Merge branch 'develop' into feature/cython_wrapper
# Conflicts: # wrap/Module.cpprelease/4.3a0
commit
e407a42160
|
@ -117,11 +117,11 @@ if(MSVC)
|
|||
endif()
|
||||
endif()
|
||||
|
||||
find_package(Boost 1.43 COMPONENTS serialization system filesystem thread program_options date_time regex timer chrono)
|
||||
find_package(Boost 1.43 COMPONENTS serialization system filesystem thread program_options date_time timer chrono)
|
||||
|
||||
# Required components
|
||||
if(NOT Boost_SERIALIZATION_LIBRARY OR NOT Boost_SYSTEM_LIBRARY OR NOT Boost_FILESYSTEM_LIBRARY OR
|
||||
NOT Boost_THREAD_LIBRARY OR NOT Boost_DATE_TIME_LIBRARY OR NOT Boost_REGEX_LIBRARY)
|
||||
NOT Boost_THREAD_LIBRARY OR NOT Boost_DATE_TIME_LIBRARY)
|
||||
message(FATAL_ERROR "Missing required Boost components >= v1.43, please install/upgrade Boost or configure your search paths.")
|
||||
endif()
|
||||
|
||||
|
@ -129,7 +129,7 @@ option(GTSAM_DISABLE_NEW_TIMERS "Disables using Boost.chrono for timing" OFF)
|
|||
# Allow for not using the timer libraries on boost < 1.48 (GTSAM timing code falls back to old timer library)
|
||||
set(GTSAM_BOOST_LIBRARIES
|
||||
${Boost_SERIALIZATION_LIBRARY} ${Boost_SYSTEM_LIBRARY} ${Boost_FILESYSTEM_LIBRARY}
|
||||
${Boost_THREAD_LIBRARY} ${Boost_DATE_TIME_LIBRARY} ${Boost_REGEX_LIBRARY})
|
||||
${Boost_THREAD_LIBRARY} ${Boost_DATE_TIME_LIBRARY})
|
||||
if (GTSAM_DISABLE_NEW_TIMERS)
|
||||
message("WARNING: GTSAM timing instrumentation manually disabled")
|
||||
add_definitions(-DGTSAM_DISABLE_NEW_TIMERS)
|
||||
|
|
|
@ -128,8 +128,7 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
|
|||
## This needs to be fixed!!
|
||||
if(UNIX AND NOT APPLE)
|
||||
list(APPEND automaticDependencies ${Boost_SERIALIZATION_LIBRARY_RELEASE} ${Boost_FILESYSTEM_LIBRARY_RELEASE}
|
||||
${Boost_SYSTEM_LIBRARY_RELEASE} ${Boost_THREAD_LIBRARY_RELEASE} ${Boost_DATE_TIME_LIBRARY_RELEASE}
|
||||
${Boost_REGEX_LIBRARY_RELEASE})
|
||||
${Boost_SYSTEM_LIBRARY_RELEASE} ${Boost_THREAD_LIBRARY_RELEASE} ${Boost_DATE_TIME_LIBRARY_RELEASE})
|
||||
if(Boost_TIMER_LIBRARY_RELEASE AND NOT GTSAM_DISABLE_NEW_TIMERS) # Only present in Boost >= 1.48.0
|
||||
list(APPEND automaticDependencies ${Boost_TIMER_LIBRARY_RELEASE} ${Boost_CHRONO_LIBRARY_RELEASE})
|
||||
if(GTSAM_MEX_BUILD_STATIC_MODULE)
|
||||
|
|
|
@ -101,6 +101,9 @@ mark_as_advanced(GTSAM_SINGLE_TEST_EXE)
|
|||
# Enable make check (http://www.cmake.org/Wiki/CMakeEmulateMakeCheck)
|
||||
if(GTSAM_BUILD_TESTS)
|
||||
add_custom_target(check COMMAND ${CMAKE_CTEST_COMMAND} -C $<CONFIGURATION> --output-on-failure)
|
||||
|
||||
# Add target to build tests without running
|
||||
add_custom_target(all.tests)
|
||||
endif()
|
||||
|
||||
# Add examples target
|
||||
|
@ -109,8 +112,6 @@ add_custom_target(examples)
|
|||
# Add timing target
|
||||
add_custom_target(timing)
|
||||
|
||||
# Add target to build tests without running
|
||||
add_custom_target(all.tests)
|
||||
|
||||
# Implementations of this file's macros:
|
||||
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
repo: 8a21fd850624c931e448cbcfb38168cb2717c790
|
||||
node: 07105f7124f9aef00a68c85e0fc606e65d3d6c15
|
||||
node: b9cd8366d4e8f49471c7afafc4c2a1b00e54a54d
|
||||
branch: 3.2
|
||||
tag: 3.2.8
|
||||
tag: 3.2.10
|
||||
|
|
|
@ -31,3 +31,5 @@ ffa86ffb557094721ca71dcea6aed2651b9fd610 3.2.0
|
|||
bdd17ee3b1b3a166cd5ec36dcad4fc1f3faf774a 3.2.5
|
||||
c58038c56923e0fd86de3ded18e03df442e66dfb 3.2.6
|
||||
b30b87236a1b1552af32ac34075ee5696a9b5a33 3.2.7
|
||||
07105f7124f9aef00a68c85e0fc606e65d3d6c15 3.2.8
|
||||
dc6cfdf9bcec5efc7b6593bddbbb3d675de53524 3.2.9
|
||||
|
|
|
@ -66,9 +66,8 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
|
|||
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
|
||||
: int(traits<XprType>::MaxColsAtCompileTime),
|
||||
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
|
||||
IsDense = is_same<StorageKind,Dense>::value,
|
||||
IsRowMajor = (IsDense&&MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
|
||||
: (IsDense&&MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
|
||||
IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
|
||||
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
|
||||
: XprTypeIsRowMajor,
|
||||
HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor),
|
||||
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
|
||||
|
|
|
@ -76,9 +76,7 @@ struct CommaInitializer
|
|||
template<typename OtherDerived>
|
||||
CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
if(other.cols()==0 || other.rows()==0)
|
||||
return *this;
|
||||
if (m_col==m_xpr.cols())
|
||||
if (m_col==m_xpr.cols() && (other.cols()!=0 || other.rows()!=m_currentBlockRows))
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
|
@ -86,24 +84,18 @@ struct CommaInitializer
|
|||
eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
eigen_assert(m_col<m_xpr.cols()
|
||||
eigen_assert((m_col + other.cols() <= m_xpr.cols())
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
eigen_assert(m_currentBlockRows==other.rows());
|
||||
if (OtherDerived::SizeAtCompileTime != Dynamic)
|
||||
m_xpr.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
|
||||
OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
|
||||
(m_row, m_col) = other;
|
||||
else
|
||||
m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other;
|
||||
m_xpr.template block<OtherDerived::RowsAtCompileTime, OtherDerived::ColsAtCompileTime>
|
||||
(m_row, m_col, other.rows(), other.cols()) = other;
|
||||
m_col += other.cols();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline ~CommaInitializer()
|
||||
{
|
||||
eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows()
|
||||
&& m_col == m_xpr.cols()
|
||||
&& "Too few coefficients passed to comma initializer (operator<<)");
|
||||
finished();
|
||||
}
|
||||
|
||||
/** \returns the built matrix once all its coefficients have been set.
|
||||
|
@ -113,7 +105,12 @@ struct CommaInitializer
|
|||
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
|
||||
* \endcode
|
||||
*/
|
||||
inline XprType& finished() { return m_xpr; }
|
||||
inline XprType& finished() {
|
||||
eigen_assert(((m_row+m_currentBlockRows) == m_xpr.rows() || m_xpr.cols() == 0)
|
||||
&& m_col == m_xpr.cols()
|
||||
&& "Too few coefficients passed to comma initializer (operator<<)");
|
||||
return m_xpr;
|
||||
}
|
||||
|
||||
XprType& m_xpr; // target expression
|
||||
Index m_row; // current row id
|
||||
|
|
|
@ -44,10 +44,10 @@ class DiagonalBase : public EigenBase<Derived>
|
|||
template<typename DenseDerived>
|
||||
void evalTo(MatrixBase<DenseDerived> &other) const;
|
||||
template<typename DenseDerived>
|
||||
void addTo(MatrixBase<DenseDerived> &other) const
|
||||
inline void addTo(MatrixBase<DenseDerived> &other) const
|
||||
{ other.diagonal() += diagonal(); }
|
||||
template<typename DenseDerived>
|
||||
void subTo(MatrixBase<DenseDerived> &other) const
|
||||
inline void subTo(MatrixBase<DenseDerived> &other) const
|
||||
{ other.diagonal() -= diagonal(); }
|
||||
|
||||
inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
|
||||
|
@ -98,7 +98,7 @@ class DiagonalBase : public EigenBase<Derived>
|
|||
|
||||
template<typename Derived>
|
||||
template<typename DenseDerived>
|
||||
void DiagonalBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
|
||||
inline void DiagonalBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
|
||||
{
|
||||
other.setZero();
|
||||
other.diagonal() = diagonal();
|
||||
|
|
|
@ -59,7 +59,7 @@ struct dot_nocheck<T, U, true>
|
|||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
|
||||
inline typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
|
||||
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
|
|
|
@ -969,6 +969,8 @@ template<typename T>
|
|||
struct functor_traits<std::not_equal_to<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
#if(__cplusplus < 201103L)
|
||||
// std::binder* are deprecated since c++11 and will be removed in c++17
|
||||
template<typename T>
|
||||
struct functor_traits<std::binder2nd<T> >
|
||||
{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
|
@ -976,6 +978,7 @@ struct functor_traits<std::binder2nd<T> >
|
|||
template<typename T>
|
||||
struct functor_traits<std::binder1st<T> >
|
||||
{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
#endif
|
||||
|
||||
template<typename T>
|
||||
struct functor_traits<std::unary_negate<T> >
|
||||
|
|
|
@ -205,9 +205,6 @@ class GeneralProduct<Lhs, Rhs, InnerProduct>
|
|||
public:
|
||||
GeneralProduct(const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
|
||||
}
|
||||
|
||||
|
@ -264,8 +261,6 @@ class GeneralProduct<Lhs, Rhs, OuterProduct>
|
|||
|
||||
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
}
|
||||
|
||||
struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
|
||||
|
|
|
@ -183,8 +183,8 @@ template<typename Scalar, typename Packet> inline void pstoreu(Scalar* to, const
|
|||
/** \internal tries to do cache prefetching of \a addr */
|
||||
template<typename Scalar> inline void prefetch(const Scalar* addr)
|
||||
{
|
||||
#if !defined(_MSC_VER)
|
||||
__builtin_prefetch(addr);
|
||||
#if (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC)
|
||||
__builtin_prefetch(addr);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
|
@ -218,8 +218,8 @@ struct conj_retval
|
|||
* Implementation of abs2 *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar>
|
||||
struct abs2_impl
|
||||
template<typename Scalar,bool IsComplex>
|
||||
struct abs2_impl_default
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const Scalar& x)
|
||||
|
@ -228,15 +228,26 @@ struct abs2_impl
|
|||
}
|
||||
};
|
||||
|
||||
template<typename RealScalar>
|
||||
struct abs2_impl<std::complex<RealScalar> >
|
||||
template<typename Scalar>
|
||||
struct abs2_impl_default<Scalar, true> // IsComplex
|
||||
{
|
||||
static inline RealScalar run(const std::complex<RealScalar>& x)
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const Scalar& x)
|
||||
{
|
||||
return real(x)*real(x) + imag(x)*imag(x);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct abs2_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const Scalar& x)
|
||||
{
|
||||
return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct abs2_retval
|
||||
{
|
||||
|
@ -496,11 +507,24 @@ struct floor_log2<n, lower, upper, floor_log2_bogus>
|
|||
template<typename Scalar>
|
||||
struct random_default_impl<Scalar, false, true>
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
|
||||
|
||||
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1)));
|
||||
typedef typename conditional<NumTraits<Scalar>::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX;
|
||||
if(y<x)
|
||||
return x;
|
||||
// the following difference might overflow on a 32 bits system,
|
||||
// but since y>=x the result converted to an unsigned long is still correct.
