Merge pull request #869 from borglab/fix/imu-factor-example
commit
e5bad525a6
|
@ -16,9 +16,9 @@ virtual class Base {
|
|||
};
|
||||
|
||||
virtual class Gaussian : gtsam::noiseModel::Base {
|
||||
static gtsam::noiseModel::Gaussian* Information(Matrix R);
|
||||
static gtsam::noiseModel::Gaussian* SqrtInformation(Matrix R);
|
||||
static gtsam::noiseModel::Gaussian* Covariance(Matrix R);
|
||||
static gtsam::noiseModel::Gaussian* Information(Matrix R, bool smart = true);
|
||||
static gtsam::noiseModel::Gaussian* SqrtInformation(Matrix R, bool smart = true);
|
||||
static gtsam::noiseModel::Gaussian* Covariance(Matrix R, bool smart = true);
|
||||
|
||||
bool equals(gtsam::noiseModel::Base& expected, double tol);
|
||||
|
||||
|
@ -37,9 +37,9 @@ virtual class Gaussian : gtsam::noiseModel::Base {
|
|||
};
|
||||
|
||||
virtual class Diagonal : gtsam::noiseModel::Gaussian {
|
||||
static gtsam::noiseModel::Diagonal* Sigmas(Vector sigmas);
|
||||
static gtsam::noiseModel::Diagonal* Variances(Vector variances);
|
||||
static gtsam::noiseModel::Diagonal* Precisions(Vector precisions);
|
||||
static gtsam::noiseModel::Diagonal* Sigmas(Vector sigmas, bool smart = true);
|
||||
static gtsam::noiseModel::Diagonal* Variances(Vector variances, bool smart = true);
|
||||
static gtsam::noiseModel::Diagonal* Precisions(Vector precisions, bool smart = true);
|
||||
Matrix R() const;
|
||||
|
||||
// access to noise model
|
||||
|
@ -69,9 +69,9 @@ virtual class Constrained : gtsam::noiseModel::Diagonal {
|
|||
};
|
||||
|
||||
virtual class Isotropic : gtsam::noiseModel::Diagonal {
|
||||
static gtsam::noiseModel::Isotropic* Sigma(size_t dim, double sigma);
|
||||
static gtsam::noiseModel::Isotropic* Variance(size_t dim, double varianace);
|
||||
static gtsam::noiseModel::Isotropic* Precision(size_t dim, double precision);
|
||||
static gtsam::noiseModel::Isotropic* Sigma(size_t dim, double sigma, bool smart = true);
|
||||
static gtsam::noiseModel::Isotropic* Variance(size_t dim, double varianace, bool smart = true);
|
||||
static gtsam::noiseModel::Isotropic* Precision(size_t dim, double precision, bool smart = true);
|
||||
|
||||
// access to noise model
|
||||
double sigma() const;
|
||||
|
|
|
@ -819,7 +819,6 @@ struct ImuFactorMergeTest {
|
|||
loop_(Vector3(0, -kAngularVelocity, 0), Vector3(kVelocity, 0, 0)) {
|
||||
// arbitrary noise values
|
||||
p_->gyroscopeCovariance = I_3x3 * 0.01;
|
||||
p_->accelerometerCovariance = I_3x3 * 0.02;
|
||||
p_->accelerometerCovariance = I_3x3 * 0.03;
|
||||
}
|
||||
|
||||
|
|
|
@ -10,28 +10,30 @@ A script validating and demonstrating the ImuFactor inference.
|
|||
Author: Frank Dellaert, Varun Agrawal
|
||||
"""
|
||||
|
||||
# pylint: disable=no-name-in-module,unused-import,arguments-differ
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import math
|
||||
|
||||
import gtsam
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
import gtsam
|
||||
from gtsam.symbol_shorthand import B, V, X
|
||||
from gtsam.utils.plot import plot_pose3
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
from PreintegrationExample import POSES_FIG, PreintegrationExample
|
||||
|
||||
BIAS_KEY = B(0)
|
||||
|
||||
|
||||
np.set_printoptions(precision=3, suppress=True)
|
||||
|
||||
|
||||
class ImuFactorExample(PreintegrationExample):
|
||||
|
||||
"""Class to run example of the Imu Factor."""
