Prediction now exact with second-order position update, except in last scenario

release/4.3a0
Frank Dellaert 2015-12-28 15:28:12 -08:00
parent d3d3b8399d
commit e52cbf74a6
2 changed files with 93 additions and 70 deletions

View File

@ -34,8 +34,6 @@ using symbol_shorthand::P; // for position
using symbol_shorthand::V; // for velocity using symbol_shorthand::V; // for velocity
static const Symbol kBiasKey('B', 0); static const Symbol kBiasKey('B', 0);
static const noiseModel::Constrained::shared_ptr kAllConstrained =
noiseModel::Constrained::All(3);
static const Matrix36 acc_H_bias = (Matrix36() << I_3x3, Z_3x3).finished(); static const Matrix36 acc_H_bias = (Matrix36() << I_3x3, Z_3x3).finished();
static const Matrix36 omega_H_bias = (Matrix36() << Z_3x3, I_3x3).finished(); static const Matrix36 omega_H_bias = (Matrix36() << Z_3x3, I_3x3).finished();
@ -49,30 +47,92 @@ Vector9 PreintegratedMeasurements2::currentEstimate() const {
return zeta; return zeta;
} }
void PreintegratedMeasurements2::initPosterior(const Vector3& correctedAcc, PreintegratedMeasurements2::SharedBayesNet
PreintegratedMeasurements2::initPosterior(const Vector3& correctedAcc,
const Vector3& correctedOmega, const Vector3& correctedOmega,
double dt) { double dt) const {
typedef map<Key, Matrix> Terms; typedef map<Key, Matrix> Terms;
GaussianFactorGraph graph; GaussianFactorGraph graph;
// theta(1) = (measuredOmega - (bias + bias_delta)) * dt // theta(1) = (correctedOmega - bias_delta) * dt
graph.add<Terms>({{T(k_ + 1), I_3x3}, {kBiasKey, omega_H_bias}}, // => theta(1) + bias_delta * dt = correctedOmega * dt
dt * correctedOmega, gyroscopeNoiseModel_); graph.add<Terms>({{T(k_ + 1), I_3x3}, {kBiasKey, omega_H_bias * dt}},
correctedOmega * dt, gyroscopeNoiseModel_);
// pos(1) = 0 // pose(1) = (correctedAcc - bias_delta) * dt^2/2
graph.add<Terms>({{P(k_ + 1), I_3x3}}, Vector3::Zero(), kAllConstrained); // => pose(1) + bias_delta * dt^2/2 = correctedAcc * dt^2/2
double dt22 = 0.5 * dt * dt;
graph.add<Terms>({{P(k_ + 1), I_3x3}, {kBiasKey, acc_H_bias * dt22}},
correctedAcc * dt22, accelerometerNoiseModel_);
// vel(1) = (measuredAcc - (bias + bias_delta)) * dt // vel(1) = (correctedAcc - bias_delta) * dt
graph.add<Terms>({{V(k_ + 1), I_3x3}, {kBiasKey, acc_H_bias}}, // => vel(1) + bias_delta * dt = correctedAcc * dt
dt * correctedAcc, accelerometerNoiseModel_); graph.add<Terms>({{V(k_ + 1), I_3x3}, {kBiasKey, acc_H_bias * dt}},
correctedAcc * dt, accelerometerNoiseModel_);
// eliminate all but biases // eliminate all but biases
// NOTE(frank): After this, posterior_k_ contains P(zeta(1)|bias) // NOTE(frank): After this, posterior_k_ contains P(zeta(1)|bias)
Ordering keys = list_of(P(k_ + 1))(V(k_ + 1))(T(k_ + 1)); Ordering keys = list_of(P(k_ + 1))(V(k_ + 1))(T(k_ + 1));
posterior_k_ = graph.eliminatePartialSequential(keys, EliminateQR).first; return graph.eliminatePartialSequential(keys, EliminateQR).first;
}
k_ += 1; PreintegratedMeasurements2::SharedBayesNet
PreintegratedMeasurements2::integrateCorrected(const Vector3& correctedAcc,
const Vector3& correctedOmega,
double dt) const {
typedef map<Key, Matrix> Terms;
GaussianFactorGraph graph;
// estimate current estimate from posterior
// TODO(frank): maybe we should store this - or only recover theta = inv(R)*d
Vector9 zeta = currentEstimate();
Vector3 theta_k = zeta.tail<3>();
cout << "zeta: " << zeta.transpose() << endl;
Rot3 Rk = Rot3::Expmap(theta_k);
Matrix3 Rkt = Rk.transpose();
// add previous posterior
for (const auto& conditional : *posterior_k_)
graph.add(boost::static_pointer_cast<GaussianFactor>(conditional));
// theta(k+1) = theta(k) + inverse(H)*(correctedOmega - bias_delta) dt
// => H*theta(k+1) - H*theta(k) + bias_delta dt = (measuredOmega - bias) dt
Matrix3 H = Rot3::ExpmapDerivative(theta_k);
graph.add<Terms>({{T(k_ + 1), H}, {T(k_), -H}, {kBiasKey, omega_H_bias * dt}},
