario="sick_twist"):
self.velocity = np.array([2, 0, 0]) self.velocity = np.array([2, 0, 0])
self.priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1) self.priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
@ -42,9 +44,8 @@ class ImuFactorExample(PreintegrationExample):
zero_twist=(np.zeros(3), np.zeros(3)), zero_twist=(np.zeros(3), np.zeros(3)),
forward_twist=(np.zeros(3), self.velocity), forward_twist=(np.zeros(3), self.velocity),
loop_twist=(np.array([0, -math.radians(30), 0]), self.velocity), loop_twist=(np.array([0, -math.radians(30), 0]), self.velocity),
sick_twist=(np.array([math.radians(30), -math.radians(30), 0]), sick_twist=(np.array([math.radians(30), -math.radians(30),
self.velocity) 0]), self.velocity))
)
accBias = np.array([-0.3, 0.1, 0.2]) accBias = np.array([-0.3, 0.1, 0.2])
gyroBias = np.array([0.1, 0.3, -0.1]) gyroBias = np.array([0.1, 0.3, -0.1])
@ -55,19 +56,44 @@ class ImuFactorExample(PreintegrationExample):
bias, dt) bias, dt)
def addPrior(self, i, graph): def addPrior(self, i, graph):
"""Add priors at time step `i`."""
state = self.scenario.navState(i) state = self.scenario.navState(i)
graph.push_back(gtsam.PriorFactorPose3( graph.push_back(
X(i), state.pose(), self.priorNoise)) gtsam.PriorFactorPose3(X(i), state.pose(), self.priorNoise))
graph.push_back(gtsam.PriorFactorVector( graph.push_back(
V(i), state.velocity(), self.velNoise)) gtsam.PriorFactorVector(V(i), state.velocity(), self.velNoise))
def optimize(self, graph, initial):
"""Optimize using Levenberg-Marquardt optimization."""
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("SUMMARY")
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
return result
def plot(self, result):
"""Plot resulting poses."""
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
plot_pose3(POSES_FIG + 1, pose_i, 1)
i += 1
plt.title("Estimated Trajectory")
gtsam.utils.plot.set_axes_equal(POSES_FIG + 1)
print("Bias Values", result.atConstantBias(BIAS_KEY))
plt.ioff()
plt.show()
def run(self, T=12, compute_covariances=False, verbose=True): def run(self, T=12, compute_covariances=False, verbose=True):
"""Main runner."""
graph = gtsam.NonlinearFactorGraph() graph = gtsam.NonlinearFactorGraph()
# initialize data structure for pre-integrated IMU measurements # initialize data structure for pre-integrated IMU measurements
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias) pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
T = 12
num_poses = T # assumes 1 factor per second num_poses = T # assumes 1 factor per second
initial = gtsam.Values() initial = gtsam.Values()
initial.insert(BIAS_KEY, self.actualBias) initial.insert(BIAS_KEY, self.actualBias)
@ -91,14 +117,13 @@ class ImuFactorExample(PreintegrationExample):
if k % 10 == 0: if k % 10 == 0:
self.plotImu(t, measuredOmega, measuredAcc) self.plotImu(t, measuredOmega, measuredAcc)
if (k+1) % int(1 / self.dt) == 0: if (k + 1) % int(1 / self.dt) == 0:
# Plot every second # Plot every second
self.plotGroundTruthPose(t, scale=1) self.plotGroundTruthPose(t, scale=1)
plt.title("Ground Truth Trajectory") plt.title("Ground Truth Trajectory")
# create IMU factor every second # create IMU factor every second
factor = gtsam.ImuFactor(X(i), V(i), factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1),
X(i + 1), V(i + 1),
BIAS_KEY, pim) BIAS_KEY, pim)
graph.push_back(factor) graph.push_back(factor)
@ -108,34 +133,34 @@ class ImuFactorExample(PreintegrationExample):
pim.resetIntegration() pim.resetIntegration()
rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3)*0.1) rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3) * 0.1)
translationNoise = gtsam.Point3(*np.random.randn(3)*1) translationNoise = gtsam.Point3(*np.random.randn(3) * 1)
poseNoise = gtsam.Pose3(rotationNoise, translationNoise) poseNoise = gtsam.Pose3(rotationNoise, translationNoise)