|
||||
std::size_t range = ScalarX(y)-ScalarX(x);
|
||||
std::size_t offset = 0;
|
||||
// rejection sampling
|
||||
std::size_t divisor = 1;
|
||||
std::size_t multiplier = 1;
|
||||
if(range<RAND_MAX) divisor = (std::size_t(RAND_MAX)+1)/(range+1);
|
||||
else multiplier = 1 + range/(std::size_t(RAND_MAX)+1);
|
||||
do {
|
||||
offset = (std::size_t(std::rand()) * multiplier) / divisor;
|
||||
} while (offset > range);
|
||||
return Scalar(ScalarX(x) + offset);
|
||||
}
|
||||
|
||||
static inline Scalar run()
|
||||
|
|
|
@ -584,10 +584,11 @@ struct permut_matrix_product_retval
|
|||
const Index n = Side==OnTheLeft ? rows() : cols();
|
||||
// FIXME we need an is_same for expression that is not sensitive to constness. For instance
|
||||
// is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
|
||||
const typename Dest::Scalar *dst_data = internal::extract_data(dst);
|
||||
if( is_same<MatrixTypeNestedCleaned,Dest>::value
|
||||
&& blas_traits<MatrixTypeNestedCleaned>::HasUsableDirectAccess
|
||||
&& blas_traits<Dest>::HasUsableDirectAccess
|
||||
&& extract_data(dst) == extract_data(m_matrix))
|
||||
&& dst_data!=0 && dst_data == extract_data(m_matrix))
|
||||
{
|
||||
// apply the permutation inplace
|
||||
Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size());
|
||||
|
|
|
@ -315,8 +315,8 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
|||
EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other)
|
||||
{
|
||||
const OtherDerived& other = _other.derived();
|
||||
internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.rows(), other.cols());
|
||||
const Index othersize = other.rows()*other.cols();
|
||||
internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(Index(other.rows()), Index(other.cols()));
|
||||
const Index othersize = Index(other.rows())*Index(other.cols());
|
||||
if(RowsAtCompileTime == 1)
|
||||
{
|
||||
eigen_assert(other.rows() == 1 || other.cols() == 1);
|
||||
|
@ -487,7 +487,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
|||
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other)
|
||||
: m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
|
||||
: m_storage(Index(other.derived().rows()) * Index(other.derived().cols()), other.derived().rows(), other.derived().cols())
|
||||
{
|
||||
_check_template_params();
|
||||
internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.derived().rows(), other.derived().cols());
|
||||
|
|
|
@ -76,9 +76,23 @@ template<typename MatrixType, int Direction> class Reverse
|
|||
EIGEN_DENSE_PUBLIC_INTERFACE(Reverse)
|
||||
using Base::IsRowMajor;
|
||||
|
||||
// next line is necessary because otherwise const version of operator()
|
||||
// is hidden by non-const version defined in this file
|
||||
using Base::operator();
|
||||
// The following two operators are provided to worarkound
|
||||
// a MSVC 2013 issue. In theory, we could simply do:
|
||||
// using Base::operator();
|
||||
// to make const version of operator() visible.
|
||||
// Otheriwse, they would be hidden by the non-const versions defined in this file
|
||||
|
||||
inline CoeffReturnType operator()(Index row, Index col) const
|
||||
{
|
||||
eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
|
||||
return coeff(row, col);
|
||||
}
|
||||
|
||||
inline CoeffReturnType operator()(Index index) const
|
||||
{
|
||||
eigen_assert(index >= 0 && index < m_matrix.size());
|
||||
return coeff(index);
|
||||
}
|
||||
|
||||
protected:
|
||||
enum {
|
||||
|
|
|
@ -243,7 +243,8 @@ template<int Side, typename TriangularType, typename Rhs> struct triangular_solv
|
|||
|
||||
template<typename Dest> inline void evalTo(Dest& dst) const
|
||||
{
|
||||
if(!(is_same<RhsNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_rhs)))
|
||||
const typename Dest::Scalar *dst_data = internal::extract_data(dst);
|
||||
if(!(is_same<RhsNestedCleaned,Dest>::value && dst_data!=0 && extract_data(dst) == extract_data(m_rhs)))
|
||||
dst = m_rhs;
|
||||
m_triangularMatrix.template solveInPlace<Side>(dst);
|
||||
}
|
||||
|
|
|
@ -331,11 +331,11 @@ inline void MatrixBase<Derived>::adjointInPlace()
|
|||
|
||||
namespace internal {
|
||||
|
||||
template<typename BinOp,typename NestedXpr,typename Rhs>
|
||||
struct blas_traits<SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> >
|
||||
: blas_traits<NestedXpr>
|
||||
template<typename BinOp,typename Xpr,typename Rhs>
|
||||
struct blas_traits<SelfCwiseBinaryOp<BinOp,Xpr,Rhs> >
|
||||
: blas_traits<typename internal::remove_all<typename Xpr::Nested>::type>
|
||||
{
|
||||
typedef SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> XprType;
|
||||
typedef SelfCwiseBinaryOp<BinOp,Xpr,Rhs> XprType;
|
||||
static inline const XprType extract(const XprType& x) { return x; }
|
||||
};
|
||||
|
||||
|
@ -392,7 +392,6 @@ struct checkTransposeAliasing_impl
|
|||
::run(extract_data(dst), other))
|
||||
&& "aliasing detected during transposition, use transposeInPlace() "
|
||||
"or evaluate the rhs into a temporary using .eval()");
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -376,7 +376,8 @@ struct transposition_matrix_product_retval
|
|||
const int size = m_transpositions.size();
|
||||
Index j = 0;
|
||||
|
||||
if(!(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)))
|
||||
const typename Dest::Scalar *dst_data = internal::extract_data(dst);
|
||||
if(!(is_same<MatrixTypeNestedCleaned,Dest>::value && dst_data!=0 && dst_data == extract_data(m_matrix)))
|
||||
dst = m_matrix;
|
||||
|
||||
for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
|
||||
|
|
|
@ -81,7 +81,7 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conju
|
|||
// coherence when accessing the rhs elements
|
||||
std::ptrdiff_t l1, l2;
|
||||
manage_caching_sizes(GetAction, &l1, &l2);
|
||||
Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * otherStride) : 0;
|
||||
Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * std::max<Index>(otherStride,size)) : 0;
|
||||
subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr);
|
||||
|
||||
for(Index k2=IsLower ? 0 : size;
|
||||
|
|
|
@ -42,16 +42,29 @@ template<bool Conjugate> struct conj_if;
|
|||
|
||||
template<> struct conj_if<true> {
|
||||
template<typename T>
|
||||
inline T operator()(const T& x) { return numext::conj(x); }
|
||||
inline T operator()(const T& x) const { return numext::conj(x); }
|
||||
template<typename T>
|
||||
inline T pconj(const T& x) { return internal::pconj(x); }
|
||||
inline T pconj(const T& x) const { return internal::pconj(x); }
|
||||
};
|
||||
|
||||
template<> struct conj_if<false> {
|
||||
template<typename T>
|
||||
inline const T& operator()(const T& x) { return x; }
|
||||
inline const T& operator()(const T& x) const { return x; }
|
||||
template<typename T>
|
||||
inline const T& pconj(const T& x) { return x; }
|
||||
inline const T& pconj(const T& x) const { return x; }
|
||||
};
|
||||
|
||||
// Generic implementation for custom complex types.
|
||||
template<typename LhsScalar, typename RhsScalar, bool ConjLhs, bool ConjRhs>
|
||||
struct conj_helper
|
||||
{
|
||||
typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType Scalar;
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar pmadd(const LhsScalar& x, const RhsScalar& y, const Scalar& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar pmul(const LhsScalar& x, const RhsScalar& y) const
|
||||
{ return conj_if<ConjLhs>()(x) * conj_if<ConjRhs>()(y); }
|
||||
};
|
||||
|
||||
template<typename Scalar> struct conj_helper<Scalar,Scalar,false,false>
|
||||
|
@ -171,12 +184,13 @@ template<typename XprType> struct blas_traits
|
|||
};
|
||||
|
||||
// pop conjugate
|
||||
template<typename Scalar, typename NestedXpr>
|
||||
struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> >
|
||||
: blas_traits<NestedXpr>
|
||||
template<typename Scalar, typename Xpr>
|
||||
struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, Xpr> >
|
||||
: blas_traits<typename internal::remove_all<typename Xpr::Nested>::type>
|
||||
{
|
||||
typedef typename internal::remove_all<typename Xpr::Nested>::type NestedXpr;
|
||||
typedef blas_traits<NestedXpr> Base;
|
||||
typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> XprType;
|
||||
typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, Xpr> XprType;
|
||||
typedef typename Base::ExtractType ExtractType;
|
||||
|
||||
enum {
|
||||
|
@ -188,12 +202,13 @@ struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> >
|
|||
};
|
||||
|
||||
// pop scalar multiple
|
||||
template<typename Scalar, typename NestedXpr>
|
||||
struct blas_traits<CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> >
|
||||
: blas_traits<NestedXpr>
|
||||
template<typename Scalar, typename Xpr>
|
||||
struct blas_traits<CwiseUnaryOp<scalar_multiple_op<Scalar>, Xpr> >
|
||||
: blas_traits<typename internal::remove_all<typename Xpr::Nested>::type>
|
||||
{
|
||||
typedef typename internal::remove_all<typename Xpr::Nested>::type NestedXpr;
|
||||
typedef blas_traits<NestedXpr> Base;
|
||||
typedef CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> XprType;
|
||||
typedef CwiseUnaryOp<scalar_multiple_op<Scalar>, Xpr> XprType;
|
||||
typedef typename Base::ExtractType ExtractType;
|
||||
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
|
||||
static inline Scalar extractScalarFactor(const XprType& x)
|
||||
|
@ -201,12 +216,13 @@ struct blas_traits<CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> >
|
|||
};
|
||||
|
||||
// pop opposite
|
||||
template<typename Scalar, typename NestedXpr>
|
||||
struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> >
|
||||
: blas_traits<NestedXpr>
|
||||
template<typename Scalar, typename Xpr>
|
||||
struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, Xpr> >
|
||||
: blas_traits<typename internal::remove_all<typename Xpr::Nested>::type>
|
||||
{
|
||||
typedef typename internal::remove_all<typename Xpr::Nested>::type NestedXpr;
|
||||
typedef blas_traits<NestedXpr> Base;
|
||||
typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType;
|
||||
typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, Xpr> XprType;
|
||||
typedef typename Base::ExtractType ExtractType;
|
||||
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
|
||||
static inline Scalar extractScalarFactor(const XprType& x)
|
||||
|
@ -214,13 +230,14 @@ struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> >
|
|||
};
|
||||
|
||||
// pop/push transpose
|
||||
template<typename NestedXpr>
|
||||
struct blas_traits<Transpose<NestedXpr> >
|
||||
: blas_traits<NestedXpr>
|
||||
template<typename Xpr>
|
||||
struct blas_traits<Transpose<Xpr> >
|
||||
: blas_traits<typename internal::remove_all<typename Xpr::Nested>::type>
|
||||
{
|
||||
typedef typename internal::remove_all<typename Xpr::Nested>::type NestedXpr;
|
||||
typedef typename NestedXpr::Scalar Scalar;
|
||||
typedef blas_traits<NestedXpr> Base;
|
||||
typedef Transpose<NestedXpr> XprType;
|
||||
typedef Transpose<Xpr> XprType;
|
||||
typedef Transpose<const typename Base::_ExtractType> ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS
|
||||
typedef Transpose<const typename Base::_ExtractType> _ExtractType;
|
||||
typedef typename conditional<bool(Base::HasUsableDirectAccess),
|
||||
|
|
|
@ -162,7 +162,7 @@ const unsigned int HereditaryBits = RowMajorBit
|
|||
/** \ingroup enums
|
||||
* Enum containing possible values for the \p Mode parameter of
|
||||
* MatrixBase::selfadjointView() and MatrixBase::triangularView(). */
|
||||
enum {
|
||||
enum UpLoType {
|
||||
/** View matrix as a lower triangular matrix. */
|
||||
Lower=0x1,
|
||||
/** View matrix as an upper triangular matrix. */
|
||||
|
@ -187,7 +187,7 @@ enum {
|
|||
|
||||
/** \ingroup enums
|
||||
* Enum for indicating whether an object is aligned or not. */
|
||||
enum {
|
||||
enum AlignmentType {
|
||||
/** Object is not correctly aligned for vectorization. */
|
||||
Unaligned=0,
|
||||
/** Object is aligned for vectorization. */
|
||||
|
@ -217,7 +217,7 @@ enum DirectionType {
|
|||
|
||||
/** \internal \ingroup enums
|
||||
* Enum to specify how to traverse the entries of a matrix. */
|
||||
enum {
|
||||
enum TraversalType {
|
||||
/** \internal Default traversal, no vectorization, no index-based access */
|
||||
DefaultTraversal,
|
||||
/** \internal No vectorization, use index-based access to have only one for loop instead of 2 nested loops */
|
||||
|
@ -239,7 +239,7 @@ enum {
|
|||
|
||||
/** \internal \ingroup enums
|
||||
* Enum to specify whether to unroll loops when traversing over the entries of a matrix. */
