Added an example to show how GTSAM can be used to model planar manipulator arms.

release/4.3a0
Frank Dellaert 2018-10-28 17:38:22 -04:00
parent f4564f444e
commit e493fc0718
1 changed files with 325 additions and 0 deletions

View File

@ -0,0 +1,325 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Kinematics of three-link manipulator with GTSAM poses and product of exponential maps.
Author: Frank Dellaert
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import math
import unittest
from functools import reduce
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
import gtsam
import gtsam.utils.plot as gtsam_plot
from gtsam import Pose2
def vector3(x, y, z):
"""Create 3D double numpy array."""
return np.array([x, y, z], dtype=np.float)
def compose(*poses):
"""Compose all Pose2 transforms given as arguments from left to right."""
return reduce((lambda x, y: x.compose(y)), poses)
def vee(M):
"""Pose2 vee operator."""
return vector3(M[0, 2], M[1, 2], M[1, 0])
def delta(g0, g1):
"""Difference between x,y,,theta components of SE(2) poses."""
return vector3(g1.x() - g0.x(), g1.y() - g0.y(), g1.theta() - g0.theta())
def trajectory(g0, g1, N=20):
""" Create an interpolated trajectory in SE(2), treating x,y, and theta separately.
g0 and g1 are the initial and final pose, respectively.
N is the number of *intervals*
Returns N+1 poses
"""
e = delta(g0, g1)
return [Pose2(g0.x()+e[0]*t, g0.y()+e[1]*t, g0.theta()+e[2]*t) for t in np.linspace(0, 1, N)]
class ThreeLinkArm(object):
"""Three-link arm class."""
def __init__(self):
self.L1 = 3.5
self.L2 = 3.5
self.L3 = 2.5
self.xi1 = vector3(0, 0, 1)
self.xi2 = vector3(self.L1, 0, 1)
self.xi3 = vector3(self.L1+self.L2, 0, 1)
self.sXt0 = Pose2(0, self.L1+self.L2 + self.L3, math.radians(90))
def fk(self, q):
""" Forward kinematics.
Takes numpy array of joint angles, in radians.
"""
sXl1 = Pose2(0, 0, math.radians(90))
l1Zl1 = Pose2(0, 0, q[0])
l1Xl2 = Pose2(self.L1, 0, 0)
l2Zl2 = Pose2(0, 0, q[1])
l2Xl3 = Pose2(self.L2, 0, 0)
l3Zl3 = Pose2(0, 0, q[2])
l3Xt = Pose2(self.L3, 0, 0)
return compose(sXl1, l1Zl1, l1Xl2, l2Zl2, l2Xl3, l3Zl3, l3Xt)
def jacobian(self, q):
""" Calculate manipulator Jacobian.
Takes numpy array of joint angles, in radians.
"""
a = q[0]+q[1]
b = a+q[2]
return np.array([[-self.L1*math.cos(q[0]) - self.L2*math.cos(a)-self.L3*math.cos(b),
-self.L1*math.cos(a)-self.L3*math.cos(b),
- self.L3*math.cos(b)],
[-self.L1*math.sin(q[0]) - self.L2*math.sin(a)-self.L3*math.sin(b),
-self.L1*math.sin(a)-self.L3*math.sin(b),
- self.L3*math.sin(b)],
[1, 1, 1]], np.float)
def poe(self, q):
""" Forward kinematics.
Takes numpy array of joint angles, in radians.
"""
l1Zl1 = Pose2.Expmap(self.xi1 * q[0])
l2Zl2 = Pose2.Expmap(self.xi2 * q[1])
l3Zl3 = Pose2.Expmap(self.xi3 * q[2])
return compose(l1Zl1, l2Zl2, l3Zl3, self.sXt0)
def con(self, q):
""" Forward kinematics, conjugation form.
Takes numpy array of joint angles, in radians.