correctedOmega * dt, gyroscopeNoiseModel_);
// pos(k+1) = pos(k) + vel(k) dt + Rk*(correctedAcc - bias_delta) dt^2/2
// => Rkt*pos(k+1) - Rkt*pos(k) - Rkt*vel(k) dt + bias_delta dt^2/2
// = correctedAcc dt^2/2
double dt22 = 0.5 * dt * dt;
graph.add<Terms>({{P(k_ + 1), Rkt},
{P(k_), -Rkt},
{V(k_), -Rkt * dt},
{kBiasKey, acc_H_bias * dt22}},
correctedAcc * dt22, accelerometerNoiseModel_);
// vel(k+1) = vel(k) + Rk*(correctedAcc - bias_delta) dt
// => Rkt*vel(k+1) - Rkt*vel(k) + bias_delta dt = correctedAcc * dt
graph.add<Terms>(
{{V(k_ + 1), Rkt}, {V(k_), -Rkt}, {kBiasKey, acc_H_bias * dt}},
correctedAcc * dt, accelerometerNoiseModel_);
// eliminate all but biases
Ordering keys = list_of(P(k_))(V(k_))(T(k_))(P(k_ + 1))(V(k_ + 1))(T(k_ + 1));
SharedBayesNet bayesNet =
graph.eliminatePartialSequential(keys, EliminateQR).first;
// The Bayes net now contains P(zeta(k)|zeta(k+1),bias) P(zeta(k+1)|bias)
// We marginalize zeta(k) by removing the conditionals on zeta(k)
SharedBayesNet marginal = boost::make_shared<GaussianBayesNet>();
for (const auto& conditional : *bayesNet) {
Symbol symbol(conditional->front());
if (symbol.index() > k_) marginal->push_back(conditional);
}
return marginal;
} }
void PreintegratedMeasurements2::integrateMeasurement( void PreintegratedMeasurements2::integrateMeasurement(
@ -83,59 +143,15 @@ void PreintegratedMeasurements2::integrateMeasurement(
Vector3 correctedAcc = measuredAcc - estimatedBias_.accelerometer(); Vector3 correctedAcc = measuredAcc - estimatedBias_.accelerometer();
Vector3 correctedOmega = measuredOmega - estimatedBias_.gyroscope(); Vector3 correctedOmega = measuredOmega - estimatedBias_.gyroscope();
// increment time
deltaTij_ += dt;
// Handle first time differently // Handle first time differently
if (k_ == 0) { if (k_ == 0)
initPosterior(correctedAcc, correctedOmega, dt); posterior_k_ = initPosterior(correctedAcc, correctedOmega, dt);
return; else
} posterior_k_ = integrateCorrected(correctedAcc, correctedOmega, dt);
GaussianFactorGraph graph;
// estimate current estimate from posterior
// TODO(frank): maybe we should store this
Vector9 zeta = currentEstimate();
Vector3 theta_k = zeta.tail<3>();
// add previous posterior
for (const auto& conditional : *posterior_k_)
graph.add(boost::static_pointer_cast<GaussianFactor>(conditional));
// theta(k+1) = theta(k) + inverse(H)*(measuredOmega - bias - bias_delta) dt
// => H*theta(k+1) - H*theta(k) + bias_delta dt = (measuredOmega - bias) dt
Matrix3 H = Rot3::ExpmapDerivative(theta_k);
graph.add<Terms>({{T(k_ + 1), H}, {T(k_), -H}, {kBiasKey, omega_H_bias * dt}},
dt * correctedOmega, gyroscopeNoiseModel_);
// pos(k+1) = pos(k) + vel(k) dt
graph.add<Terms>({{P(k_ + 1), I_3x3}, {P(k_), -I_3x3}, {V(k_), -I_3x3 * dt}},
Vector3::Zero(), kAllConstrained);
// vel(k+1) = vel(k) + Rk*(measuredAcc - bias - bias_delta) dt
// => Rkt*vel(k+1) - Rkt*vel(k) + bias_delta dt = (measuredAcc - bias) dt
Rot3 Rk = Rot3::Expmap(theta_k);
Matrix3 Rkt = Rk.transpose();
graph.add<Terms>(
{{V(k_ + 1), Rkt}, {V(k_), -Rkt}, {kBiasKey, acc_H_bias * dt}},
dt * correctedAcc, accelerometerNoiseModel_);
// eliminate all but biases
Ordering keys = list_of(P(k_))(V(k_))(T(k_))(P(k_ + 1))(V(k_ + 1))(T(k_ + 1));
boost::shared_ptr<GaussianBayesNet> bayesNet =
graph.eliminatePartialSequential(keys, EliminateQR).first;
// The bayesNet now contains P(zeta(k)|zeta(k+1),bias) P(zeta(k+1)|bias)
// We marginalize zeta(k) by only saving the conditionals of
// P(zeta(k+1)|bias):
posterior_k_ = boost::make_shared<GaussianBayesNet>();
for (const auto& conditional : *bayesNet) {
Symbol symbol(conditional->front());
if (symbol.index() == k_ + 1) posterior_k_->push_back(conditional);
}
// increment counter and time
k_ += 1; k_ += 1;
deltaTij_ += dt;
} }
NavState PreintegratedMeasurements2::predict( NavState PreintegratedMeasurements2::predict(

