New comments, no normalization any more

release/4.3a0
Frank Dellaert 2010-09-11 15:24:06 +00:00
parent b913c89749
commit e5374a55e8
1 changed files with 23 additions and 42 deletions

View File

@ -193,42 +193,25 @@ namespace gtsam {
return n;
}
/* ************************************************************************* */
// Re-factor of Michael Sobers' code, in turn based on Frank Dellaert's ML code
//
// q = Pose2::transform_from(p) = t + R*p
//
// | qx | cqx + | cos -sin | | px-cpx | |cqx - cos*cpx + sin*cpy| | cos -sin | | px |
// | | = | | * | | = | | + | | * | |
// | qy | cqy + | sin cos | | py-cpy | |cqy - sin*cpx - cos*cpy| | sin cos | | py |
//
// where the cos/sin rotation matrix takes the points p-cp into the same frame as the (u,v) points
//
// This is reformulated as a linear least-squares regression problem with two parameters (cos,sin),
// using the (u,v) points as "measurements" of the angle that rotates the (x,y):
//
// | dqx | | dpx -dpy | | cos | | cos |
// | | = | | * | | = H * | |
// | dqy | | dpy dpx | | sin | | sin |
//
// The solution is: | cos | | dqx |
// | | = inv(H'H)*H'*| |
// | sin | | dqy |
//
// where the rotation angle is found by using atan2(sin,cos).
//
// As it turns out, H'H is symmetric: H'H = | sum(dpx^2 + dpy^2) 0 |
// | 0 sum(dpx^2 + dpy^2) |
//
// | dqx | | sum( dpx*dqx + dpy*dqy) |
// Also, H'*| | = | |
// | dqy | | sum(-dpy*dqx + dpx*dqy) |
//
// so that cos = sum(dpx*dqx + dpy*dqy)/D and sin = sum(-dpy*dqx + dpx*dqy)/D
// where D = sum(dpx^2 + dpy^2)
//
// We need to remove the centroids from the data sets for this to work.
//
/* *************************************************************************
* New explanation, from scan.ml
* It finds the angle using a linear method:
* q = Pose2::transform_from(p) = t + R*p
* We need to remove the centroids from the data to find the rotation
* using dp=[dpx;dpy] and q=[dqx;dqy] we have
* |dqx| |c -s| |dpx| |dpx -dpy| |c|
* | | = | | * | | = | | * | | = H_i*cs
* |dqy| |s c| |dpy| |dpy dpx| |s|
* where the Hi are the 2*2 matrices. Then we will minimize the criterion
* J = \sum_i norm(q_i - H_i * cs)
* Taking the derivative with respect to cs and setting to zero we have
* cs = (\sum_i H_i' * q_i)/(\sum H_i'*H_i)
* The hessian is diagonal and just divides by a constant, but this
* normalization constant is irrelevant, since we take atan2.
* i.e., cos ~ sum(dpx*dqx + dpy*dqy) and sin ~ sum(-dpy*dqx + dpx*dqy)
* The translation is then found from the centroids
* as they also satisfy cq = t + R*cp, hence t = cq - R*cp
*/
boost::optional<Pose2> align(const vector<Point2Pair>& pairs) {
@ -245,18 +228,16 @@ namespace gtsam {
cp *= f; cq *= f;
// calculate cos and sin
double ct=0,st=0,D=0;
double c=0,s=0;
BOOST_FOREACH(const Point2Pair& pair, pairs) {
Point2 dq = pair.first - cp;
Point2 dp = pair.second - cq;
ct += dp.x() * dq.x() + dp.y() * dq.y();
st += dp.y() * dq.x() - dp.x() * dq.y(); // this works but is negative from formula above !! :-(
D += dp.x()*dp.x() + dp.y()*dp.y();
c += dp.x() * dq.x() + dp.y() * dq.y();
s += dp.y() * dq.x() - dp.x() * dq.y(); // this works but is negative from formula above !! :-(
}
ct /= D; st /= D;
// calculate angle and translation
double theta = atan2(st,ct);
double theta = atan2(s,c);
Rot2 R = Rot2::fromAngle(theta);
Point2 t = cq - R*cp;
return Pose2(R, t);