"""
def expmap(x, y, theta):
"""Implement exponential map via conjugation with axis (x,y)."""
return compose(Pose2(x, y, 0), Pose2(0, 0, theta), Pose2(-x, -y, 0))
l1Zl1 = expmap(0.0, 0.0, q[0])
l2Zl2 = expmap(0.0, self.L1, q[1])
l3Zl3 = expmap(0.0, 7.0, q[2])
return compose(l1Zl1, l2Zl2, l3Zl3, self.sXt0)
def ik(self, sTt_desired, e=1e-9):
""" Inverse kinematics.
Takes desired Pose2 of tool T with respect to base S.
Optional: mu, gradient descent rate; e: error norm threshold
"""
q = np.radians(vector3(30, -30, 45)) # well within workspace
error = vector3(100, 100, 100)
while np.linalg.norm(error) > e:
error = delta(sTt_desired, self.fk(q))
J = self.jacobian(q)
q -= np.dot(np.linalg.pinv(J), error)
# return result in interval [-pi,pi)
return np.remainder(q+math.pi, 2*math.pi)-math.pi
def manipulator_jacobian(self, q):
""" Calculate manipulator Jacobian.
Takes numpy array of joint angles, in radians.
Returns the manipulator Jacobian of differential twists. When multiplied with
a vector of joint velocities, will yield a single differential twist which is
the spatial velocity d(sTt)/dt * inv(sTt) of the end-effector pose.
Just like always, differential twists can be hatted and multiplied with spatial
coordinates of a point to give the spatial velocity of the point.
"""
l1Zl1 = Pose2.Expmap(self.xi1 * q[0])
l2Zl2 = Pose2.Expmap(self.xi2 * q[1])
# l3Zl3 = Pose2.Expmap(self.xi3 * q[2])
p1 = self.xi1
# p1 = Pose2().Adjoint(self.xi1)
sTl1 = l1Zl1
p2 = sTl1.Adjoint(self.xi2)
sTl2 = compose(l1Zl1, l2Zl2)
p3 = sTl2.Adjoint(self.xi3)
differential_twists = [p1, p2, p3]
return np.stack(differential_twists, axis=1)
def plot(self, fignum, q):
""" Plot arm.
Takes figure number, and numpy array of joint angles, in radians.
"""
fig = plt.figure(fignum)
axes = fig.gca()
sXl1 = Pose2(0, 0, math.radians(90))
t = sXl1.translation()
p1 = np.array([t.x(), t.y()])
gtsam_plot.plot_pose2_on_axes(axes, sXl1)
def plot_line(p, g, color):
t = g.translation()
q = np.array([t.x(), t.y()])
line = np.append(p[np.newaxis], q[np.newaxis], axis=0)
axes.plot(line[:, 0], line[:, 1], color)
return q
l1Zl1 = Pose2(0, 0, q[0])
l1Xl2 = Pose2(self.L1, 0, 0)
sTl2 = compose(sXl1, l1Zl1, l1Xl2)
p2 = plot_line(p1, sTl2, 'r-')
gtsam_plot.plot_pose2_on_axes(axes, sTl2)
l2Zl2 = Pose2(0, 0, q[1])
l2Xl3 = Pose2(self.L2, 0, 0)
sTl3 = compose(sTl2, l2Zl2, l2Xl3)
p3 = plot_line(p2, sTl3, 'g-')
gtsam_plot.plot_pose2_on_axes(axes, sTl3)
l3Zl3 = Pose2(0, 0, q[2])
l3Xt = Pose2(self.L3, 0, 0)
sTt = compose(sTl3, l3Zl3, l3Xt)
plot_line(p3, sTt, 'b-')
gtsam_plot.plot_pose2_on_axes(axes, sTt)
# Create common example configurations.
Q0 = vector3(0, 0, 0)
Q1 = np.radians(vector3(-30, -45, -90))
Q2 = np.radians(vector3(-90, 90, 0))
class TestPose2SLAMExample(unittest.TestCase):
"""Unit tests for functions used below."""
def setUp(self):
self.arm = ThreeLinkArm()
def assertPose2Equals(self, actual, expected, tol=1e-2):
"""Helper function that prints out actual and expected if not equal."""
equal = actual.equals(expected, tol)
if not equal:
raise self.failureException(
"Poses are not equal:\n{}!={}".format(actual, expected))
def test_fk_arm(self):
"""Make sure forward kinematics is correct for some known test configurations."""
