commit
e439629349
|
@ -8,7 +8,6 @@
|
||||||
%% Saved with string encoding Unicode (UTF-8)
|
%% Saved with string encoding Unicode (UTF-8)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@webpage{Hauser06lecture,
|
@webpage{Hauser06lecture,
|
||||||
Author = {Raphael Hauser},
|
Author = {Raphael Hauser},
|
||||||
Date-Added = {2011-10-10 15:21:22 +0000},
|
Date-Added = {2011-10-10 15:21:22 +0000},
|
||||||
|
@ -16,11 +15,5 @@
|
||||||
Title = {Lecture Notes on Unconstrained Optimization},
|
Title = {Lecture Notes on Unconstrained Optimization},
|
||||||
Url = {http://www.numerical.rl.ac.uk/nimg/oupartc/lectures/raphael/},
|
Url = {http://www.numerical.rl.ac.uk/nimg/oupartc/lectures/raphael/},
|
||||||
Year = {2006},
|
Year = {2006},
|
||||||
Bdsk-Url-1 = {http://www.numerical.rl.ac.uk/nimg/oupartc/lectures/raphael/},
|
howpublished = {\href{http://www.numerical.rl.ac.uk/nimg/oupartc/lectures/raphael/}{link}},
|
||||||
Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUIJidUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2ZXLRBgdUcm9vdIABqAkKFRYXGyIjVSRudWxs0wsMDQ4RFFpOUy5vYmplY3RzV05TLmtleXNWJGNsYXNzog8QgASABqISE4ACgAOAB1lhbGlhc0RhdGFccmVsYXRpdmVQYXRo0hgNGRpXTlMuZGF0YU8RAYwAAAAAAYwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAMpAsaxIKwAAAD/T8xBIYXVzZXIwNmxlY3R1cmUxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQn+Sv+qSlgAAAAAAAAAAAAMAAgAACSAAAAAAAAAAAAAAAAAAAAAKTGl0ZXJhdHVyZQAQAAgAAMpA6ewAAAARAAgAAL/q2OYAAAABAAwAP9PzAAUCJwAAvuwAAgA5TWFjaW50b3NoIEhEOlVzZXJzOgByaWNoYXJkOgBMaXRlcmF0dXJlOgBIYXVzZXIwNmxlY3R1cmUxAAAOACIAEABIAGEAdQBzAGUAcgAwADYAbABlAGMAdAB1AHIAZQAxAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAKVVzZXJzL3JpY2hhcmQvTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmUxAAATAAEvAAAVAAIADv//AACABdIcHR4fWCRjbGFzc2VzWiRjbGFzc25hbWWjHyAhXU5TTXV0YWJsZURhdGFWTlNEYXRhWE5TT2JqZWN0XxAkLi4vLi4vLi4vTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmUx0hwdJCWiJSFcTlNEaWN0aW9uYXJ5EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIACAARABYAHwAoADIANQA6ADwARQBLAFIAXQBlAGwAbwBxAHMAdgB4AHoAfACGAJMAmACgAjACMgI3AkACSwJPAl0CZAJtApQCmQKcAqkCrgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAALA},
|
}
|
||||||
Bdsk-File-2 = {YnBsaXN0MDDUAQIDBAUIJidUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2ZXLRBgdUcm9vdIABqAkKFRYXGyIjVSRudWxs0wsMDQ4RFFpOUy5vYmplY3RzV05TLmtleXNWJGNsYXNzog8QgASABqISE4ACgAOAB1lhbGlhc0RhdGFccmVsYXRpdmVQYXRo0hgNGRpXTlMuZGF0YU8RAYwAAAAAAYwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAMpAsaxIKwAAAD/T8xBIYXVzZXIwNmxlY3R1cmUyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQn+Xv+qSowAAAAAAAAAAAAMAAgAACSAAAAAAAAAAAAAAAAAAAAAKTGl0ZXJhdHVyZQAQAAgAAMpA6ewAAAARAAgAAL/q2PMAAAABAAwAP9PzAAUCJwAAvuwAAgA5TWFjaW50b