|
||||
def __init__(self, twist_scenario="sick_twist"):
|
||||
self.velocity = np.array([2, 0, 0])
|
||||
self.priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
|
||||
|
@ -42,9 +44,8 @@ class ImuFactorExample(PreintegrationExample):
|
|||
zero_twist=(np.zeros(3), np.zeros(3)),
|
||||
forward_twist=(np.zeros(3), self.velocity),
|
||||
loop_twist=(np.array([0, -math.radians(30), 0]), self.velocity),
|
||||
sick_twist=(np.array([math.radians(30), -math.radians(30), 0]),
|
||||
self.velocity)
|
||||
)
|
||||
sick_twist=(np.array([math.radians(30), -math.radians(30),
|
||||
0]), self.velocity))
|
||||
|
||||
accBias = np.array([-0.3, 0.1, 0.2])
|
||||
gyroBias = np.array([0.1, 0.3, -0.1])
|
||||
|
@ -55,19 +56,44 @@ class ImuFactorExample(PreintegrationExample):
|
|||
bias, dt)
|
||||
|
||||
def addPrior(self, i, graph):
|
||||
"""Add priors at time step `i`."""
|
||||
state = self.scenario.navState(i)
|
||||
graph.push_back(gtsam.PriorFactorPose3(
|
||||
X(i), state.pose(), self.priorNoise))
|
||||
graph.push_back(gtsam.PriorFactorVector(
|
||||
V(i), state.velocity(), self.velNoise))
|
||||
graph.push_back(
|
||||
gtsam.PriorFactorPose3(X(i), state.pose(), self.priorNoise))
|
||||
graph.push_back(
|
||||
gtsam.PriorFactorVector(V(i), state.velocity(), self.velNoise))
|
||||
|
||||
def optimize(self, graph, initial):
|
||||
"""Optimize using Levenberg-Marquardt optimization."""
|
||||
params = gtsam.LevenbergMarquardtParams()
|
||||
params.setVerbosityLM("SUMMARY")
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
|
||||
result = optimizer.optimize()
|
||||
return result
|
||||
|
||||
def plot(self, result):
|
||||
"""Plot resulting poses."""
|
||||
i = 0
|
||||
while result.exists(X(i)):
|
||||
pose_i = result.atPose3(X(i))
|
||||
plot_pose3(POSES_FIG + 1, pose_i, 1)
|
||||
i += 1
|
||||
plt.title("Estimated Trajectory")
|
||||
|
||||
gtsam.utils.plot.set_axes_equal(POSES_FIG + 1)
|
||||
|
||||
print("Bias Values", result.atConstantBias(BIAS_KEY))
|
||||
|
||||
plt.ioff()
|
||||
plt.show()
|
||||
|
||||
def run(self, T=12, compute_covariances=False, verbose=True):
|
||||
"""Main runner."""
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# initialize data structure for pre-integrated IMU measurements
|
||||
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
|
||||
|
||||
T = 12
|
||||
num_poses = T # assumes 1 factor per second
|
||||
initial = gtsam.Values()
|
||||
initial.insert(BIAS_KEY, self.actualBias)
|
||||
|
@ -91,14 +117,13 @@ class ImuFactorExample(PreintegrationExample):
|
|||
if k % 10 == 0:
|
||||
self.plotImu(t, measuredOmega, measuredAcc)
|
||||
|
||||
if (k+1) % int(1 / self.dt) == 0:
|
||||
if (k + 1) % int(1 / self.dt) == 0:
|
||||
# Plot every second
|
||||
self.plotGroundTruthPose(t, scale=1)
|
||||
plt.title("Ground Truth Trajectory")
|
||||
|
||||
# create IMU factor every second
|
||||
factor = gtsam.ImuFactor(X(i), V(i),
|
||||
X(i + 1), V(i + 1),
|
||||
factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1),
|
||||
BIAS_KEY, pim)
|
||||
graph.push_back(factor)
|
||||
|
||||
|
@ -108,34 +133,34 @@ class ImuFactorExample(PreintegrationExample):
|
|||
|
||||
pim.resetIntegration()
|
||||
|
||||
rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3)*0.1)
|
||||
translationNoise = gtsam.Point3(*np.random.randn(3)*1)
|
||||
rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3) * 0.1)
|
||||
translationNoise = gtsam.Point3(*np.random.randn(3) * 1)
|
||||
poseNoise = gtsam.Pose3(rotationNoise, translationNoise)
|
||||
|
||||
actual_state_i = self.scenario.navState(t + self.dt)
|
||||
print("Actual state at {0}:\n{1}".format(
|
||||
t+self.dt, actual_state_i))
|
||||
