Prediction now exact with second-order position update, except in last scenario
parent
d3d3b8399d
commit
e52cbf74a6
|
|
@ -34,8 +34,6 @@ using symbol_shorthand::P; // for position
|
|||
using symbol_shorthand::V; // for velocity
|
||||
|
||||
static const Symbol kBiasKey('B', 0);
|
||||
static const noiseModel::Constrained::shared_ptr kAllConstrained =
|
||||
noiseModel::Constrained::All(3);
|
||||
static const Matrix36 acc_H_bias = (Matrix36() << I_3x3, Z_3x3).finished();
|
||||
static const Matrix36 omega_H_bias = (Matrix36() << Z_3x3, I_3x3).finished();
|
||||
|
||||
|
|
@ -49,30 +47,92 @@ Vector9 PreintegratedMeasurements2::currentEstimate() const {
|
|||
return zeta;
|
||||
}
|
||||
|
||||
void PreintegratedMeasurements2::initPosterior(const Vector3& correctedAcc,
|
||||
const Vector3& correctedOmega,
|
||||
double dt) {
|
||||
PreintegratedMeasurements2::SharedBayesNet
|
||||
PreintegratedMeasurements2::initPosterior(const Vector3& correctedAcc,
|
||||
const Vector3& correctedOmega,
|
||||
double dt) const {
|
||||
typedef map<Key, Matrix> Terms;
|
||||
|
||||
GaussianFactorGraph graph;
|
||||
|
||||
// theta(1) = (measuredOmega - (bias + bias_delta)) * dt
|
||||
graph.add<Terms>({{T(k_ + 1), I_3x3}, {kBiasKey, omega_H_bias}},
|
||||
dt * correctedOmega, gyroscopeNoiseModel_);
|
||||
// theta(1) = (correctedOmega - bias_delta) * dt
|
||||
// => theta(1) + bias_delta * dt = correctedOmega * dt
|
||||
graph.add<Terms>({{T(k_ + 1), I_3x3}, {kBiasKey, omega_H_bias * dt}},
|
||||
correctedOmega * dt, gyroscopeNoiseModel_);
|
||||
|
||||
// pos(1) = 0
|
||||
graph.add<Terms>({{P(k_ + 1), I_3x3}}, Vector3::Zero(), kAllConstrained);
|
||||
// pose(1) = (correctedAcc - bias_delta) * dt^2/2
|
||||
// => pose(1) + bias_delta * dt^2/2 = correctedAcc * dt^2/2
|
||||
double dt22 = 0.5 * dt * dt;
|
||||
graph.add<Terms>({{P(k_ + 1), I_3x3}, {kBiasKey, acc_H_bias * dt22}},
|
||||
correctedAcc * dt22, accelerometerNoiseModel_);
|
||||
|
||||
// vel(1) = (measuredAcc - (bias + bias_delta)) * dt
|
||||
graph.add<Terms>({{V(k_ + 1), I_3x3}, {kBiasKey, acc_H_bias}},
|
||||
dt * correctedAcc, accelerometerNoiseModel_);
|
||||
// vel(1) = (correctedAcc - bias_delta) * dt
|
||||
// => vel(1) + bias_delta * dt = correctedAcc * dt
|
||||
graph.add<Terms>({{V(k_ + 1), I_3x3}, {kBiasKey, acc_H_bias * dt}},
|
||||
correctedAcc * dt, accelerometerNoiseModel_);
|
||||
|
||||
// eliminate all but biases
|
||||
// NOTE(frank): After this, posterior_k_ contains P(zeta(1)|bias)
|
||||
Ordering keys = list_of(P(k_ + 1))(V(k_ + 1))(T(k_ + 1));
|
||||
posterior_k_ = graph.eliminatePartialSequential(keys, EliminateQR).first;
|
||||
return graph.eliminatePartialSequential(keys, EliminateQR).first;
|
||||
}
|
||||
|
||||
k_ += 1;
|
||||
PreintegratedMeasurements2::SharedBayesNet
|
||||
PreintegratedMeasurements2::integrateCorrected(const Vector3& correctedAcc,
|
||||
const Vector3& correctedOmega,
|
||||
double dt) const {
|
||||
typedef map<Key, Matrix> Terms;
|
||||
|
||||
GaussianFactorGraph graph;
|
||||
|
||||
// estimate current estimate from posterior
|
||||
// TODO(frank): maybe we should store this - or only recover theta = inv(R)*d
|
||||
Vector9 zeta = currentEstimate();
|
||||
Vector3 theta_k = zeta.tail<3>();
|
||||
cout << "zeta: " << zeta.transpose() << endl;
|
||||
Rot3 Rk = Rot3::Expmap(theta_k);
|
||||