3NoIEhEOlVzZXJzOgByaWNoYXJkOgBMaXRlcmF0dXJlOgBIYXVzZXIwNmxlY3R1cmUyAAAOACIAEABIAGEAdQBzAGUAcgAwADYAbABlAGMAdAB1AHIAZQAyAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAKVVzZXJzL3JpY2hhcmQvTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmUyAAATAAEvAAAVAAIADv//AACABdIcHR4fWCRjbGFzc2VzWiRjbGFzc25hbWWjHyAhXU5TTXV0YWJsZURhdGFWTlNEYXRhWE5TT2JqZWN0XxAkLi4vLi4vLi4vTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmUy0hwdJCWiJSFcTlNEaWN0aW9uYXJ5EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIACAARABYAHwAoADIANQA6ADwARQBLAFIAXQBlAGwAbwBxAHMAdgB4AHoAfACGAJMAmACgAjACMgI3AkACSwJPAl0CZAJtApQCmQKcAqkCrgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAALA},
|
|
||||||
Bdsk-File-3 = {YnBsaXN0MDDUAQIDBAUIJidUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2ZXLRBgdUcm9vdIABqAkKFRYXGyIjVSRudWxs0wsMDQ4RFFpOUy5vYmplY3RzV05TLmtleXNWJGNsYXNzog8QgASABqISE4ACgAOAB1lhbGlhc0RhdGFccmVsYXRpdmVQYXRo0hgNGRpXTlMuZGF0YU8RAYwAAAAAAYwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAMpAsaxIKwAAAD/T8xBIYXVzZXIwNmxlY3R1cmUzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQn+mv+qSpQAAAAAAAAAAAAMAAgAACSAAAAAAAAAAAAAAAAAAAAAKTGl0ZXJhdHVyZQAQAAgAAMpA6ewAAAARAAgAAL/q2PUAAAABAAwAP9PzAAUCJwAAvuwAAgA5TWFjaW50b3NoIEhEOlVzZXJzOgByaWNoYXJkOgBMaXRlcmF0dXJlOgBIYXVzZXIwNmxlY3R1cmUzAAAOACIAEABIAGEAdQBzAGUAcgAwADYAbABlAGMAdAB1AHIAZQAzAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAKVVzZXJzL3JpY2hhcmQvTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmUzAAATAAEvAAAVAAIADv//AACABdIcHR4fWCRjbGFzc2VzWiRjbGFzc25hbWWjHyAhXU5TTXV0YWJsZURhdGFWTlNEYXRhWE5TT2JqZWN0XxAkLi4vLi4vLi4vTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmUz0hwdJCWiJSFcTlNEaWN0aW9uYXJ5EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIACAARABYAHwAoADIANQA6ADwARQBLAFIAXQBlAGwAbwBxAHMAdgB4AHoAfACGAJMAmACgAjACMgI3AkACSwJPAl0CZAJtApQCmQKcAqkCrgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAALA},
|
|
||||||
Bdsk-File-4 = {YnBsaXN0MDDUAQIDBAUIJidUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2ZXLRBgdUcm9vdIABqAkKFRYXGyIjVSRudWxs0wsMDQ4RFFpOUy5vYmplY3RzV05TLmtleXNWJGNsYXNzog8QgASABqISE4ACgAOAB1lhbGlhc0RhdGFccmVsYXRpdmVQYXRo0hgNGRpXTlMuZGF0YU8RAYwAAAAAAYwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAMpAsaxIKwAAAD/T8xBIYXVzZXIwNmxlY3R1cmU0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQn+vv+qSpwAAAAAAAAAAAAMAAgAACSAAAAAAAAAAAAAAAAAAAAAKTGl0ZXJhdHVyZQAQAAgAAMpA6ewAAAARAAgAAL/q2PcAAAABAAwAP9PzAAUCJwAAvuwAAgA5TWFjaW50b3NoIEhEOlVzZXJzOgByaWNoYXJkOgBMaXRlcmF0dXJlOgBIYXVzZXIwNmxlY3R1cmU0AAAOACIAEABIAGEAdQBzAGUAcgAwADYAbABlAGMAdAB1AHIAZQA0AA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAKVVzZXJzL3JpY2hhcmQvTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmU0AAATAAEvAAAVAAIADv//AACABdIcHR4fWCRjbGFzc2VzWiRjbGFzc25hbWWjHyAhXU5TTXV0YWJsZURhdGFWTlNEYXRhWE5TT2JqZWN0XxAkLi4vLi4vLi4vTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmU00hwdJCWiJSFcTlNEaWN0aW9uYXJ5EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIACAARABYAHwAoADIANQA6ADwARQBLAFIAXQBlAGwAbwBxAHMAdgB4AHoAfACGAJMAmACgAjACMgI3AkACSwJPAl0CZAJtApQCmQKcAqkCrgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAALA},
|
|
||||||
Bdsk-File-5 = {YnBsaXN0MDDUAQIDBAUIJidUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2ZXLRBgdUcm9vdIABqAkKFRYXGyIjVSRudWxs0wsMDQ4RFFpOUy5vYmplY3RzV05TLmtleXNWJGNsYXNzog8QgASABqISE4ACgAOAB1lhbGlhc0RhdGFccmVsYXRpdmVQYXRo0hgNGRpXTlMuZGF0YU8RAYwAAAAAAYwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAMpAsaxIKwAAAD/T8xBIYXVzZXIwNmxlY3R1cmU1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQn+5v+qSqAAAAAAAAAAAAAMAAgAACSAAAAAAAAAAAAAAAAAAAAAKTGl0ZXJhdHVyZQAQAAgAAMpA6ewAAAARAAgAAL/q2PgAAAABAAwAP9PzAAUCJwAAvuwAAgA5TWFjaW50b3NoIEhEOlVzZXJzOgByaWNoYXJkOgBMaXRlcmF0dXJlOgBIYXVzZXIwNmxlY3R1cmU1AAAOACIAEABIAGEAdQBzAGUAcgAwADYAbABlAGMAdAB1AHIAZQA1AA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAKVVzZXJzL3JpY2hhcmQvTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmU1AAATAAEvAAAVAAIADv//AACABdIcHR4fWCRjbGFzc2VzWiRjbGFzc25hbWWjHyAhXU5TTXV0YWJsZURhdGFWTlNEYXRhWE5TT2JqZWN0XxAkLi4vLi4vLi4vTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmU10hwdJCWiJSFcTlNEaWN0aW9uYXJ5EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIACAARABYAHwAoADIANQA6ADwARQBLAFIAXQBlAGwAbwBxAHMAdgB4AHoAfACGAJMAmACgAjACMgI3AkACSwJPAl0CZAJtApQCmQKcAqkCrgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAALA},
|
|
||||||
Bdsk-File-6 = {YnBsaXN0MDDUAQIDBAUIJidUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2ZXLRBgdUcm9vdIABqAkKFRYXGyIjVSRudWxs0wsMDQ4RFFpOUy5vYmplY3RzV05TLmtleXNWJGNsYXNzog8QgASABqISE4ACgAOAB1lhbGlhc0RhdGFccmVsYXRpdmVQYXRo0hgNGRpXTlMuZGF0YU8RAYwAAAAAAYwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAMpAsaxIKwAAAD/T8xBIYXVzZXIwNmxlY3R1cmU2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQn/Fv+qSqgAAAAAAAAAAAAMAAgAACSAAAAAAAAAAAAAAAAAAAAAKTGl0ZXJhdHVyZQAQAAgAAMpA6ewAAAARAAgAAL/q2PoAAAABAAwAP9PzAAUCJwAAvuwAAgA5TWFjaW50b3NoIEhEOlVzZXJzOgByaWNoYXJkOgBMaXRlcmF0dXJlOgBIYXVzZXIwNmxlY3R1cmU2AAAOACIAEABIAGEAdQBzAGUAcgAwADYAbABlAGMAdAB1AHIAZQA2AA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAKVVzZXJzL3JpY2hhcmQvTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmU2AAATAAEvAAAVAAIADv//AACABdIcHR4fWCRjbGFzc2VzWiRjbGFzc25hbWWjHyAhXU5TTXV0YWJsZURhdGFWTlNEYXRhWE5TT2JqZWN0XxAkLi4vLi4vLi4vTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmU20hwdJCWiJSFcTlNEaWN0aW9uYXJ5EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIACAARABYAHwAoADIANQA6ADwARQBLAFIAXQBlAGwAbwBxAHMAdgB4AHoAfACGAJMAmACgAjACMgI3AkACSwJPAl0CZAJtApQCmQKcAqkCrgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAALA},