|
||||
enum {
|
||||
enum UnrollingType {
|
||||
/** \internal Do not unroll loops. */
|
||||
NoUnrolling,
|
||||
/** \internal Unroll only the inner loop, but not the outer loop. */
|
||||
|
@ -251,7 +251,7 @@ enum {
|
|||
|
||||
/** \internal \ingroup enums
|
||||
* Enum to specify whether to use the default (built-in) implementation or the specialization. */
|
||||
enum {
|
||||
enum SpecializedType {
|
||||
Specialized,
|
||||
BuiltIn
|
||||
};
|
||||
|
@ -259,7 +259,7 @@ enum {
|
|||
/** \ingroup enums
|
||||
* Enum containing possible values for the \p _Options template parameter of
|
||||
* Matrix, Array and BandMatrix. */
|
||||
enum {
|
||||
enum StorageOptions {
|
||||
/** Storage order is column major (see \ref TopicStorageOrders). */
|
||||
ColMajor = 0,
|
||||
/** Storage order is row major (see \ref TopicStorageOrders). */
|
||||
|
@ -272,7 +272,7 @@ enum {
|
|||
|
||||
/** \ingroup enums
|
||||
* Enum for specifying whether to apply or solve on the left or right. */
|
||||
enum {
|
||||
enum SideType {
|
||||
/** Apply transformation on the left. */
|
||||
OnTheLeft = 1,
|
||||
/** Apply transformation on the right. */
|
||||
|
@ -418,7 +418,7 @@ namespace Architecture
|
|||
|
||||
/** \internal \ingroup enums
|
||||
* Enum used as template parameter in GeneralProduct. */
|
||||
enum { CoeffBasedProductMode, LazyCoeffBasedProductMode, OuterProduct, InnerProduct, GemvProduct, GemmProduct };
|
||||
enum ProductImplType { CoeffBasedProductMode, LazyCoeffBasedProductMode, OuterProduct, InnerProduct, GemvProduct, GemmProduct };
|
||||
|
||||
/** \internal \ingroup enums
|
||||
* Enum used in experimental parallel implementation. */
|
||||
|
|
|
@ -35,6 +35,14 @@
|
|||
#pragma clang diagnostic push
|
||||
#endif
|
||||
#pragma clang diagnostic ignored "-Wconstant-logical-operand"
|
||||
|
||||
#elif defined __GNUC__ && __GNUC__>=6
|
||||
|
||||
#ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS
|
||||
#pragma GCC diagnostic push
|
||||
#endif
|
||||
#pragma GCC diagnostic ignored "-Wignored-attributes"
|
||||
|
||||
#endif
|
||||
|
||||
#endif // not EIGEN_WARNINGS_DISABLED
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
#define EIGEN_WORLD_VERSION 3
|
||||
#define EIGEN_MAJOR_VERSION 2
|
||||
#define EIGEN_MINOR_VERSION 8
|
||||
#define EIGEN_MINOR_VERSION 10
|
||||
|
||||
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
|
||||
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
|
||||
|
|
|
@ -507,7 +507,12 @@ template<typename T> void smart_copy(const T* start, const T* end, T* target)
|
|||
|
||||
template<typename T> struct smart_copy_helper<T,true> {
|
||||
static inline void run(const T* start, const T* end, T* target)
|
||||
{ memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
|
||||
{
|
||||
std::ptrdiff_t size = std::ptrdiff_t(end)-std::ptrdiff_t(start);
|
||||
if(size==0) return;
|
||||
eigen_internal_assert(start!=0 && end!=0 && target!=0);
|
||||
memcpy(target, start, size);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T> struct smart_copy_helper<T,false> {
|
||||
|
@ -515,7 +520,6 @@ template<typename T> struct smart_copy_helper<T,false> {
|
|||
{ std::copy(start, end, target); }
|
||||
};
|
||||
|
||||
|
||||
/*****************************************************************************
|
||||
*** Implementation of runtime stack allocation (falling back to malloc) ***
|
||||
*****************************************************************************/
|
||||
|
@ -655,99 +659,60 @@ template<typename T> class aligned_stack_memory_handler
|
|||
|
||||
/****************************************************************************/
|
||||
|
||||
|
||||
/** \class aligned_allocator
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief STL compatible allocator to use with with 16 byte aligned types
|
||||
*
|
||||
* Example:
|
||||
* \code
|
||||
* // Matrix4f requires 16 bytes alignment:
|
||||
* std::map< int, Matrix4f, std::less<int>,
|
||||
* aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
|
||||
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
|
||||
* std::map< int, Vector3f > my_map_vec3;
|
||||
* \endcode
|
||||
*
|
||||
* \sa \ref TopicStlContainers.
|
||||
*/
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief STL compatible allocator to use with with 16 byte aligned types
|
||||
*
|
||||
* Example:
|
||||
* \code
|
||||
* // Matrix4f requires 16 bytes alignment:
|
||||
* std::map< int, Matrix4f, std::less<int>,
|
||||
* aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
|
||||
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
|
||||
* std::map< int, Vector3f > my_map_vec3;
|
||||
* \endcode
|
||||
*
|
||||
* \sa \blank \ref TopicStlContainers.
|
||||
*/
|
||||
template<class T>
|
||||
class aligned_allocator
|
||||
class aligned_allocator : public std::allocator<T>
|
||||
{
|
||||
public:
|
||||
typedef size_t size_type;
|
||||
typedef std::ptrdiff_t difference_type;
|
||||
typedef T* pointer;
|
||||
typedef const T* const_pointer;
|
||||
typedef T& reference;
|
||||
typedef const T& const_reference;
|
||||
typedef T value_type;
|
||||
typedef size_t size_type;
|
||||
typedef std::ptrdiff_t difference_type;
|
||||
typedef T* pointer;
|
||||
typedef const T* const_pointer;
|
||||
typedef T& reference;
|
||||
typedef const T& const_reference;
|
||||
typedef T value_type;
|
||||
|
||||
template<class U>
|
||||
struct rebind
|
||||
{
|
||||
typedef aligned_allocator<U> other;
|
||||
};
|
||||
template<class U>
|
||||
struct rebind
|
||||
{
|
||||
typedef aligned_allocator<U> other;
|
||||
};
|
||||
|
||||
pointer address( reference value ) const
|
||||
{
|
||||
return &value;
|
||||
}
|
||||
aligned_allocator() : std::allocator<T>() {}
|
||||
|
||||
const_pointer address( const_reference value ) const
|
||||
{
|
||||
return &value;
|
||||
}
|
||||
aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {}
|
||||
|
||||
aligned_allocator()
|
||||
{
|
||||
}
|
||||
template<class U>
|
||||
aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {}
|
||||
|
||||
aligned_allocator( const aligned_allocator& )
|
||||
{
|
||||
}
|
||||
~aligned_allocator() {}
|
||||
|
||||
template<class U>
|
||||
aligned_allocator( const aligned_allocator<U>& )
|
||||
{
|
||||
}
|
||||
pointer allocate(size_type num, const void* /*hint*/ = 0)
|
||||
{
|
||||
internal::check_size_for_overflow<T>(num);
|
||||
return static_cast<pointer>( internal::aligned_malloc(num * sizeof(T)) );
|
||||
}
|
||||
|
||||
~aligned_allocator()
|
||||
{
|
||||
}
|
||||
|
||||
size_type max_size() const
|
||||
{
|
||||
return (std::numeric_limits<size_type>::max)();
|
||||
}
|
||||
|
||||
pointer allocate( size_type num, const void* hint = 0 )
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(hint);
|
||||
internal::check_size_for_overflow<T>(num);
|
||||
return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
|
||||
}
|
||||
|
||||
void construct( pointer p, const T& value )
|
||||
{
|
||||
::new( p ) T( value );
|
||||
}
|
||||
|
||||
void destroy( pointer p )
|
||||
{
|
||||
p->~T();
|
||||
}
|
||||
|
||||
void deallocate( pointer p, size_type /*num*/ )
|
||||
{
|
||||
internal::aligned_free( p );
|
||||
}
|
||||
|
||||
bool operator!=(const aligned_allocator<T>& ) const
|
||||
{ return false; }
|
||||
|
||||
bool operator==(const aligned_allocator<T>& ) const
|
||||
{ return true; }
|
||||
void deallocate(pointer p, size_type /*num*/)
|
||||
{
|
||||
internal::aligned_free(p);
|
||||
}
|
||||
};
|
||||
|
||||
//---------- Cache sizes ----------
|
||||
|
|
|
@ -8,7 +8,10 @@
|
|||
#pragma warning pop
|
||||
#elif defined __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#elif defined __GNUC__ && __GNUC__>=6
|
||||
#pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_WARNINGS_DISABLED
|
||||
|
|
|
@ -327,13 +327,33 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
|
|||
}
|
||||
else
|
||||
{
|
||||
Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
|
||||
Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
|
||||
m_alphas.coeffRef(i) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
|
||||
m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
|
||||
// We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a triangular 2x2 block T
|
||||
// From the eigen decomposition of T = U * E * U^-1,
|
||||
// we can extract the eigenvalues of (U^-1 * S * U) / E
|
||||
// Here, we can take advantage that E = diag(T), and U = [ 1 T_01 ; 0 T_11-T_00], and U^-1 = [1 -T_11/(T_11-T_00) ; 0 1/(T_11-T_00)].
|
||||
// Then taking beta=T_00*T_11*(T_11-T_00), we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00) * (T_11-T_00):
|
||||
|
||||
// T = [a b ; 0 c]
|
||||
// S = [e f ; g h]
|
||||
RealScalar a = m_realQZ.matrixT().coeff(i, i), b = m_realQZ.matrixT().coeff(i, i+1), c = m_realQZ.matrixT().coeff(i+1, i+1);
|
||||
RealScalar e = m_matS.coeff(i, i), f = m_matS.coeff(i, i+1), g = m_matS.coeff(i+1, i), h = m_matS.coeff(i+1, i+1);
|
||||
RealScalar d = c-a;
|
||||
RealScalar gb = g*b;
|
||||
Matrix<RealScalar,2,2> A;
|
||||
A << (e*d-gb)*c, ((e*b+f*d-h*b)*d-gb*b)*a,
|
||||
g*c , (gb+h*d)*a;
|
||||
|
||||
// NOTE, we could also compute the SVD of T's block during the QZ factorization so that the respective T block is guaranteed to be diagonal,
|
||||
// and then we could directly apply the formula below (while taking care of scaling S columns by T11,T00):
|
||||
|
||||
Scalar p = Scalar(0.5) * (A.coeff(i, i) - A.coeff(i+1, i+1));
|
||||
Scalar z = sqrt(abs(p * p + A.coeff(i+1, i) * A.coeff(i, i+1)));
|
||||
m_alphas.coeffRef(i) = ComplexScalar(A.coeff(i+1, i+1) + p, z);
|
||||
m_alphas.coeffRef(i+1) = ComplexScalar(A.coeff(i+1, i+1) + p, -z);
|
||||
|
||||
m_betas.coeffRef(i) =
|
||||
m_betas.coeffRef(i+1) = a*c*d;
|
||||
|
||||
m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
|
||||
m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -367,10 +367,10 @@ void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
|
|||
hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
|
||||
* (conj(h) * matA.col(i).tail(remainingSize)));
|
||||
|
||||
hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
|
||||
hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
|
||||
|
||||
matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
|
||||
.rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1);
|
||||
.rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));
|
||||
|
||||
matA.col(i).coeffRef(i+1) = beta;
|
||||
hCoeffs.coeffRef(i) = h;
|
||||
|
|
|
@ -75,7 +75,7 @@ template<typename MatrixType,int _Direction> class Homogeneous
|
|||
inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
|
||||
inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
|
||||
|
||||
inline Scalar coeff(Index row, Index col) const
|
||||
inline Scalar coeff(Index row, Index col=0) const
|
||||
{
|
||||
if( (int(Direction)==Vertical && row==m_matrix.rows())
|
||||
|| (int(Direction)==Horizontal && col==m_matrix.cols()))
|
||||
|
|
|
@ -276,7 +276,7 @@ public:
|
|||
inline Coefficients& coeffs() { return m_coeffs;}
|
||||
inline const Coefficients& coeffs() const { return m_coeffs;}
|
||||
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(IsAligned))
|
||||
|
||||
protected:
|
||||
Coefficients m_coeffs;
|
||||
|
|
|
@ -443,7 +443,7 @@ public:
|
|||
operator * (const DiagonalBase<DiagonalDerived> &b) const
|
||||
{
|
||||
TransformTimeDiagonalReturnType res(*this);
|
||||
res.linear() *= b;
|
||||
res.linearExt() *= b;
|
||||
return res;
|
||||
}
|
||||
|
||||
|
@ -557,7 +557,7 @@ public:
|
|||
return res;
|
||||
}
|
||||
|
||||
inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; }
|
||||
inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linearExt() *= s; return *this; }
|
||||
|
||||
template<typename Derived>
|
||||
inline Transform& operator=(const RotationBase<Derived,Dim>& r);
|
||||
|
@ -828,7 +828,7 @@ Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &oth
|
|||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
|
||||
EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
|
||||
m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0));
|
||||
affine().noalias() = (other.asDiagonal() * affine());
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -1048,7 +1048,7 @@ void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixTy
|
|||
}
|
||||
}
|
||||
|
||||
/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
|
||||
/** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being
|
||||
* not necessarily positive.