t + self.dt, actual_state_i))
|
||||
|
||||
noisy_state_i = gtsam.NavState(
|
||||
actual_state_i.pose().compose(poseNoise),
|
||||
actual_state_i.velocity() + np.random.randn(3)*0.1)
|
||||
actual_state_i.velocity() + np.random.randn(3) * 0.1)
|
||||
|
||||
initial.insert(X(i+1), noisy_state_i.pose())
|
||||
initial.insert(V(i+1), noisy_state_i.velocity())
|
||||
initial.insert(X(i + 1), noisy_state_i.pose())
|
||||
initial.insert(V(i + 1), noisy_state_i.velocity())
|
||||
i += 1
|
||||
|
||||
# add priors on end
|
||||
self.addPrior(num_poses - 1, graph)
|
||||
|
||||
initial.print_("Initial values:")
|
||||
initial.print("Initial values:")
|
||||
|
||||
# optimize using Levenberg-Marquardt optimization
|
||||
params = gtsam.LevenbergMarquardtParams()
|
||||
params.setVerbosityLM("SUMMARY")
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
|
||||
result = optimizer.optimize()
|
||||
result = self.optimize(graph, initial)
|
||||
|
||||
result.print_("Optimized values:")
|
||||
result.print("Optimized values:")
|
||||
print("------------------")
|
||||
print(graph.error(initial))
|
||||
print(graph.error(result))
|
||||
print("------------------")
|
||||
|
||||
if compute_covariances:
|
||||
# Calculate and print marginal covariances
|
||||
|
@ -148,33 +173,26 @@ class ImuFactorExample(PreintegrationExample):
|
|||
print("Covariance on vel {}:\n{}\n".format(
|
||||
i, marginals.marginalCovariance(V(i))))
|
||||
|
||||
# Plot resulting poses
|
||||
i = 0
|
||||
while result.exists(X(i)):
|
||||
pose_i = result.atPose3(X(i))
|
||||
plot_pose3(POSES_FIG+1, pose_i, 1)
|
||||
i += 1
|
||||
plt.title("Estimated Trajectory")
|
||||
|
||||
gtsam.utils.plot.set_axes_equal(POSES_FIG+1)
|
||||
|
||||
print("Bias Values", result.atConstantBias(BIAS_KEY))
|
||||
|
||||
plt.ioff()
|
||||
plt.show()
|
||||
self.plot(result)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("ImuFactorExample.py")
|
||||
parser.add_argument("--twist_scenario",
|
||||
default="sick_twist",
|
||||
choices=("zero_twist", "forward_twist", "loop_twist", "sick_twist"))
|
||||
parser.add_argument("--time", "-T", default=12,
|
||||
type=int, help="Total time in seconds")
|
||||
choices=("zero_twist", "forward_twist", "loop_twist",
|
||||
"sick_twist"))
|
||||
parser.add_argument("--time",
|
||||
"-T",
|
||||
default=12,
|
||||
type=int,
|
||||
help="Total time in seconds")
|
||||
parser.add_argument("--compute_covariances",
|
||||
default=False, action='store_true')
|
||||
default=False,
|
||||
action='store_true')
|
||||
parser.add_argument("--verbose", default=False, action='store_true')
|
||||
args = parser.parse_args()
|
||||
|
||||
ImuFactorExample(args.twist_scenario).run(
|
||||
args.time, args.compute_covariances, args.verbose)
|
||||
ImuFactorExample(args.twist_scenario).run(args.time,
|
||||
args.compute_covariances,
|
||||
args.verbose)
|
||||
|
|
|
@ -23,7 +23,10 @@ def set_axes_equal(fignum: int) -> None:
|
|||
fignum: An integer representing the figure number for Matplotlib.
|
||||
"""
|
||||
fig = plt.figure(fignum)
|
||||
ax = fig.gca(projection='3d')
|
||||
if not fig.axes:
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
else:
|
||||
ax = fig.axes[0]
|
||||
|
||||
limits = np.array([
|
||||
ax.get_xlim3d(),
|
||||
|
@ -339,7 +342,11 @@ def plot_pose3(
|
|||
"""
|
||||
# get figure object
|
||||
fig = plt.figure(fignum)
|
||||
axes = fig.gca(projection='3d')
|
||||
if not fig.axes:
|
||||
axes = fig.add_subplot(projection='3d')
|
||||
else:
|
||||
axes = fig.axes[0]
|
||||
|
||||
plot_pose3_on_axes(axes, pose, P=P, axis_length=axis_length)
|
||||
|
||||
axes.set_xlabel(axis_labels[0])
|
||||
|
|
Loading…
Reference in New Issue