|
|
||||||
Bdsk-File-7 = {YnBsaXN0MDDUAQIDBAUIJidUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2ZXLRBgdUcm9vdIABqAkKFRYXGyIjVSRudWxs0wsMDQ4RFFpOUy5vYmplY3RzV05TLmtleXNWJGNsYXNzog8QgASABqISE4ACgAOAB1lhbGlhc0RhdGFccmVsYXRpdmVQYXRo0hgNGRpXTlMuZGF0YU8RAYwAAAAAAYwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAMpAsaxIKwAAAD/T8xBIYXVzZXIwNmxlY3R1cmU3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQn/Pv+qSrAAAAAAAAAAAAAMAAgAACSAAAAAAAAAAAAAAAAAAAAAKTGl0ZXJhdHVyZQAQAAgAAMpA6ewAAAARAAgAAL/q2PwAAAABAAwAP9PzAAUCJwAAvuwAAgA5TWFjaW50b3NoIEhEOlVzZXJzOgByaWNoYXJkOgBMaXRlcmF0dXJlOgBIYXVzZXIwNmxlY3R1cmU3AAAOACIAEABIAGEAdQBzAGUAcgAwADYAbABlAGMAdAB1AHIAZQA3AA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAKVVzZXJzL3JpY2hhcmQvTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmU3AAATAAEvAAAVAAIADv//AACABdIcHR4fWCRjbGFzc2VzWiRjbGFzc25hbWWjHyAhXU5TTXV0YWJsZURhdGFWTlNEYXRhWE5TT2JqZWN0XxAkLi4vLi4vLi4vTGl0ZXJhdHVyZS9IYXVzZXIwNmxlY3R1cmU30hwdJCWiJSFcTlNEaWN0aW9uYXJ5EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIACAARABYAHwAoADIANQA6ADwARQBLAFIAXQBlAGwAbwBxAHMAdgB4AHoAfACGAJMAmACgAjACMgI3AkACSwJPAl0CZAJtApQCmQKcAqkCrgAAAAAAAAIBAAAAAAAAACgAAAAAAAAAAAAAAAAAAALA}}
|
|
||||||
|
|
|
@ -1,10 +1,11 @@
|
||||||
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||||
\lyxformat 413
|
\lyxformat 474
|
||||||
\begin_document
|
\begin_document
|
||||||
\begin_header
|
\begin_header
|
||||||
\textclass article
|
\textclass article
|
||||||
\begin_preamble
|
\begin_preamble
|
||||||
\usepackage{amssymb}
|
\usepackage{url}
|
||||||
|
\usepackage{hyperref}
|
||||||
\end_preamble
|
\end_preamble
|
||||||
\use_default_options true
|
\use_default_options true
|
||||||
\maintain_unincluded_children false
|
\maintain_unincluded_children false
|
||||||
|
@ -15,13 +16,13 @@
|
||||||
\font_roman default
|
\font_roman default
|
||||||
\font_sans default
|
\font_sans default
|
||||||
\font_typewriter default
|
\font_typewriter default
|
||||||
|
\font_math auto
|
||||||
\font_default_family default
|
\font_default_family default
|
||||||
\use_non_tex_fonts false
|
\use_non_tex_fonts false
|
||||||
\font_sc false
|
\font_sc false
|
||||||
\font_osf false
|
\font_osf false
|
||||||
\font_sf_scale 100
|
\font_sf_scale 100
|
||||||
\font_tt_scale 100
|
\font_tt_scale 100
|
||||||
|
|
||||||
\graphics default
|
\graphics default
|
||||||
\default_output_format default
|
\default_output_format default
|
||||||
\output_sync 0
|
\output_sync 0
|
||||||
|
@ -32,15 +33,24 @@
|
||||||
\use_hyperref false
|
\use_hyperref false
|
||||||
\papersize default