Matrix3 Rkt = Rk.transpose();
|
||||
|
||||
// add previous posterior
|
||||
for (const auto& conditional : *posterior_k_)
|
||||
graph.add(boost::static_pointer_cast<GaussianFactor>(conditional));
|
||||
|
||||
// theta(k+1) = theta(k) + inverse(H)*(correctedOmega - bias_delta) dt
|
||||
// => H*theta(k+1) - H*theta(k) + bias_delta dt = (measuredOmega - bias) dt
|
||||
Matrix3 H = Rot3::ExpmapDerivative(theta_k);
|
||||
graph.add<Terms>({{T(k_ + 1), H}, {T(k_), -H}, {kBiasKey, omega_H_bias * dt}},
|
||||
correctedOmega * dt, gyroscopeNoiseModel_);
|
||||
|
||||
// pos(k+1) = pos(k) + vel(k) dt + Rk*(correctedAcc - bias_delta) dt^2/2
|
||||
// => Rkt*pos(k+1) - Rkt*pos(k) - Rkt*vel(k) dt + bias_delta dt^2/2
|
||||
// = correctedAcc dt^2/2
|
||||
double dt22 = 0.5 * dt * dt;
|
||||
graph.add<Terms>({{P(k_ + 1), Rkt},
|
||||
{P(k_), -Rkt},
|
||||
{V(k_), -Rkt * dt},
|
||||
{kBiasKey, acc_H_bias * dt22}},
|
||||
correctedAcc * dt22, accelerometerNoiseModel_);
|
||||
|
||||
// vel(k+1) = vel(k) + Rk*(correctedAcc - bias_delta) dt
|
||||
// => Rkt*vel(k+1) - Rkt*vel(k) + bias_delta dt = correctedAcc * dt
|
||||
graph.add<Terms>(
|
||||
{{V(k_ + 1), Rkt}, {V(k_), -Rkt}, {kBiasKey, acc_H_bias * dt}},
|
||||
correctedAcc * dt, accelerometerNoiseModel_);
|
||||
|
||||
// eliminate all but biases
|
||||
Ordering keys = list_of(P(k_))(V(k_))(T(k_))(P(k_ + 1))(V(k_ + 1))(T(k_ + 1));
|
||||
SharedBayesNet bayesNet =
|
||||
graph.eliminatePartialSequential(keys, EliminateQR).first;
|
||||
|
||||
// The Bayes net now contains P(zeta(k)|zeta(k+1),bias) P(zeta(k+1)|bias)
|
||||
// We marginalize zeta(k) by removing the conditionals on zeta(k)
|
||||
SharedBayesNet marginal = boost::make_shared<GaussianBayesNet>();
|
||||
for (const auto& conditional : *bayesNet) {
|
||||
Symbol symbol(conditional->front());
|
||||
if (symbol.index() > k_) marginal->push_back(conditional);
|
||||
}
|
||||
|
||||
return marginal;
|
||||
}
|
||||
|
||||
void PreintegratedMeasurements2::integrateMeasurement(
|
||||
|
|
@ -83,59 +143,15 @@ void PreintegratedMeasurements2::integrateMeasurement(
|
|||
Vector3 correctedAcc = measuredAcc - estimatedBias_.accelerometer();
|
||||
Vector3 correctedOmega = measuredOmega - estimatedBias_.gyroscope();
|
||||
|
||||
// increment time
|
||||
deltaTij_ += dt;
|
||||
|
||||
// Handle first time differently
|
||||
if (k_ == 0) {
|
||||
initPosterior(correctedAcc, correctedOmega, dt);
|
||||
return;
|
||||
}
|
||||
|
||||
GaussianFactorGraph graph;
|
||||
|
||||
// estimate current estimate from posterior
|
||||
// TODO(frank): maybe we should store this
|
||||
Vector9 zeta = currentEstimate();
|
||||
Vector3 theta_k = zeta.tail<3>();
|
||||
|
||||
// add previous posterior
|
||||
for (const auto& conditional : *posterior_k_)
|
||||
graph.add(boost::static_pointer_cast<GaussianFactor>(conditional));
|
||||
|
||||
// theta(k+1) = theta(k) + inverse(H)*(measuredOmega - bias - bias_delta) dt
|
||||
// => H*theta(k+1) - H*theta(k) + bias_delta dt = (measuredOmega - bias) dt
|
||||
Matrix3 H = Rot3::ExpmapDerivative(theta_k);
|
||||
graph.add<Terms>({{T(k_ + 1), H}, {T(k_), -H}, {kBiasKey, omega_H_bias * dt}},
|
||||
dt * correctedOmega, gyroscopeNoiseModel_);
|
||||
|
||||
// pos(k+1) = pos(k) + vel(k) dt
|
||||
graph.add<Terms>({{P(k_ + 1), I_3x3}, {P(k_), -I_3x3}, {V(k_), -I_3x3 * dt}},
|
||||