|
||||
*
|
||||
* If either pointer is zero, the corresponding computation is skipped.
|
||||
|
|
|
@ -130,8 +130,10 @@ public:
|
|||
}
|
||||
|
||||
/** Applies translation to vector */
|
||||
inline VectorType operator* (const VectorType& other) const
|
||||
{ return m_coeffs + other; }
|
||||
template<typename Derived>
|
||||
inline typename internal::enable_if<Derived::IsVectorAtCompileTime,VectorType>::type
|
||||
operator* (const MatrixBase<Derived>& vec) const
|
||||
{ return m_coeffs + vec.derived(); }
|
||||
|
||||
/** \returns the inverse translation (opposite) */
|
||||
Translation inverse() const { return Translation(-m_coeffs); }
|
||||
|
|
|
@ -75,8 +75,9 @@ void MatrixBase<Derived>::makeHouseholder(
|
|||
|
||||
RealScalar tailSqNorm = size()==1 ? RealScalar(0) : tail.squaredNorm();
|
||||
Scalar c0 = coeff(0);
|
||||
const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
|
||||
|
||||
if(tailSqNorm == RealScalar(0) && numext::imag(c0)==RealScalar(0))
|
||||
if(tailSqNorm <= tol && numext::abs2(numext::imag(c0))<=tol)
|
||||
{
|
||||
tau = RealScalar(0);
|
||||
beta = numext::real(c0);
|
||||
|
|
|
@ -237,8 +237,9 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
|
|||
{
|
||||
workspace.resize(rows());
|
||||
Index vecs = m_length;
|
||||
const typename Dest::Scalar *dst_data = internal::extract_data(dst);
|
||||
if( internal::is_same<typename internal::remove_all<VectorsType>::type,Dest>::value
|
||||
&& internal::extract_data(dst) == internal::extract_data(m_vectors))
|
||||
&& dst_data!=0 && dst_data == internal::extract_data(m_vectors))
|
||||
{
|
||||
// in-place
|
||||
dst.diagonal().setOnes();
|
||||
|
|
|
@ -290,7 +290,7 @@ struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
|
|||
{
|
||||
const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime);
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(Size);
|
||||
eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst)))
|
||||
eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=0 && extract_data(m_matrix)!=extract_data(dst)))
|
||||
&& "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
|
||||
|
||||
compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst);
|
||||
|
|
|
@ -151,10 +151,12 @@ struct compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType>
|
|||
iC = _mm_mul_ps(rd,iC);
|
||||
iD = _mm_mul_ps(rd,iD);
|
||||
|
||||
result.template writePacket<ResultAlignment>( 0, _mm_shuffle_ps(iA,iB,0x77));
|
||||
result.template writePacket<ResultAlignment>( 4, _mm_shuffle_ps(iA,iB,0x22));
|
||||
result.template writePacket<ResultAlignment>( 8, _mm_shuffle_ps(iC,iD,0x77));
|
||||
result.template writePacket<ResultAlignment>(12, _mm_shuffle_ps(iC,iD,0x22));
|
||||
DenseIndex res_stride = result.outerStride();
|
||||
float* res = result.data();
|
||||
pstoret<float, Packet4f, ResultAlignment>(res+0, _mm_shuffle_ps(iA,iB,0x77));
|
||||
pstoret<float, Packet4f, ResultAlignment>(res+res_stride, _mm_shuffle_ps(iA,iB,0x22));
|
||||
pstoret<float, Packet4f, ResultAlignment>(res+2*res_stride, _mm_shuffle_ps(iC,iD,0x77));
|
||||
pstoret<float, Packet4f, ResultAlignment>(res+3*res_stride, _mm_shuffle_ps(iC,iD,0x22));
|
||||
}
|
||||
|
||||
};
|
||||
|
@ -311,14 +313,16 @@ struct compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType>
|
|||
iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1);
|
||||
iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2);
|
||||
|
||||
result.template writePacket<ResultAlignment>( 0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1)); // iA# / det
|
||||
result.template writePacket<ResultAlignment>( 4, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2));
|
||||
result.template writePacket<ResultAlignment>( 2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1)); // iB# / det
|
||||
result.template writePacket<ResultAlignment>( 6, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2));
|
||||
result.template writePacket<ResultAlignment>( 8, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1)); // iC# / det
|
||||
result.template writePacket<ResultAlignment>(12, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2));
|
||||
result.template writePacket<ResultAlignment>(10, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1)); // iD# / det
|
||||
result.template writePacket<ResultAlignment>(14, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2));
|
||||
DenseIndex res_stride = result.outerStride();
|
||||
double* res = result.data();
|
||||
pstoret<double, Packet2d, ResultAlignment>(res+0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1));
|
||||
pstoret<double, Packet2d, ResultAlignment>(res+res_stride, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2));
|
||||
pstoret<double, Packet2d, ResultAlignment>(res+2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1));
|
||||
pstoret<double, Packet2d, ResultAlignment>(res+res_stride+2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2));
|
||||
pstoret<double, Packet2d, ResultAlignment>(res+2*res_stride, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1));
|
||||
pstoret<double, Packet2d, ResultAlignment>(res+3*res_stride, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2));
|
||||
pstoret<double, Packet2d, ResultAlignment>(res+2*res_stride+2,_mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1));
|
||||
pstoret<double, Packet2d, ResultAlignment>(res+3*res_stride+2,_mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2));
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -10,6 +10,14 @@
|
|||
#ifndef EIGEN_PASTIXSUPPORT_H
|
||||
#define EIGEN_PASTIXSUPPORT_H
|
||||
|
||||
#if defined(DCOMPLEX)
|
||||
#define PASTIX_COMPLEX COMPLEX
|
||||
#define PASTIX_DCOMPLEX DCOMPLEX
|
||||
#else
|
||||
#define PASTIX_COMPLEX std::complex<float>
|
||||
#define PASTIX_DCOMPLEX std::complex<double>
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup PaStiXSupport_Module
|
||||
|
@ -74,14 +82,14 @@ namespace internal
|
|||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<COMPLEX*>(vals), perm, invp, reinterpret_cast<COMPLEX*>(x), nbrhs, iparm, dparm);
|
||||
c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_COMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_COMPLEX*>(x), nbrhs, iparm, dparm);
|
||||
}
|
||||
|
||||
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
|
||||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<DCOMPLEX*>(vals), perm, invp, reinterpret_cast<DCOMPLEX*>(x), nbrhs, iparm, dparm);
|
||||
z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_DCOMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_DCOMPLEX*>(x), nbrhs, iparm, dparm);
|
||||
}
|
||||
|
||||
// Convert the matrix to Fortran-style Numbering
|
||||
|
|
|
@ -221,11 +221,11 @@ class PardisoImpl
|
|||
m_type = type;
|
||||
bool symmetric = std::abs(m_type) < 10;
|
||||
m_iparm[0] = 1; // No solver default
|
||||
m_iparm[1] = 3; // use Metis for the ordering
|
||||
m_iparm[2] = 1; // Numbers of processors, value of OMP_NUM_THREADS
|
||||
m_iparm[1] = 2; // use Metis for the ordering
|
||||
m_iparm[2] = 0; // Reserved. Set to zero. (??Numbers of processors, value of OMP_NUM_THREADS??)
|
||||
m_iparm[3] = 0; // No iterative-direct algorithm
|
||||
m_iparm[4] = 0; // No user fill-in reducing permutation
|
||||
m_iparm[5] = 0; // Write solution into x
|
||||
m_iparm[5] = 0; // Write solution into x, b is left unchanged
|
||||
m_iparm[6] = 0; // Not in use
|
||||
m_iparm[7] = 2; // Max numbers of iterative refinement steps
|
||||
m_iparm[8] = 0; // Not in use
|
||||
|
@ -246,7 +246,10 @@ class PardisoImpl
|
|||
m_iparm[26] = 0; // No matrix checker
|
||||
m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0;
|
||||
m_iparm[34] = 1; // C indexing
|
||||
m_iparm[59] = 1; // Automatic switch between In-Core and Out-of-Core modes
|
||||
m_iparm[36] = 0; // CSR
|
||||
m_iparm[59] = 0; // 0 - In-Core ; 1 - Automatic switch between In-Core and Out-of-Core modes ; 2 - Out-of-Core
|
||||
|
||||
memset(m_pt, 0, sizeof(m_pt));
|
||||
}
|
||||
|
||||
protected:
|
||||
|
@ -384,7 +387,6 @@ bool PardisoImpl<Base>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerive
|
|||
m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
|
||||
m_perm.data(), nrhs, m_iparm.data(), m_msglvl,
|
||||
rhs_ptr, x.derived().data());
|
||||
|
||||
return error==0;
|
||||
}
|
||||
|
||||
|
@ -397,6 +399,9 @@ bool PardisoImpl<Base>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerive
|
|||
* using the Intel MKL PARDISO library. The sparse matrix A must be squared and invertible.
|
||||
* The vectors or matrices X and B can be either dense or sparse.
|
||||
*
|
||||
* By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set:
|
||||
* \code solver.pardisoParameterArray()[59] = 1; \endcode
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
*
|
||||
* \sa \ref TutorialSparseDirectSolvers
|
||||
|
@ -447,6 +452,9 @@ class PardisoLU : public PardisoImpl< PardisoLU<MatrixType> >
|
|||
* using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite.
|
||||
* The vectors or matrices X and B can be either dense or sparse.
|
||||
*
|
||||
* By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set:
|
||||
* \code solver.pardisoParameterArray()[59] = 1; \endcode
|
||||
*
|
||||
* \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam UpLo can be any bitwise combination of Upper, Lower. The default is Upper, meaning only the upper triangular part has to be used.
|
||||
* Upper|Lower can be used to tell both triangular parts can be used as input.
|
||||
|
@ -507,6 +515,9 @@ class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType,_UpLo> >
|
|||
* For complex matrices, A can also be symmetric only, see the \a Options template parameter.
|
||||
* The vectors or matrices X and B can be either dense or sparse.
|
||||
*
|
||||
* By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set:
|
||||
* \code solver.pardisoParameterArray()[59] = 1; \endcode
|
||||
*
|
||||
* \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam Options can be any bitwise combination of Upper, Lower, and Symmetric. The default is Upper, meaning only the upper triangular part has to be used.
|
||||
* Symmetric can be used for symmetric, non-selfadjoint complex matrices, the default being to assume a selfadjoint matrix.
|
||||
|
|
|
@ -127,9 +127,6 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
|||
*
|
||||
* \returns a solution.
|
||||
*
|
||||
* \note The case where b is a matrix is not yet implemented. Also, this
|
||||
* code is space inefficient.
|
||||
*
|
||||
* \note_about_checking_solutions
|
||||
*
|
||||
* \note_about_arbitrary_choice_of_solution
|
||||
|
|
|
@ -134,9 +134,6 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
|||
* \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
|
||||
* and an arbitrary solution otherwise.
|
||||
*
|
||||
* \note The case where b is a matrix is not yet implemented. Also, this
|
||||
* code is space inefficient.
|
||||
*
|
||||
* \note_about_checking_solutions
|
||||
*
|
||||
* \note_about_arbitrary_choice_of_solution
|
||||
|
|
|
@ -107,9 +107,6 @@ template<typename _MatrixType> class HouseholderQR
|
|||
*
|
||||
* \returns a solution.
|
||||
*
|
||||
* \note The case where b is a matrix is not yet implemented. Also, this
|
||||
* code is space inefficient.