|
\papersize default
|
||||||
\use_geometry false
|
\use_geometry false
|
||||||
\use_amsmath 1
|
\use_package amsmath 1
|
||||||
\use_esint 1
|
\use_package amssymb 2
|
||||||
\use_mhchem 1
|
\use_package cancel 1
|
||||||
\use_mathdots 1
|
\use_package esint 1
|
||||||
|
\use_package mathdots 1
|
||||||
|
\use_package mathtools 1
|
||||||
|
\use_package mhchem 1
|
||||||
|
\use_package stackrel 0
|
||||||
|
\use_package stmaryrd 1
|
||||||
|
\use_package undertilde 1
|
||||||
\cite_engine basic
|
\cite_engine basic
|
||||||
|
\cite_engine_type default
|
||||||
|
\biblio_style plain
|
||||||
\use_bibtopic false
|
\use_bibtopic false
|
||||||
\use_indices false
|
\use_indices false
|
||||||
\paperorientation portrait
|
\paperorientation portrait
|
||||||
\suppress_date false
|
\suppress_date false
|
||||||
|
\justification true
|
||||||
\use_refstyle 1
|
\use_refstyle 1
|
||||||
\index Index
|
\index Index
|
||||||
\shortcut idx
|
\shortcut idx
|
||||||
|
@ -231,7 +241,7 @@ key "Hauser06lecture"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
(in our /net/hp223/borg/Literature folder).
|
.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
@ -465,22 +475,39 @@ where
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
A typical update rule [
|
A typical update rule, as per Lec.
|
||||||
\color blue
|
7-1.2 of
|
||||||
see where this came from in paper
|
\begin_inset CommandInset citation
|
||||||
\color inherit
|
LatexCommand cite
|
||||||
] is
|
key "Hauser06lecture"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\Delta\leftarrow\begin{cases}
|
\Delta_{k+1}\leftarrow\begin{cases}
|
||||||
\max\left(\Delta,3\norm{\delta x_{d}}\right)\text{,} & \rho>0.75\\
|
\Delta_{k}/4 & \rho<0.25\\
|
||||||
\Delta & 0.75>\rho>0.25\\
|
\min\left(2\Delta_{k},\Delta_{max}\right)\text{,} & \rho>0.75\\
|
||||||
\Delta/2 & 0.25>\rho
|
\Delta_{k} & 0.75>\rho>0.25
|
||||||
\end{cases}
|
\end{cases}
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $\Delta_{k}\triangleq\norm{\delta x_{d}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Note that the rule is designed to ensure that
|
||||||
|
\begin_inset Formula $\Delta_{k}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
never exceeds the maximum trust region size
|
||||||
|
\begin_inset Formula $\Delta_{max}.$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
@ -593,9 +620,9 @@ To find the intersection of the line between
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\Delta & =\norm{\left(1-\tau\right)\delta x_{u}+\tau\delta x_{n}}\\
|
\Delta & =\norm{\left(1-\tau\right)\delta x_{u}+\tau\delta x_{n}}\\
|
||||||
\Delta^{2} & =\left(1-\tau\right)^{2}\delta x_{u}^{\t}\delta x_{u}+2\tau\left(1-\tau\right)\delta x_{u}^{\t}\delta x_{n}+\tau^{2}\delta x_{n}^{\t}\delta x_{n}\\