actual_state_i = self.scenario.navState(t + self.dt) actual_state_i = self.scenario.navState(t + self.dt)
print("Actual state at {0}:\n{1}".format( print("Actual state at {0}:\n{1}".format(
t+self.dt, actual_state_i)) t + self.dt, actual_state_i))
noisy_state_i = gtsam.NavState( noisy_state_i = gtsam.NavState(
actual_state_i.pose().compose(poseNoise), actual_state_i.pose().compose(poseNoise),
actual_state_i.velocity() + np.random.randn(3)*0.1) actual_state_i.velocity() + np.random.randn(3) * 0.1)
initial.insert(X(i+1), noisy_state_i.pose()) initial.insert(X(i + 1), noisy_state_i.pose())
initial.insert(V(i+1), noisy_state_i.velocity()) initial.insert(V(i + 1), noisy_state_i.velocity())
i += 1 i += 1
# add priors on end # add priors on end
self.addPrior(num_poses - 1, graph) self.addPrior(num_poses - 1, graph)
initial.print_("Initial values:") initial.print("Initial values:")
# optimize using Levenberg-Marquardt optimization result = self.optimize(graph, initial)
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("SUMMARY")
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
result.print_("Optimized values:") result.print("Optimized values:")
print("------------------")
print(graph.error(initial))
print(graph.error(result))
print("------------------")
if compute_covariances: if compute_covariances:
# Calculate and print marginal covariances # Calculate and print marginal covariances
@ -148,33 +173,26 @@ class ImuFactorExample(PreintegrationExample):
print("Covariance on vel {}:\n{}\n".format( print("Covariance on vel {}:\n{}\n".format(
i, marginals.marginalCovariance(V(i)))) i, marginals.marginalCovariance(V(i))))
# Plot resulting poses self.plot(result)
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
plot_pose3(POSES_FIG+1, pose_i, 1)
i += 1
plt.title("Estimated Trajectory")
gtsam.utils.plot.set_axes_equal(POSES_FIG+1)
print("Bias Values", result.atConstantBias(BIAS_KEY))
plt.ioff()
plt.show()
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser("ImuFactorExample.py") parser = argparse.ArgumentParser("ImuFactorExample.py")
parser.add_argument("--twist_scenario", parser.add_argument("--twist_scenario",
default="sick_twist", default="sick_twist",
choices=("zero_twist", "forward_twist", "loop_twist", "sick_twist")) choices=("zero_twist", "forward_twist", "loop_twist",
parser.add_argument("--time", "-T", default=12, "sick_twist"))
type=int, help="Total time in seconds") parser.add_argument("--time",
"-T",
default=12,
type=int,
help="Total time in seconds")
parser.add_argument("--compute_covariances", parser.add_argument("--compute_covariances",
default=False, action='store_true') default=False,
action='store_true')
parser.add_argument("--verbose", default=False, action='store_true') parser.add_argument("--verbose", default=False, action='store_true')
args = parser.parse_args() args = parser.parse_args()
ImuFactorExample(args.twist_scenario).run( ImuFactorExample(args.twist_scenario).run(args.time,
args.time, args.compute_covariances, args.verbose) args.compute_covariances,
args.verbose)

View File

@ -23,7 +23,10 @@ def set_axes_equal(fignum: int) -> None:
fignum: An integer representing the figure number for Matplotlib. fignum: An integer representing the figure number for Matplotlib.
""" """
fig = plt.figure(fignum) fig = plt.figure(fignum)
ax = fig.gca(projection='3d') if not fig.axes:
ax = fig.add_subplot(projection='3d')
else:
ax = fig.axes[0]
limits = np.array([ limits = np.array([
ax.get_xlim3d(), ax.get_xlim3d(),
@ -339,7 +342,11 @@ def plot_pose3(
""" """
# get figure object # get figure object
fig = plt.figure(fignum) fig = plt.figure(fignum)
axes = fig.gca(projection='3d') if not fig.axes:
axes = fig.add_subplot(projection='3d')
else:
axes = fig.axes[0]
plot_pose3_on_axes(axes, pose, P=P, axis_length=axis_length) plot_pose3_on_axes(axes, pose, P=P, axis_length=axis_length)
axes.set_xlabel(axis_labels[0]) axes.set_xlabel(axis_labels[0])