|
||||
*
|
||||
* \note_about_checking_solutions
|
||||
*
|
||||
* \note_about_arbitrary_choice_of_solution
|
||||
|
|
|
@ -359,29 +359,42 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false
|
|||
{
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
typedef typename SVD::Index Index;
|
||||
static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; }
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
typedef typename SVD::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename SVD::Index Index;
|
||||
static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
|
||||
static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
using std::max;
|
||||
Scalar z;
|
||||
JacobiRotation<Scalar> rot;
|
||||
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
|
||||
|
||||
|
||||
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
||||
const RealScalar precision = NumTraits<Scalar>::epsilon();
|
||||
|
||||
if(n==0)
|
||||
{
|
||||
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.row(p) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
|
||||
if(work_matrix.coeff(q,q)!=Scalar(0))
|
||||
// make sure first column is zero
|
||||
work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0);
|
||||
|
||||
if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero)
|
||||
{
|
||||
// work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when computing n
|
||||
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.row(p) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
|
||||
}
|
||||
if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero)
|
||||
{
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
|
@ -395,19 +408,25 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
|||
rot.s() = work_matrix.coeff(q,p) / n;
|
||||
work_matrix.applyOnTheLeft(p,q,rot);
|
||||
if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
|
||||
if(work_matrix.coeff(p,q) != Scalar(0))
|
||||
if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero)
|
||||
{
|
||||
Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.col(q) *= z;
|
||||
if(svd.computeV()) svd.m_matrixV.col(q) *= z;
|
||||
}
|
||||
if(work_matrix.coeff(q,q) != Scalar(0))
|
||||
if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero)
|
||||
{
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
}
|
||||
}
|
||||
|
||||
// update largest diagonal entry
|
||||
maxDiagEntry = max EIGEN_EMPTY (maxDiagEntry,max EIGEN_EMPTY (abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q))));
|
||||
// and check whether the 2x2 block is already diagonal
|
||||
RealScalar threshold = max EIGEN_EMPTY (considerAsZero, precision * maxDiagEntry);
|
||||
return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -424,22 +443,23 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
|||
JacobiRotation<RealScalar> rot1;
|
||||
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
|
||||
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
|
||||
if(t == RealScalar(0))
|
||||
if(d == RealScalar(0))
|
||||
{
|
||||
rot1.c() = RealScalar(0);
|
||||
rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
|
||||
rot1.s() = RealScalar(0);
|
||||
rot1.c() = RealScalar(1);
|
||||
}
|
||||
else
|
||||
{
|
||||
RealScalar t2d2 = numext::hypot(t,d);
|
||||
rot1.c() = abs(t)/t2d2;
|
||||
rot1.s() = d/t2d2;
|
||||
if(t<RealScalar(0))
|
||||
rot1.s() = -rot1.s();
|
||||
// If d!=0, then t/d cannot overflow because the magnitude of the
|
||||
// entries forming d are not too small compared to the ones forming t.
|
||||
RealScalar u = t / d;
|
||||
RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u));
|
||||
rot1.s() = RealScalar(1) / tmp;
|
||||
rot1.c() = u / tmp;
|
||||
}
|
||||
m.applyOnTheLeft(0,1,rot1);
|
||||
j_right->makeJacobi(m,0,1);
|
||||
*j_left = rot1 * j_right->transpose();
|
||||
*j_left = rot1 * j_right->transpose();
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
@ -826,6 +846,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
check_template_parameters();
|
||||
|
||||
using std::abs;
|
||||
using std::max;
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
|
||||
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
|
||||
|
@ -857,6 +878,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
}
|
||||
|
||||
/*** step 2. The main Jacobi SVD iteration. ***/
|
||||
RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff();
|
||||
|
||||
bool finished = false;
|
||||
while(!finished)
|
||||
|
@ -872,25 +894,27 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
// if this 2x2 sub-matrix is not diagonal already...
|
||||
// notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
|
||||
// keep us iterating forever. Similarly, small denormal numbers are considered zero.
|
||||
using std::max;
|
||||
RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
|
||||
abs(m_workMatrix.coeff(q,q))));
|
||||
// We compare both values to threshold instead of calling max to be robust to NaN (See bug 791)
|
||||
RealScalar threshold = max EIGEN_EMPTY (considerAsZero, precision * maxDiagEntry);
|
||||
if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold)
|
||||
{
|
||||
finished = false;
|
||||
|
||||
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
|
||||
internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
|
||||
JacobiRotation<RealScalar> j_left, j_right;
|
||||
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
|
||||
// the complex to real operation returns true is the updated 2x2 block is not already diagonal
|
||||
if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry))
|
||||
{
|
||||
JacobiRotation<RealScalar> j_left, j_right;
|
||||
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
|
||||
|
||||
// accumulate resulting Jacobi rotations
|
||||
m_workMatrix.applyOnTheLeft(p,q,j_left);
|
||||
if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
|
||||
// accumulate resulting Jacobi rotations
|
||||
m_workMatrix.applyOnTheLeft(p,q,j_left);
|
||||
if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
|
||||
|
||||
m_workMatrix.applyOnTheRight(p,q,j_right);
|
||||
if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
|
||||
m_workMatrix.applyOnTheRight(p,q,j_right);
|
||||
if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
|
||||
|
||||
// keep track of the largest diagonal coefficient
|
||||
maxDiagEntry = max EIGEN_EMPTY (maxDiagEntry,max EIGEN_EMPTY (abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q))));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -102,6 +102,11 @@ class CompressedStorage
|
|||
inline size_t allocatedSize() const { return m_allocatedSize; }
|
||||
inline void clear() { m_size = 0; }
|
||||
|
||||
const Scalar* valuePtr() const { return m_values; }
|
||||
Scalar* valuePtr() { return m_values; }
|
||||
const Index* indexPtr() const { return m_indices; }
|
||||
Index* indexPtr() { return m_indices; }
|
||||
|
||||
inline Scalar& value(size_t i) { return m_values[i]; }
|
||||
inline const Scalar& value(size_t i) const { return m_values[i]; }
|
||||
|
||||
|
@ -208,8 +213,10 @@ class CompressedStorage
|
|||
Index* newIndices = new Index[size];
|
||||
size_t copySize = (std::min)(size, m_size);
|
||||
// copy
|
||||
internal::smart_copy(m_values, m_values+copySize, newValues);
|
||||
internal::smart_copy(m_indices, m_indices+copySize, newIndices);
|
||||
if (copySize>0) {
|
||||
internal::smart_copy(m_values, m_values+copySize, newValues);
|
||||
internal::smart_copy(m_indices, m_indices+copySize, newIndices);
|
||||
}
|
||||
// delete old stuff
|
||||
delete[] m_values;
|
||||
delete[] m_indices;
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -128,20 +128,20 @@ class SparseMatrix
|
|||
/** \returns a const pointer to the array of values.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \sa innerIndexPtr(), outerIndexPtr() */
|
||||
inline const Scalar* valuePtr() const { return &m_data.value(0); }
|
||||
inline const Scalar* valuePtr() const { return m_data.valuePtr(); }
|
||||
/** \returns a non-const pointer to the array of values.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \sa innerIndexPtr(), outerIndexPtr() */
|
||||
inline Scalar* valuePtr() { return &m_data.value(0); }
|
||||
inline Scalar* valuePtr() { return m_data.valuePtr(); }
|
||||
|
||||
/** \returns a const pointer to the array of inner indices.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \sa valuePtr(), outerIndexPtr() */
|
||||
inline const Index* innerIndexPtr() const { return &m_data.index(0); }
|
||||
inline const Index* innerIndexPtr() const { return m_data.indexPtr(); }
|
||||
/** \returns a non-const pointer to the array of inner indices.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \sa valuePtr(), outerIndexPtr() */
|
||||
inline Index* innerIndexPtr() { return &m_data.index(0); }
|
||||
inline Index* innerIndexPtr() { return m_data.indexPtr(); }
|
||||
|
||||
/** \returns a const pointer to the array of the starting positions of the inner vectors.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
|
@ -697,8 +697,8 @@ class SparseMatrix
|
|||
{
|
||||
eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
|
||||
this->m_data.resize(rows());
|
||||
Eigen::Map<Matrix<Index, Dynamic, 1> >(&this->m_data.index(0), rows()).setLinSpaced(0, rows()-1);
|
||||
Eigen::Map<Matrix<Scalar, Dynamic, 1> >(&this->m_data.value(0), rows()).setOnes();
|
||||
Eigen::Map<Matrix<Index, Dynamic, 1> >(this->m_data.indexPtr(), rows()).setLinSpaced(0, rows()-1);
|
||||
Eigen::Map<Matrix<Scalar, Dynamic, 1> >(this->m_data.valuePtr(), rows()).setOnes();
|
||||
Eigen::Map<Matrix<Index, Dynamic, 1> >(this->m_outerIndex, rows()+1).setLinSpaced(0, rows());
|
||||
std::free(m_innerNonZeros);
|
||||
m_innerNonZeros = 0;
|
||||
|
|
|
@ -38,6 +38,7 @@ template<typename Derived> class SparseMatrixBase
|
|||
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
typedef typename internal::traits<Derived>::Index StorageIndex;
|
||||
typedef typename internal::add_const_on_value_type_if_arithmetic<
|
||||
typename internal::packet_traits<Scalar>::type
|
||||
>::type PacketReturnType;
|
||||
|
|
|
@ -29,7 +29,10 @@ typename internal::traits<SparseMatrix<_Scalar,_Options,_Index> >::Scalar
|
|||
SparseMatrix<_Scalar,_Options,_Index>::sum() const
|
||||
{
|
||||
eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
|
||||
return Matrix<Scalar,1,Dynamic>::Map(&m_data.value(0), m_data.size()).sum();
|
||||
if(this->isCompressed())
|
||||
return Matrix<Scalar,1,Dynamic>::Map(m_data.valuePtr(), m_data.size()).sum();
|
||||
else
|
||||
return Base::sum();
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Options, typename _Index>
|
||||
|
@ -37,7 +40,7 @@ typename internal::traits<SparseVector<_Scalar,_Options, _Index> >::Scalar
|
|||
SparseVector<_Scalar,_Options,_Index>::sum() const
|
||||
{
|
||||
eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
|
||||
return Matrix<Scalar,1,Dynamic>::Map(&m_data.value(0), m_data.size()).sum();
|
||||
return Matrix<Scalar,1,Dynamic>::Map(m_data.valuePtr(), m_data.size()).sum();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
|
|
@ -48,7 +48,7 @@ static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& r
|
|||
res.resize(rows, cols);
|
||||
|
||||
res.reserve(estimated_nnz_prod);
|
||||
double ratioColRes = double(estimated_nnz_prod)/double(lhs.rows()*rhs.cols());
|
||||
double ratioColRes = double(estimated_nnz_prod)/(double(lhs.rows())*double(rhs.cols()));
|
||||
for (Index j=0; j<cols; ++j)
|
||||
{
|
||||
// FIXME:
|
||||
|
|
|
@ -84,12 +84,12 @@ class SparseVector
|
|||
EIGEN_STRONG_INLINE Index innerSize() const { return m_size; }
|
||||
EIGEN_STRONG_INLINE Index outerSize() const { return 1; }
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return &m_data.value(0); }
|
||||
EIGEN_STRONG_INLINE Scalar* valuePtr() { return &m_data.value(0); }
|
||||
EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); }
|
||||
EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); }
|
||||
|
||||
EIGEN_STRONG_INLINE const Index* innerIndexPtr() const { return m_data.indexPtr(); }
|
||||
EIGEN_STRONG_INLINE Index* innerIndexPtr() { return m_data.indexPtr(); }
|
||||
|
||||
EIGEN_STRONG_INLINE const Index* innerIndexPtr() const { return &m_data.index(0); }
|
||||
EIGEN_STRONG_INLINE Index* innerIndexPtr() { return &m_data.index(0); }
|
||||
|
||||
/** \internal */
|
||||
inline Storage& data() { return m_data; }
|
||||
/** \internal */
|
||||
|
|
|
@ -148,7 +148,8 @@ class UmfPackLU : internal::noncopyable
|
|||
|
||||
UmfPackLU() { init(); }
|
||||
|
||||
UmfPackLU(const MatrixType& matrix)
|
||||
template<typename InputMatrixType>
|
||||
UmfPackLU(const InputMatrixType& matrix)
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
|
|
|
@ -44,15 +44,10 @@
|
|||
#define BTL_ASM_COMMENT(X)
|
||||
#endif
|
||||
|
||||
#if (defined __GNUC__) && (!defined __INTEL_COMPILER) && !defined(__arm__) && !defined(__powerpc__)
|
||||
#define BTL_DISABLE_SSE_EXCEPTIONS() { \
|
||||
int aux; \
|
||||
asm( \
|
||||
"stmxcsr %[aux] \n\t" \
|
||||
"orl $32832, %[aux] \n\t" \
|
||||
"ldmxcsr %[aux] \n\t" \
|
||||
: : [aux] "m" (aux)); \
|
||||
}
|
||||
#ifdef __SSE__
|
||||
#include "xmmintrin.h"
|
||||
// This enables flush to zero (FTZ) and denormals are zero (DAZ) modes:
|
||||
#define BTL_DISABLE_SSE_EXCEPTIONS() { _mm_setcsr(_mm_getcsr() | 0x8040); }
|
||||
#else
|
||||
#define BTL_DISABLE_SSE_EXCEPTIONS()
|
||||
#endif
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
include(EigenTesting)
|
||||
include(CheckCXXSourceCompiles)
|
||||
|
||||
# configure the "site" and "buildname"
|
||||
# configure the "site" and "buildname"
|
||||
ei_set_sitename()
|
||||
|
||||
# retrieve and store the build string
|
||||
|
@ -14,17 +14,10 @@ add_dependencies(check buildtests)
|
|||
# check whether /bin/bash exists
|
||||
find_file(EIGEN_BIN_BASH_EXISTS "/bin/bash" PATHS "/" NO_DEFAULT_PATH)
|
||||
|
||||
# CMake/Ctest does not allow us to change the build command,
|
||||
# so we have to workaround by directly editing the generated DartConfiguration.tcl file
|
||||
# save CMAKE_MAKE_PROGRAM
|
||||
set(CMAKE_MAKE_PROGRAM_SAVE ${CMAKE_MAKE_PROGRAM})
|
||||
# and set a fake one
|
||||
set(CMAKE_MAKE_PROGRAM "@EIGEN_MAKECOMMAND_PLACEHOLDER@")
|
||||
|
||||
# This call activates testing and generates the DartConfiguration.tcl
|
||||
include(CTest)
|
||||
|
||||
set(EIGEN_TEST_BUILD_FLAGS " " CACHE STRING "Options passed to the build command of unit tests")
|
||||
set(EIGEN_TEST_BUILD_FLAGS "" CACHE STRING "Options passed to the build command of unit tests")
|
||||
|
||||
# Overwrite default DartConfiguration.tcl such that ctest can build our unit tests.
|
||||
# Recall that our unit tests are not in the "all" target, so we have to explicitely ask ctest to build our custom 'buildtests' target.