View File

@ -42,6 +42,7 @@ class GaussianBayesNet;
class PreintegratedMeasurements2 { class PreintegratedMeasurements2 {
public: public:
typedef ImuFactor::PreintegratedMeasurements::Params Params; typedef ImuFactor::PreintegratedMeasurements::Params Params;
typedef boost::shared_ptr<GaussianBayesNet> SharedBayesNet;
private: private:
const boost::shared_ptr<Params> p_; const boost::shared_ptr<Params> p_;
@ -50,8 +51,9 @@ class PreintegratedMeasurements2 {
size_t k_; ///< index/count of measurements integrated size_t k_; ///< index/count of measurements integrated
double deltaTij_; ///< sum of time increments double deltaTij_; ///< sum of time increments
/// posterior on current iterate, as a conditional P(zeta|bias_delta):
boost::shared_ptr<GaussianBayesNet> posterior_k_; /// posterior on current iterate, stored as a Bayes net P(zeta|bias_delta):
SharedBayesNet posterior_k_;
public: public:
PreintegratedMeasurements2( PreintegratedMeasurements2(
@ -82,8 +84,13 @@ class PreintegratedMeasurements2 {
private: private:
// initialize posterior with first (corrected) IMU measurement // initialize posterior with first (corrected) IMU measurement
void initPosterior(const Vector3& correctedAcc, const Vector3& correctedOmega, SharedBayesNet initPosterior(const Vector3& correctedAcc,
double dt); const Vector3& correctedOmega, double dt) const;
// integrate
SharedBayesNet integrateCorrected(const Vector3& correctedAcc,
const Vector3& correctedOmega,
double dt) const;
// estimate zeta given estimated biases // estimate zeta given estimated biases
// calculates conditional mean of P(zeta|bias_delta) // calculates conditional mean of P(zeta|bias_delta)