Vector3::Zero(), kAllConstrained);
|
||||
|
||||
// vel(k+1) = vel(k) + Rk*(measuredAcc - bias - bias_delta) dt
|
||||
// => Rkt*vel(k+1) - Rkt*vel(k) + bias_delta dt = (measuredAcc - bias) dt
|
||||
Rot3 Rk = Rot3::Expmap(theta_k);
|
||||
Matrix3 Rkt = Rk.transpose();
|
||||
graph.add<Terms>(
|
||||
{{V(k_ + 1), Rkt}, {V(k_), -Rkt}, {kBiasKey, acc_H_bias * dt}},
|
||||
dt * correctedAcc, accelerometerNoiseModel_);
|
||||
|
||||
// eliminate all but biases
|
||||
Ordering keys = list_of(P(k_))(V(k_))(T(k_))(P(k_ + 1))(V(k_ + 1))(T(k_ + 1));
|
||||
boost::shared_ptr<GaussianBayesNet> bayesNet =
|
||||
graph.eliminatePartialSequential(keys, EliminateQR).first;
|
||||
|
||||
// The bayesNet now contains P(zeta(k)|zeta(k+1),bias) P(zeta(k+1)|bias)
|
||||
// We marginalize zeta(k) by only saving the conditionals of
|
||||
// P(zeta(k+1)|bias):
|
||||
posterior_k_ = boost::make_shared<GaussianBayesNet>();
|
||||
for (const auto& conditional : *bayesNet) {
|
||||
Symbol symbol(conditional->front());
|
||||
if (symbol.index() == k_ + 1) posterior_k_->push_back(conditional);
|
||||
}
|
||||
if (k_ == 0)
|
||||
posterior_k_ = initPosterior(correctedAcc, correctedOmega, dt);
|
||||
else
|
||||
posterior_k_ = integrateCorrected(correctedAcc, correctedOmega, dt);
|
||||
|
||||
// increment counter and time
|
||||
k_ += 1;
|
||||
deltaTij_ += dt;
|
||||
}
|
||||
|
||||
NavState PreintegratedMeasurements2::predict(
|
||||
|
|
@ -153,7 +169,7 @@ NavState PreintegratedMeasurements2::predict(
|
|||
cout << "zeta: " << zeta << endl;
|
||||
cout << "tij: " << deltaTij_ << endl;
|
||||
cout << "gt: " << gt.transpose() << endl;
|
||||
cout << "gt^2/2: " << 0.5 * deltaTij_ * gt.transpose() << endl;
|
||||
cout << "gt^2/2: " << 0.5 * deltaTij_* gt.transpose() << endl;
|
||||
return state_i.expmap(zeta);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -42,6 +42,7 @@ class GaussianBayesNet;
|
|||
class PreintegratedMeasurements2 {
|
||||
public:
|
||||
typedef ImuFactor::PreintegratedMeasurements::Params Params;
|
||||
typedef boost::shared_ptr<GaussianBayesNet> SharedBayesNet;
|
||||
|
||||
private:
|
||||
const boost::shared_ptr<Params> p_;
|
||||
|
|
@ -50,8 +51,9 @@ class PreintegratedMeasurements2 {
|
|||
|
||||
size_t k_; ///< index/count of measurements integrated
|
||||
double deltaTij_; ///< sum of time increments
|
||||
/// posterior on current iterate, as a conditional P(zeta|bias_delta):
|
||||
boost::shared_ptr<GaussianBayesNet> posterior_k_;
|
||||
|
||||
/// posterior on current iterate, stored as a Bayes net P(zeta|bias_delta):
|
||||
SharedBayesNet posterior_k_;
|
||||
|
||||
public:
|
||||
PreintegratedMeasurements2(
|
||||
|
|
@ -82,8 +84,13 @@ class PreintegratedMeasurements2 {
|
|||
|
||||
private:
|
||||
// initialize posterior with first (corrected) IMU measurement
|
||||
void initPosterior(const Vector3& correctedAcc, const Vector3& correctedOmega,
|
||||
double dt);
|
||||
SharedBayesNet initPosterior(const Vector3& correctedAcc,
|
||||
const Vector3& correctedOmega, double dt) const;
|
||||
|
||||
// integrate
|
||||
SharedBayesNet integrateCorrected(const Vector3& correctedAcc,
|
||||
const Vector3& correctedOmega,
|
||||
double dt) const;
|
||||
|
||||
// estimate zeta given estimated biases
|
||||
// calculates conditional mean of P(zeta|bias_delta)
|
||||
|
|
|
|||
Loading…
Reference in New Issue