|
||||
|
|
|
@ -26,7 +26,7 @@ function(DetermineShortWindowsName WIN_VERSION win_num_version)
|
|||
endfunction()
|
||||
|
||||
function(DetermineOSVersion OS_VERSION)
|
||||
if (WIN32)
|
||||
if (WIN32 AND CMAKE_HOST_SYSTEM_NAME MATCHES Windows)
|
||||
file (TO_NATIVE_PATH "$ENV{COMSPEC}" SHELL)
|
||||
exec_program( ${SHELL} ARGS "/c" "ver" OUTPUT_VARIABLE ver_output)
|
||||
|
||||
|
|
|
@ -46,6 +46,9 @@ They are summarized in the following table:
|
|||
<tr><td>SPQR</td><td>\link SPQRSupport_Module SPQRSupport \endlink </td> <td> QR factorization </td>
|
||||
<td> Any, rectangular</td><td>fill-in reducing, multithreaded, fast dense algebra</td>
|
||||
<td> requires the <a href="http://www.suitesparse.com">SuiteSparse</a> package, \b GPL </td><td>recommended for linear least-squares problems, has a rank-revealing feature</tr>
|
||||
<tr><td>PardisoLLT \n PardisoLDLT \n PardisoLU</td><td>\link PardisoSupport_Module PardisoSupport \endlink</td><td>Direct LLt, LDLt, LU factorizations</td><td>SPD \n SPD \n Square</td><td>Fill-in reducing, Leverage fast dense algebra, Multithreading</td>
|
||||
<td>Requires the <a href="http://eigen.tuxfamily.org/Counter/redirect_to_mkl.php">Intel MKL</a> package, \b Proprietary </td>
|
||||
<td>optimized for tough problems patterns, see also \link TopicUsingIntelMKL using MKL with Eigen \endlink</td></tr>
|
||||
</table>
|
||||
|
||||
Here \c SPD means symmetric positive definite.
|
||||
|
|
|
@ -16,7 +16,7 @@ Both eigen_assert and eigen_plain_assert are defined in Macros.h. Defining eigen
|
|||
#include <stdexcept>
|
||||
#undef eigen_assert
|
||||
#define eigen_assert(x) \
|
||||
if (!x) { throw (std::runtime_error("Put your message here")); }
|
||||
if (!(x)) { throw (std::runtime_error("Put your message here")); }
|
||||
\endcode
|
||||
|
||||
\subsection DisableAssert Disabling assertions
|
||||
|
|
|
@ -125,6 +125,7 @@ endif(TEST_LIB)
|
|||
set_property(GLOBAL PROPERTY EIGEN_CURRENT_SUBPROJECT "Official")
|
||||
add_custom_target(BuildOfficial)
|
||||
|
||||
ei_add_test(rand)
|
||||
ei_add_test(meta)
|
||||
ei_add_test(sizeof)
|
||||
ei_add_test(dynalloc)
|
||||
|
|
|
@ -9,14 +9,69 @@
|
|||
|
||||
#include "main.h"
|
||||
|
||||
|
||||
template<int M1, int M2, int N1, int N2>
|
||||
void test_blocks()
|
||||
{
|
||||
Matrix<int, M1+M2, N1+N2> m_fixed;
|
||||
MatrixXi m_dynamic(M1+M2, N1+N2);
|
||||
|
||||
Matrix<int, M1, N1> mat11; mat11.setRandom();
|
||||
Matrix<int, M1, N2> mat12; mat12.setRandom();
|
||||
Matrix<int, M2, N1> mat21; mat21.setRandom();
|
||||
Matrix<int, M2, N2> mat22; mat22.setRandom();
|
||||
|
||||
MatrixXi matx11 = mat11, matx12 = mat12, matx21 = mat21, matx22 = mat22;
|
||||
|
||||
{
|
||||
VERIFY_IS_EQUAL((m_fixed << mat11, mat12, mat21, matx22).finished(), (m_dynamic << mat11, matx12, mat21, matx22).finished());
|
||||
VERIFY_IS_EQUAL((m_fixed.template topLeftCorner<M1,N1>()), mat11);
|
||||
VERIFY_IS_EQUAL((m_fixed.template topRightCorner<M1,N2>()), mat12);
|
||||
VERIFY_IS_EQUAL((m_fixed.template bottomLeftCorner<M2,N1>()), mat21);
|
||||
VERIFY_IS_EQUAL((m_fixed.template bottomRightCorner<M2,N2>()), mat22);
|
||||
VERIFY_IS_EQUAL((m_fixed << mat12, mat11, matx21, mat22).finished(), (m_dynamic << mat12, matx11, matx21, mat22).finished());
|
||||
}
|
||||
|
||||
if(N1 > 0)
|
||||
{
|
||||
VERIFY_RAISES_ASSERT((m_fixed << mat11, mat12, mat11, mat21, mat22));
|
||||
VERIFY_RAISES_ASSERT((m_fixed << mat11, mat12, mat21, mat21, mat22));
|
||||
}
|
||||
else
|
||||
{
|
||||
// allow insertion of zero-column blocks:
|
||||
VERIFY_IS_EQUAL((m_fixed << mat11, mat12, mat11, mat11, mat21, mat21, mat22).finished(), (m_dynamic << mat12, mat22).finished());
|
||||
}
|
||||
if(M1 != M2)
|
||||
{
|
||||
VERIFY_RAISES_ASSERT((m_fixed << mat11, mat21, mat12, mat22));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<int N>
|
||||
struct test_block_recursion
|
||||
{
|
||||
static void run()
|
||||
{
|
||||
test_blocks<(N>>6)&3, (N>>4)&3, (N>>2)&3, N & 3>();
|
||||
test_block_recursion<N-1>::run();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct test_block_recursion<-1>
|
||||
{
|
||||
static void run() { }
|
||||
};
|
||||
|
||||
void test_commainitializer()
|
||||
{
|
||||
Matrix3d m3;
|
||||
Matrix4d m4;
|
||||
|
||||
VERIFY_RAISES_ASSERT( (m3 << 1, 2, 3, 4, 5, 6, 7, 8) );
|
||||
|
||||
#ifndef _MSC_VER
|
||||
VERIFY_RAISES_ASSERT( (m3 << 1, 2, 3, 4, 5, 6, 7, 8) );
|
||||
VERIFY_RAISES_ASSERT( (m3 << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) );
|
||||
#endif
|
||||
|
||||
|
@ -43,4 +98,7 @@ void test_commainitializer()
|
|||
4, 5, 6,
|
||||
vec[2].transpose();
|
||||
VERIFY_IS_APPROX(m3, ref);
|
||||
|
||||
// recursively test all block-sizes from 0 to 3:
|
||||
test_block_recursion<(1<<8) - 1>();
|
||||
}
|
||||
|
|
|
@ -164,9 +164,12 @@ template<typename MatrixType> void cwiseops(const MatrixType& m)
|
|||
VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() );
|
||||
VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() );
|
||||
|
||||
#if(__cplusplus < 201103L)
|
||||
// std::binder* are deprecated since c++11 and will be removed in c++17
|
||||
VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
|
||||
VERIFY( !(m1.cwise()<m1bis.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
|
||||
VERIFY( !(m1.cwise()>m1bis.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
|
||||
#endif
|
||||
|
||||
cwiseops_real_only(m1, m2, m3, mones);
|
||||
}
|
||||
|
|
|
@ -137,9 +137,12 @@ template<typename MatrixType> void cwiseops(const MatrixType& m)
|
|||
VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() );
|
||||
VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() );
|
||||
|
||||
#if(__cplusplus < 201103L)
|
||||
// std::binder* are deprecated since c++11 and will be removed in c++17
|
||||
VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
|
||||
VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
|
||||
VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
|
||||
#endif
|
||||
}
|
||||
|
||||
void test_eigen2_cwiseop()
|
||||
|
|
|
@ -54,6 +54,8 @@ template<typename Scalar,int Size> void homogeneous(void)
|
|||
T2MatrixType t2 = T2MatrixType::Random();
|
||||
VERIFY_IS_APPROX(t2 * (v0.homogeneous().eval()), t2 * v0.homogeneous());
|
||||
VERIFY_IS_APPROX(t2 * (m0.colwise().homogeneous().eval()), t2 * m0.colwise().homogeneous());
|
||||
VERIFY_IS_APPROX(t2 * (v0.homogeneous().asDiagonal()), t2 * hv0.asDiagonal());
|
||||
VERIFY_IS_APPROX((v0.homogeneous().asDiagonal()) * t2, hv0.asDiagonal() * t2);
|
||||
|
||||
VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2,
|
||||
v0.transpose().rowwise().homogeneous() * t2);
|
||||
|
|
|
@ -320,6 +320,9 @@ template<typename Scalar, int Mode, int Options> void transformations()
|
|||
t0.scale(v0);
|
||||
t1 *= AlignedScaling3(v0);
|
||||
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
||||
t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
|
||||
t1 = t1 * v0.asDiagonal();
|
||||
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
||||
// transformation * translation
|
||||
t0.translate(v0);
|
||||
t1 = t1 * Translation3(v0);
|
||||
|
@ -437,6 +440,79 @@ template<typename Scalar, int Mode, int Options> void transformations()
|
|||
Rotation2D<Scalar> r2(r1); // copy ctor
|
||||
VERIFY_IS_APPROX(r2.angle(),s0);
|
||||
}
|
||||
|
||||
{
|
||||
Transform3 t32(Matrix4::Random()), t33, t34;
|
||||
t34 = t33 = t32;
|
||||
t32.scale(v0);
|
||||
t33*=AlignedScaling3(v0);
|
||||
VERIFY_IS_APPROX(t32.matrix(), t33.matrix());
|
||||
t33 = t34 * AlignedScaling3(v0);
|
||||
VERIFY_IS_APPROX(t32.matrix(), t33.matrix());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<typename A1, typename A2, typename P, typename Q, typename V, typename H>
|
||||
void transform_associativity_left(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h)
|
||||
{
|
||||
VERIFY_IS_APPROX( q*(a1*v), (q*a1)*v );
|
||||
VERIFY_IS_APPROX( q*(a2*v), (q*a2)*v );
|
||||
VERIFY_IS_APPROX( q*(p*h).hnormalized(), ((q*p)*h).hnormalized() );
|
||||
}
|
||||
|
||||
template<typename A1, typename A2, typename P, typename Q, typename V, typename H>
|
||||
void transform_associativity2(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h)
|
||||
{
|
||||
VERIFY_IS_APPROX( a1*(q*v), (a1*q)*v );
|
||||
VERIFY_IS_APPROX( a2*(q*v), (a2*q)*v );
|
||||
VERIFY_IS_APPROX( p *(q*v).homogeneous(), (p *q)*v.homogeneous() );
|
||||
|
||||
transform_associativity_left(a1, a2,p, q, v, h);
|
||||
}
|
||||
|
||||
template<typename Scalar, int Dim, int Options,typename RotationType>
|
||||
void transform_associativity(const RotationType& R)
|
||||
{
|
||||
typedef Matrix<Scalar,Dim,1> VectorType;
|
||||
typedef Matrix<Scalar,Dim+1,1> HVectorType;
|
||||
typedef Matrix<Scalar,Dim,Dim> LinearType;
|
||||
typedef Matrix<Scalar,Dim+1,Dim+1> MatrixType;
|
||||
typedef Transform<Scalar,Dim,AffineCompact,Options> AffineCompactType;
|
||||
typedef Transform<Scalar,Dim,Affine,Options> AffineType;
|
||||
typedef Transform<Scalar,Dim,Projective,Options> ProjectiveType;
|
||||
typedef DiagonalMatrix<Scalar,Dim> ScalingType;
|
||||
typedef Translation<Scalar,Dim> TranslationType;
|
||||
|
||||
AffineCompactType A1c; A1c.matrix().setRandom();
|
||||
AffineCompactType A2c; A2c.matrix().setRandom();
|
||||
AffineType A1(A1c);
|
||||
AffineType A2(A2c);
|
||||
ProjectiveType P1; P1.matrix().setRandom();
|
||||
VectorType v1 = VectorType::Random();
|
||||
VectorType v2 = VectorType::Random();
|
||||
HVectorType h1 = HVectorType::Random();
|
||||
Scalar s1 = internal::random<Scalar>();
|
||||
LinearType L = LinearType::Random();
|
||||
MatrixType M = MatrixType::Random();
|
||||
|
||||
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2, v2, h1) );
|
||||
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2c, v2, h1) );
|
||||
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, v1.asDiagonal(), v2, h1) );
|
||||
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, ScalingType(v1), v2, h1) );
|
||||
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(v1), v2, h1) );
|
||||
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(s1), v2, h1) );
|
||||
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, TranslationType(v1), v2, h1) );
|
||||
CALL_SUBTEST( transform_associativity_left(A1c, A1, P1, L, v2, h1) );
|
||||
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, R, v2, h1) );
|
||||
|
||||
VERIFY_IS_APPROX( A1*(M*h1), (A1*M)*h1 );
|
||||
VERIFY_IS_APPROX( A1c*(M*h1), (A1c*M)*h1 );
|
||||
VERIFY_IS_APPROX( P1*(M*h1), (P1*M)*h1 );
|
||||
|
||||
VERIFY_IS_APPROX( M*(A1*h1), (M*A1)*h1 );
|
||||
VERIFY_IS_APPROX( M*(A1c*h1), (M*A1c)*h1 );
|
||||
VERIFY_IS_APPROX( M*(P1*h1), ((M*P1)*h1) );
|
||||
}
|
||||
|
||||
template<typename Scalar> void transform_alignment()
|
||||
|
@ -517,5 +593,8 @@ void test_geo_transformations()
|
|||
|
||||
CALL_SUBTEST_7(( transform_products<double,3,RowMajor|AutoAlign>() ));
|
||||
CALL_SUBTEST_7(( transform_products<float,2,AutoAlign>() ));
|
||||
|
||||
CALL_SUBTEST_8(( transform_associativity<double,2,ColMajor>(Rotation2D<double>(internal::random<double>()*double(3.14))) ));
|
||||
CALL_SUBTEST_8(( transform_associativity<double,3,ColMajor>(Quaterniond(Vector4d::Random().normalized())) ));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -327,6 +327,7 @@ template<typename Scalar,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar
|
|||
ref[i] += cj0(data1[i]) * cj1(data2[i]);
|
||||
VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i],data2[i],tmp)) && "conj_helper pmadd");
|
||||
}
|
||||
*pval += 0; // Workaround msvc 2013 issue (bad code generation)
|
||||
internal::pstore(pval,pcj.pmadd(internal::pload<Packet>(data1),internal::pload<Packet>(data2),internal::pload<Packet>(pval)));
|
||||
VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmadd");
|
||||
}
|
||||
|
|
|
@ -53,14 +53,29 @@ template<typename MatrixType> void inverse_general_4x4(int repeat)
|
|||
// FIXME that 1.25 used to be 1.2 until we tested gcc 4.1 on 30 June 2010 and got 1.21.