# at rest
expected = Pose2(0, 2*3.5 + 2.5, math.radians(90))
sTt = self.arm.fk(Q0)
self.assertIsInstance(sTt, Pose2)
self.assertPose2Equals(sTt, expected)
# -30, -45, -90
expected = Pose2(5.78, 1.52, math.radians(-75))
sTt = self.arm.fk(Q1)
self.assertPose2Equals(sTt, expected)
def test_jacobian(self):
"""Test Jacobian calculation."""
# at rest
expected = np.array([[-9.5, -6, -2.5], [0, 0, 0], [1, 1, 1]], np.float)
J = self.arm.jacobian(Q0)
np.testing.assert_array_almost_equal(J, expected)
# at -90, 90, 0
expected = np.array([[-6, -6, -2.5], [3.5, 0, 0], [1, 1, 1]], np.float)
J = self.arm.jacobian(Q2)
np.testing.assert_array_almost_equal(J, expected)
def test_con_arm(self):
"""Make sure POE is correct for some known test configurations."""
# at rest
expected = Pose2(0, 2*3.5 + 2.5, math.radians(90))
sTt = self.arm.con(Q0)
self.assertIsInstance(sTt, Pose2)
self.assertPose2Equals(sTt, expected)
# -30, -45, -90
expected = Pose2(5.78, 1.52, math.radians(-75))
sTt = self.arm.con(Q1)
self.assertPose2Equals(sTt, expected)
def test_poe_arm(self):
"""Make sure POE is correct for some known test configurations."""
# at rest
expected = Pose2(0, 2*3.5 + 2.5, math.radians(90))
sTt = self.arm.poe(Q0)
self.assertIsInstance(sTt, Pose2)
self.assertPose2Equals(sTt, expected)
# -30, -45, -90
expected = Pose2(5.78, 1.52, math.radians(-75))
sTt = self.arm.poe(Q1)
self.assertPose2Equals(sTt, expected)
def test_ik(self):
"""Check iterative inverse kinematics function."""
# at rest
actual = self.arm.ik(Pose2(0, 2*3.5 + 2.5, math.radians(90)))
np.testing.assert_array_almost_equal(actual, Q0, decimal=2)
# -30, -45, -90
sTt_desired = Pose2(5.78, 1.52, math.radians(-75))
actual = self.arm.ik(sTt_desired)
self.assertPose2Equals(self.arm.fk(actual), sTt_desired)
np.testing.assert_array_almost_equal(actual, Q1, decimal=2)
def test_manipulator_jacobian(self):
"""Test Jacobian calculation."""
# at rest
expected = np.array([[0, 3.5, 7], [0, 0, 0], [1, 1, 1]], np.float)
J = self.arm.manipulator_jacobian(Q0)
np.testing.assert_array_almost_equal(J, expected)
# at -90, 90, 0
expected = np.array(
[[0, 0, 3.5], [0, -3.5, -3.5], [1, 1, 1]], np.float)
J = self.arm.manipulator_jacobian(Q2)
np.testing.assert_array_almost_equal(J, expected)
def run_example():
""" Use trajectory interpolation and then trajectory tracking a la Murray
to move a 3-link arm on a straight line.
"""
arm = ThreeLinkArm()
q = np.radians(vector3(30, -30, 45))
sTt_initial = arm.fk(q)
sTt_goal = Pose2(2.4, 4.3, math.radians(0))
poses = trajectory(sTt_initial, sTt_goal, 50)
fignum = 0
fig = plt.figure(fignum)
axes = fig.gca()
axes.set_xlim(-5, 5)
axes.set_ylim(0, 10)
gtsam_plot.plot_pose2(fignum, arm.fk(q))
for pose in poses:
sTt = arm.fk(q)
error = delta(sTt, pose)
J = arm.jacobian(q)
q += np.dot(np.linalg.inv(J), error)
arm.plot(fignum, q)
plt.pause(0.01)
plt.pause(10)
if __name__ == "__main__":
run_example()
unittest.main()