|
\Delta^{2} & =\left(1-\tau\right)^{2}\delta x_{u}^{\t}\delta x_{u}+2\tau\left(1-\tau\right)\delta x_{u}^{\t}\delta x_{n}+\tau^{2}\delta x_{n}^{\t}\delta x_{n}\\
|
||||||
0 & =uu-2\tau uu+\tau^{2}uu+2\tau un-2\tau^{2}un+\tau^{2}nn-\Delta^{2}\\
|
0 & =\delta x_{u}^{\t}\delta x_{u}-2\tau\delta x_{u}^{\t}\delta x_{u}+\tau^{2}\delta x_{u}^{\t}\delta x_{u}+2\tau\delta x_{u}^{\t}\delta x_{n}-2\tau^{2}\delta x_{u}^{\t}\delta x_{n}+\tau^{2}\delta x_{n}^{\t}\delta x_{n}-\Delta^{2}\\
|
||||||
0 & =\left(uu-2un+nn\right)\tau^{2}+\left(2un-2uu\right)\tau-\Delta^{2}+uu\\
|
0 & =\left(\delta x_{u}^{\t}\delta x_{u}-2\delta x_{u}^{\t}\delta x_{n}+\delta x_{n}^{\t}\delta x_{n}\right)\tau^{2}+\left(2\delta x_{u}^{\t}\delta x_{n}-2\delta x_{u}^{\t}\delta x_{u}\right)\tau-\Delta^{2}+\delta x_{u}^{\t}\delta x_{u}\\
|
||||||
\tau & =\frac{-\left(2un-2uu\right)\pm\sqrt{\left(2un-2uu\right)^{2}-4\left(uu-2un+nn\right)\left(uu-\Delta^{2}\right)}}{2\left(uu-un+nn\right)}
|
\tau & =\frac{-\left(2\delta x_{u}^{\t}\delta x_{n}-2\delta x_{u}^{\t}\delta x_{u}\right)\pm\sqrt{\left(2\delta x_{u}^{\t}\delta x_{n}-2\delta x_{u}^{\t}\delta x_{u}\right)^{2}-4\left(\delta x_{u}^{\t}\delta x_{u}-2\delta x_{u}^{\t}\delta x_{n}+\delta x_{n}^{\t}\delta x_{n}\right)\left(\delta x_{u}^{\t}\delta x_{u}-\Delta^{2}\right)}}{2\left(\delta x_{u}^{\t}\delta x_{u}-\delta x_{u}^{\t}\delta x_{n}+\delta x_{n}^{\t}\delta x_{n}\right)}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -641,7 +668,7 @@ Thus, mathematically, we can write the dogleg update
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\delta x_{d}^{\left(k\right)}=\begin{cases}
|
\delta x_{d}^{\left(k\right)}=\begin{cases}
|
||||||
-\frac{\Delta}{\norm{g^{\left(k\right)}}}g^{\left(k\right)}\text{,} & \Delta<\norm{\delta x_{u}^{\left(k\right)}}\\
|
-\frac{\Delta}{\norm{\delta x_{u}^{\left(k\right)}}}\delta x_{u}^{\left(k\right)}\text{,} & \Delta<\norm{\delta x_{u}^{\left(k\right)}}\\
|
||||||
\left(1-\tau^{\left(k\right)}\right)\delta x_{u}^{\left(k\right)}+\tau^{\left(k\right)}\delta x_{n}^{\left(k\right)}\text{,} & \norm{\delta x_{u}^{\left(k\right)}}<\Delta<\norm{\delta x_{n}^{\left(k\right)}}\\
|
\left(1-\tau^{\left(k\right)}\right)\delta x_{u}^{\left(k\right)}+\tau^{\left(k\right)}\delta x_{n}^{\left(k\right)}\text{,} & \norm{\delta x_{u}^{\left(k\right)}}<\Delta<\norm{\delta x_{n}^{\left(k\right)}}\\
|
||||||
\delta x_{n}^{\left(k\right)}\text{,} & \norm{\delta x_{n}^{\left(k\right)}}<\Delta
|
\delta x_{n}^{\left(k\right)}\text{,} & \norm{\delta x_{n}^{\left(k\right)}}<\Delta
|
||||||
\end{cases}
|
\end{cases}
|
||||||
|
|
Binary file not shown.
Loading…
Reference in New Issue