|
||||
VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25));
|
||||
VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0));
|
||||
|
||||
{
|
||||
int s = 5;//internal::random<int>(4,10);
|
||||
int i = 0;//internal::random<int>(0,s-4);
|
||||
int j = 0;//internal::random<int>(0,s-4);
|
||||
Matrix<Scalar,5,5> mat(s,s);
|
||||
mat.setRandom();
|
||||
MatrixType submat = mat.template block<4,4>(i,j);
|
||||
MatrixType mat_inv = mat.template block<4,4>(i,j).inverse();
|
||||
VERIFY_IS_APPROX(mat_inv, submat.inverse());
|
||||
mat.template block<4,4>(i,j) = submat.inverse();
|
||||
VERIFY_IS_APPROX(mat_inv, (mat.template block<4,4>(i,j)));
|
||||
}
|
||||
}
|
||||
|
||||
void test_prec_inverse_4x4()
|
||||
{
|
||||
CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>()));
|
||||
CALL_SUBTEST_1(( inverse_general_4x4<Matrix4f>(200000 * g_repeat) ));
|
||||
CALL_SUBTEST_1(( inverse_general_4x4<Matrix<float,4,4,RowMajor> >(200000 * g_repeat) ));
|
||||
|
||||
CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double,4,4,RowMajor> >()));
|
||||
CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,ColMajor> >(200000 * g_repeat) ));
|
||||
CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,RowMajor> >(200000 * g_repeat) ));
|
||||
|
||||
CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>()));
|
||||
|
|
|
@ -178,4 +178,12 @@ template<typename MatrixType> void product(const MatrixType& m)
|
|||
// CwiseUnaryOp
|
||||
VERIFY_IS_APPROX(x = Scalar(1.)*(A*x), A*z);
|
||||
}
|
||||
|
||||
// regression for blas_trais
|
||||
{
|
||||
VERIFY_IS_APPROX(square * (square*square).transpose(), square * square.transpose() * square.transpose());
|
||||
VERIFY_IS_APPROX(square * (-(square*square)), -square * square * square);
|
||||
VERIFY_IS_APPROX(square * (s1*(square*square)), s1 * square * square * square);
|
||||
VERIFY_IS_APPROX(square * (square*square).conjugate(), square * square.conjugate() * square.conjugate());
|
||||
}
|
||||
}
|
||||
|
|
|
@ -299,6 +299,14 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
|||
VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
|
||||
else
|
||||
VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0)));
|
||||
|
||||
DenseVector rv = DenseVector::Random(m1.cols());
|
||||
DenseVector cv = DenseVector::Random(m1.rows());
|
||||
Index r = internal::random<Index>(0,m1.rows()-2);
|
||||
Index c = internal::random<Index>(0,m1.cols()-1);
|
||||
VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
|
||||
VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
|
||||
VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
|
||||
|
||||
VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
|
||||
VERIFY_IS_APPROX(m1.real(), refM1.real());
|
||||
|
|
|
@ -293,7 +293,7 @@ void MatrixExponential<MatrixType>::computeUV(float)
|
|||
const float maxnorm = 3.925724783138660f;
|
||||
frexp(m_l1norm / maxnorm, &m_squarings);
|
||||
if (m_squarings < 0) m_squarings = 0;
|
||||
MatrixType A = m_M / pow(Scalar(2), m_squarings);
|
||||
MatrixType A = m_M / Scalar(pow(2, m_squarings));
|
||||
pade7(A);
|
||||
}
|
||||
}
|
||||
|
@ -315,7 +315,7 @@ void MatrixExponential<MatrixType>::computeUV(double)
|
|||
const double maxnorm = 5.371920351148152;
|
||||
frexp(m_l1norm / maxnorm, &m_squarings);
|
||||
if (m_squarings < 0) m_squarings = 0;
|
||||
MatrixType A = m_M / pow(Scalar(2), m_squarings);
|
||||
MatrixType A = m_M / Scalar(pow(2, m_squarings));
|
||||
pade13(A);
|
||||
}
|
||||
}
|
||||
|
@ -340,7 +340,7 @@ void MatrixExponential<MatrixType>::computeUV(long double)
|
|||
const long double maxnorm = 4.0246098906697353063L;
|
||||
frexp(m_l1norm / maxnorm, &m_squarings);
|
||||
if (m_squarings < 0) m_squarings = 0;
|
||||
MatrixType A = m_M / pow(Scalar(2), m_squarings);
|
||||
MatrixType A = m_M / Scalar(pow(2, m_squarings));
|
||||
pade13(A);
|
||||
}
|
||||
#elif LDBL_MANT_DIG <= 106 // double-double
|
||||
|
@ -376,7 +376,7 @@ void MatrixExponential<MatrixType>::computeUV(long double)
|
|||
const long double maxnorm = 2.884233277829519311757165057717815L;
|
||||
frexp(m_l1norm / maxnorm, &m_squarings);
|
||||
if (m_squarings < 0) m_squarings = 0;
|
||||
MatrixType A = m_M / pow(Scalar(2), m_squarings);
|
||||
MatrixType A = m_M / Scalar(pow(2, m_squarings));
|
||||
pade17(A);
|
||||
}
|
||||
#else
|
||||
|
|
|
@ -31,6 +31,8 @@ namespace Eigen
|
|||
|
||||
enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
|
||||
enum { NumOfDerivativesAtCompileTime = OrderAtCompileTime /*!< The number of derivatives defined for the current spline. */ };
|
||||
|
||||
enum { DerivativeMemoryLayout = Dimension==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
|
||||
|
||||
/** \brief The data type used to store non-zero basis functions. */
|
||||
typedef Array<Scalar,1,OrderAtCompileTime> BasisVectorType;
|
||||
|
@ -39,7 +41,7 @@ namespace Eigen
|
|||
typedef Array<Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
|
||||
|
||||
/** \brief The data type used to store the spline's derivative values. */
|
||||
typedef Array<Scalar,Dimension,Dynamic,ColMajor,Dimension,NumOfDerivativesAtCompileTime> DerivativeType;
|
||||
typedef Array<Scalar,Dimension,Dynamic,DerivativeMemoryLayout,Dimension,NumOfDerivativesAtCompileTime> DerivativeType;
|
||||
|
||||
/** \brief The point type the spline is representing. */
|
||||
typedef Array<Scalar,Dimension,1> PointType;
|
||||
|
@ -62,12 +64,14 @@ namespace Eigen
|
|||
{
|
||||
enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
|
||||
enum { NumOfDerivativesAtCompileTime = _DerivativeOrder==Dynamic ? Dynamic : _DerivativeOrder+1 /*!< The number of derivatives defined for the current spline. */ };
|
||||
|
||||
enum { DerivativeMemoryLayout = _Dim==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
|
||||
|
||||
/** \brief The data type used to store the values of the basis function derivatives. */
|
||||
typedef Array<_Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
|
||||
|
||||
/** \brief The data type used to store the spline's derivative values. */
|
||||
typedef Array<_Scalar,_Dim,Dynamic,ColMajor,_Dim,NumOfDerivativesAtCompileTime> DerivativeType;
|
||||
typedef Array<_Scalar,_Dim,Dynamic,DerivativeMemoryLayout,_Dim,NumOfDerivativesAtCompileTime> DerivativeType;
|
||||
};
|
||||
|
||||
/** \brief 2D float B-spline with dynamic degree. */
|
||||
|
|
|
@ -162,6 +162,15 @@ void test_autodiff_jacobian()
|
|||
CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
|
||||
}
|
||||
|
||||
double bug_1222() {
|
||||
typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD;
|
||||
const double _cv1_3 = 1.0;
|
||||
const AD chi_3 = 1.0;
|
||||
// this line did not work, because operator+ returns ADS<DerType&>, which then cannot be converted to ADS<DerType>
|
||||
const AD denom = chi_3 + _cv1_3;
|
||||
return denom.value();
|
||||
}
|
||||
|
||||
void test_autodiff()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
|
@ -169,5 +178,7 @@ void test_autodiff()
|
|||
CALL_SUBTEST_2( test_autodiff_vector() );
|
||||
CALL_SUBTEST_3( test_autodiff_jacobian() );
|
||||
}
|
||||
|
||||
bug_1222();
|
||||
}
|
||||
|
||||
|
|
|
@ -26,7 +26,7 @@
|
|||
#include <boost/pool/pool_alloc.hpp>
|
||||
|
||||
#include <cmath>
|
||||
#include <iosfwd>
|
||||
#include <iostream>
|
||||
#include <typeinfo> // operator typeid
|
||||
|
||||
namespace gtsam {
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
#include <list>
|
||||
#include <fstream>
|
||||
#include <limits>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
#include <boost/serialization/nvp.hpp>
|
||||
#include <cassert>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
#include <array>
|
||||
|
||||
namespace boost {
|
||||
namespace serialization {
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
#include <stdexcept>
|
||||
#include <cstdarg>
|
||||
#include <limits>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iomanip>
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
|
||||
#include <gtsam/dllexport.h>
|
||||
#include <gtsam/base/VectorSpace.h>
|
||||
#include <iostream>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
|
|
@ -22,6 +22,7 @@
|
|||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/OptionalJacobian.h>
|
||||
#include <boost/concept/assert.hpp>
|
||||
#include <iostream>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Cal3_S2Stereo.cpp
|
||||
* @brief The most common 5DOF 3D->2D calibration + Stereo baseline
|
||||
* @author Chris Beall
|
||||
*/
|
||||
|
||||
#include <gtsam/geometry/Cal3_S2Stereo.h>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace gtsam {
|
||||
using namespace std;
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Cal3_S2Stereo::print(const std::string& s) const {
|
||||
K_.print(s+"K: ");
|
||||
std::cout << s << "Baseline: " << b_ << std::endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool Cal3_S2Stereo::equals(const Cal3_S2Stereo& other, double tol) const {
|
||||
if (fabs(b_ - other.b_) > tol) return false;
|
||||
return K_.equals(other.K_,tol);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
} // namespace gtsam
|
|
@ -18,6 +18,7 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <iosfwd>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -62,16 +63,10 @@ namespace gtsam {
|
|||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
void print(const std::string& s = "") const {
|
||||
K_.print(s+"K: ");
|
||||
std::cout << s << "Baseline: " << b_ << std::endl;
|
||||
}
|
||||
void print(const std::string& s = "") const;
|
||||
|
||||
/// Check if equal up to specified tolerance
|
||||
bool equals(const Cal3_S2Stereo& other, double tol = 10e-9) const {
|
||||
if (fabs(b_ - other.b_) > tol) return false;
|
||||
return K_.equals(other.K_,tol);
|
||||
}
|
||||
bool equals(const Cal3_S2Stereo& other, double tol = 10e-9) const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
#include <gtsam/geometry/Point3.h>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
