1. remove LieVector in IMUKittiExampleGPS.m 2. Add tests the priorFactor in matlab 3. template substition tests in testsClass.cpp

release/4.3a0
lvzhaoyang 2014-12-04 13:28:20 -05:00
parent 53a24ed93a
commit e49c9fa100
6 changed files with 98 additions and 3 deletions

View File

@ -2153,7 +2153,7 @@ class NonlinearISAM {
#include <gtsam/geometry/StereoPoint2.h>
#include <gtsam/slam/PriorFactor.h>
template<T = { gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2,gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::imuBias::ConstantBias}>
template<T = { Vector, Matrix, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2,gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::imuBias::ConstantBias}>
virtual class PriorFactor : gtsam::NoiseModelFactor {
PriorFactor(size_t key, const T& prior, const gtsam::noiseModel::Base* noiseModel);
T prior() const;

View File

@ -33,7 +33,7 @@ GPSskip = 10; % Skip this many GPS measurements each time
%% Get initial conditions for the estimated trajectory
currentPoseGlobal = Pose3(Rot3, GPS_data(firstGPSPose).Position); % initial pose is the reference frame (navigation frame)
currentVelocityGlobal = LieVector([0;0;0]); % the vehicle is stationary at the beginning
currentVelocityGlobal = [0;0;0]; % the vehicle is stationary at the beginning
currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
sigma_init_x = noiseModel.Isotropic.Precisions([ 0.0; 0.0; 0.0; 1; 1; 1 ]);
sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0);
@ -72,7 +72,7 @@ for measurementIndex = firstGPSPose:length(GPS_data)
newValues.insert(currentVelKey, currentVelocityGlobal);
newValues.insert(currentBiasKey, currentBias);
newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x));
newFactors.add(PriorFactorLieVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
newFactors.add(PriorFactorVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
newFactors.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
else
t_previous = GPS_data(measurementIndex-1, 1).Time;

View File

@ -0,0 +1,18 @@
% test wrapping of Values
import gtsam.*;
values = Values;
key = 5;
priorPose3 = Pose3;
model = noiseModel.Unit.Create(6);
factor = PriorFactorPose3(key, priorPose3, model);
values.insert(key, priorPose3);
EXPECT('error', factor.error(values) == 0);
key = 3;
priorVector = [0,0,0]';
model = noiseModel.Unit.Create(3);
factor = PriorFactorVector(key, priorVector, model);
values.insert(key, priorVector);
EXPECT('error', factor.error(values) == 0);

View File

@ -1,5 +1,8 @@
% Test runner script - runs each test
display 'Starting: testPriorFactor'
testPriorFactor
display 'Starting: testValues'
testValues

View File

@ -425,3 +425,20 @@ boost::shared_ptr<Class> unwrap_shared_ptr(const mxArray* obj, const string& pro
boost::shared_ptr<Class>* spp = *reinterpret_cast<boost::shared_ptr<Class>**> (mxGetData(mxh));
return *spp;
}
// throw an error if unwrap_shared_ptr is attempted for an Eigen Vector
template <>
Vector unwrap_shared_ptr<Vector>(const mxArray* obj, const string& propertyName) {
bool unwrap_shared_ptr_Vector_attempted = false;
BOOST_STATIC_ASSERT(unwrap_shared_ptr_Vector_attempted, "Vector cannot be unwrapped as a shared pointer");
return Vector();
}
// throw an error if unwrap_shared_ptr is attempted for an Eigen Matrix
template <>
Matrix unwrap_shared_ptr<Matrix>(const mxArray* obj, const string& propertyName) {
bool unwrap_shared_ptr_Matrix_attempted = false;
BOOST_STATIC_ASSERT(unwrap_shared_ptr_Matrix_attempted, "Matrix cannot be unwrapped as a shared pointer");
return Matrix();
}

View File

@ -160,6 +160,63 @@ TEST( Class, Grammar ) {
EXPECT_LONGS_EQUAL(ReturnType::EIGEN, rv4.type1.category);
}
//******************************************************************************
TEST( Class, TemplateSubstition ) {
using classic::space_p;
// Create type grammar that will place result in cls
Class cls;
Template t;
ClassGrammar g(cls, t);
string markup(
string("template<T = {void, double, Matrix, Point3}> class Point2 { \n")
+ string(" T myMethod(const T& t) const; \n")
+ string("};"));
EXPECT(parse(markup.c_str(), g, space_p).full);
// Method 2
Method m2 = cls.method("myMethod");
EXPECT(assert_equal("myMethod", m2.name()));
EXPECT(m2.isConst());
LONGS_EQUAL(1, m2.nrOverloads());
ReturnValue rv2 = m2.returnValue(0);
EXPECT(!rv2.isPair);
EXPECT(!rv2.type1.isPtr);
EXPECT(assert_equal("T", rv2.type1.name()));
EXPECT_LONGS_EQUAL(ReturnType::CLASS, rv2.type1.category);
EXPECT_LONGS_EQUAL(4, t.nrValues());
EXPECT(t.argName()=="T");
EXPECT(t[0]==Qualified("void",Qualified::VOID));
EXPECT(t[1]==Qualified("double",Qualified::BASIS));
EXPECT(t[2]==Qualified("Matrix",Qualified::EIGEN));
EXPECT(t[3]==Qualified("Point3",Qualified::CLASS));
vector<Class> classes = cls.expandTemplate(t.argName(),
t.argValues());
// check the number of new classes is four
EXPECT_LONGS_EQUAL(4, classes.size());
// check return types
EXPECT(classes[0].method("myMethod").returnValue(0).type1 == Qualified("void",Qualified::VOID));
EXPECT(classes[1].method("myMethod").returnValue(0).type1 == Qualified("double",Qualified::BASIS));
EXPECT(classes[2].method("myMethod").returnValue(0).type1 == Qualified("Matrix",Qualified::EIGEN));
EXPECT(classes[3].method("myMethod").returnValue(0).type1 == Qualified("Point3",Qualified::CLASS));
// check the argument types
EXPECT(classes[0].method("myMethod").argumentList(0)[0].type == Qualified("void",Qualified::VOID));
EXPECT(classes[1].method("myMethod").argumentList(0)[0].type == Qualified("double",Qualified::BASIS));
EXPECT(classes[2].method("myMethod").argumentList(0)[0].type == Qualified("Matrix",Qualified::EIGEN));
EXPECT(classes[3].method("myMethod").argumentList(0)[0].type == Qualified("Point3",Qualified::CLASS));
}
/* ************************************************************************* */
int main() {
TestResult tr;