#include <gtsam/base/concepts.h>
|
||||
#include <gtsam/geometry/SO3.h> // Logmap/Expmap derivatives
|
||||
#include <limits>
|
||||
#include <iostream>
|
||||
|
||||
#define QUATERNION_TYPE Eigen::Quaternion<_Scalar,_Options>
|
||||
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/geometry/Rot2.h>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
|
|
@ -22,6 +22,7 @@
|
|||
#include <gtsam/base/concepts.h>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <iostream>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -116,6 +117,12 @@ SO3 SO3::AxisAngle(const Vector3& axis, double theta) {
|
|||
return so3::ExpmapFunctor(axis, theta).expmap();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void SO3::print(const std::string& s) const {
|
||||
std::cout << s << *this << std::endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
SO3 SO3::Expmap(const Vector3& omega, ChartJacobian H) {
|
||||
if (H) {
|
||||
so3::DexpFunctor impl(omega);
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
#include <gtsam/base/Lie.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <iosfwd>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -67,9 +68,7 @@ public:
|
|||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
void print(const std::string& s) const {
|
||||
std::cout << s << *this << std::endl;
|
||||
}
|
||||
void print(const std::string& s) const;
|
||||
|
||||
bool equals(const SO3 & R, double tol) const {
|
||||
return equal_with_abs_tol(*this, R, tol);
|
||||
|
|
|
@ -219,15 +219,13 @@ FastVector<JacobianFactor::shared_ptr> _convertOrCastToJacobians(
|
|||
/* ************************************************************************* */
|
||||
JacobianFactor::JacobianFactor(const GaussianFactorGraph& graph,
|
||||
boost::optional<const Ordering&> ordering,
|
||||
boost::optional<const VariableSlots&> variableSlots) {
|
||||
boost::optional<const VariableSlots&> p_variableSlots) {
|
||||
gttic(JacobianFactor_combine_constructor);
|
||||
|
||||
// Compute VariableSlots if one was not provided
|
||||
boost::optional<VariableSlots> computedVariableSlots;
|
||||
if (!variableSlots) {
|
||||
computedVariableSlots = VariableSlots(graph);
|
||||
variableSlots = computedVariableSlots; // Binds reference, does not copy VariableSlots
|
||||
}
|
||||
// Binds reference, does not copy VariableSlots
|
||||
const VariableSlots & variableSlots =
|
||||
p_variableSlots ? p_variableSlots.get() : VariableSlots(graph);
|
||||
|
||||
// Cast or convert to Jacobians
|
||||
FastVector<JacobianFactor::shared_ptr> jacobians = _convertOrCastToJacobians(
|
||||
|
@ -238,15 +236,15 @@ JacobianFactor::JacobianFactor(const GaussianFactorGraph& graph,
|
|||
// 'unorderedSlots' of any variables discovered that are not in the ordering. Those will then
|
||||
// be added after all of the ordered variables.
|
||||
FastVector<VariableSlots::const_iterator> orderedSlots;
|
||||
orderedSlots.reserve(variableSlots->size());
|
||||
orderedSlots.reserve(variableSlots.size());
|
||||
if (ordering) {
|
||||
// If an ordering is provided, arrange the slots first that ordering
|
||||
FastList<VariableSlots::const_iterator> unorderedSlots;
|
||||
size_t nOrderingSlotsUsed = 0;
|
||||
orderedSlots.resize(ordering->size());
|
||||
FastMap<Key, size_t> inverseOrdering = ordering->invert();
|
||||
for (VariableSlots::const_iterator item = variableSlots->begin();
|
||||
item != variableSlots->end(); ++item) {
|
||||
for (VariableSlots::const_iterator item = variableSlots.begin();
|
||||
item != variableSlots.end(); ++item) {
|
||||
FastMap<Key, size_t>::const_iterator orderingPosition =
|
||||
inverseOrdering.find(item->first);
|
||||
if (orderingPosition == inverseOrdering.end()) {
|
||||
|
@ -267,8 +265,8 @@ JacobianFactor::JacobianFactor(const GaussianFactorGraph& graph,
|
|||
} else {
|
||||
// If no ordering is provided, arrange the slots as they were, which will be sorted
|
||||
// numerically since VariableSlots uses a map sorting on Key.
|
||||
for (VariableSlots::const_iterator item = variableSlots->begin();
|
||||
item != variableSlots->end(); ++item)
|
||||
for (VariableSlots::const_iterator item = variableSlots.begin();
|
||||
item != variableSlots.end(); ++item)
|
||||
orderedSlots.push_back(item);
|
||||
}
|
||||
gttoc(Order_slots);
|
||||
|
|
|
@ -154,7 +154,7 @@ namespace gtsam {
|
|||
explicit JacobianFactor(
|
||||
const GaussianFactorGraph& graph,
|
||||
boost::optional<const Ordering&> ordering = boost::none,
|
||||
boost::optional<const VariableSlots&> variableSlots = boost::none);
|
||||
boost::optional<const VariableSlots&> p_variableSlots = boost::none);
|
||||
|
||||
/** Virtual destructor */
|
||||
virtual ~JacobianFactor() {}
|
||||
|
|
|
@ -243,7 +243,7 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
stay = false;
|
||||
}
|
||||
}
|
||||
gttoc(adjust_Delta);
|
||||
gttoc(adjust_delta);
|
||||
}
|
||||
|
||||
// dx_d and f_error have already been filled in during the loop
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
#include <gtsam/nonlinear/NonlinearOptimizer.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtParams.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <boost/date_time/posix_time/posix_time.hpp>
|
||||
|
||||
class NonlinearOptimizerMoreOptimizationTest;
|
||||
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
#include <boost/type_traits/aligned_storage.hpp>
|
||||
|
||||
#include <Eigen/Core>
|
||||
#include <iostream>
|
||||
|
||||
namespace gtsam {
|
||||
namespace internal {
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
#include <gtsam/base/Testable.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
|
|
@ -92,7 +92,7 @@ namespace gtsam {
|
|||
T hx = traits<T>::Between(p1, p2, H1, H2); // h(x)
|
||||
// manifold equivalent of h(x)-z -> log(z,h(x))
|
||||
#ifdef SLOW_BUT_CORRECT_BETWEENFACTOR
|
||||
typename traits<T>::ChartJacobian::Fixed Hlocal;
|
||||
typename traits<T>::ChartJacobian::Jacobian Hlocal;
|
||||
Vector rval = traits<T>::Local(measured_, hx, boost::none, (H1 || H2) ? &Hlocal : 0);
|
||||
if (H1) *H1 = Hlocal * (*H1);
|
||||
if (H1) *H2 = Hlocal * (*H2);
|
||||
|
|
|
@ -18,7 +18,21 @@
|
|||
*/
|
||||
|
||||
#include <gtsam_unstable/geometry/Event.h>
|
||||
#include <iostream>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Event::print(const std::string& s) const {
|
||||
std::cout << s << "time = " << time_ << "location = " << location_.transpose();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool Event::equals(const Event& other, double tol) const {
|
||||
return std::abs(time_ - other.time_) < tol
|
||||
&& traits<Point3>::Equals(location_, other.location_, tol);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
} //\ namespace gtsam
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
|
||||
#include <gtsam/geometry/Point3.h>
|
||||
#include <cmath>
|
||||
#include <iosfwd>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -59,15 +60,10 @@ public:
|
|||
}
|
||||
|
||||
/** print with optional string */
|
||||
void print(const std::string& s = "") const {
|
||||
std::cout << s << "time = " << time_ << "location = " << location_.transpose();
|
||||
}
|
||||
void print(const std::string& s = "") const;
|
||||
|
||||
/** equals with an tolerance */
|
||||
bool equals(const Event& other, double tol = 1e-9) const {
|
||||
return std::abs(time_ - other.time_) < tol
|
||||
&& traits<Point3>::Equals(location_, other.location_, tol);
|
||||
}
|
||||
bool equals(const Event& other, double tol = 1e-9) const;
|
||||
|
||||
/// Updates a with tangent space delta
|
||||
inline Event retract(const Vector4& v) const {
|
||||
|
|
|
@ -18,7 +18,6 @@
|
|||
|
||||
#include "Argument.h"
|
||||
|
||||
#include <boost/regex.hpp>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
|
||||
#include <iostream>
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# Build/install Wrap
|
||||
|
||||
set(WRAP_BOOST_LIBRARIES ${Boost_SYSTEM_LIBRARY} ${Boost_FILESYSTEM_LIBRARY} ${Boost_THREAD_LIBRARY} ${Boost_REGEX_LIBRARY})
|
||||
set(WRAP_BOOST_LIBRARIES ${Boost_SYSTEM_LIBRARY} ${Boost_FILESYSTEM_LIBRARY} ${Boost_THREAD_LIBRARY})
|
||||
|
||||
# Allow for disabling serialization to handle errors related to Clang's linker
|
||||
option(GTSAM_WRAP_SERIALIZATION "If enabled, allows for wrapped objects to be saved via boost.serialization" ON)
|
||||
|
|
|
@ -177,8 +177,8 @@ void Module::parseMarkup(const std::string& data) {
|
|||
// parse forward declaration
|
||||
ForwardDeclaration fwDec0, fwDec;
|
||||
Rule forward_declaration_p =
|
||||
!(str_p("virtual")[assign_a(fwDec.isVirtual, true)])
|
||||
>> str_p("class")
|
||||
!(str_p("virtual")[assign_a(fwDec.isVirtual, T)])
|
||||
>> str_p("class")
|
||||
>> (*(basic.namespace_p >> str_p("::")) >> basic.className_p)[assign_a(fwDec.name)]
|
||||
>> ch_p(';')
|
||||
[push_back_a(forward_declarations, fwDec)]
|
||||
|
|
|
@ -102,9 +102,19 @@ TEST( spirit, constMethod_p ) {
|
|||
EXPECT(parse("double norm() const;", constMethod_p, space_p).full);
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
/* See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56665
|
||||
GCC compiler issues with -O2 and -fno-strict-aliasing results in undefined
|
||||
behaviour when spirit uses assign_a with a literal.
|
||||
GCC versions 4.7.2 -> 5.4 inclusive */
|
||||
|
||||
TEST( spirit, return_value_p ) {
|
||||
bool isEigen = true;
|
||||
static const bool T = true;
|
||||
static const bool F = false;
|
||||
|
||||
bool isEigen = T;
|
||||
|
||||
string actual_return_type;
|
||||
string actual_function_name;
|
||||
|
||||
|
@ -119,9 +129,9 @@ TEST( spirit, return_value_p ) {
|
|||
Rule funcName_p = lexeme_d[lower_p >> *(alnum_p | '_')];
|
||||
|
||||
Rule returnType_p =
|
||||
(basisType_p[assign_a(actual_return_type)][assign_a(isEigen, true)]) |
|
||||
(className_p[assign_a(actual_return_type)][assign_a(isEigen,false)]) |
|
||||
(eigenType_p[assign_a(actual_return_type)][assign_a(isEigen, true)]);
|
||||
(basisType_p[assign_a(actual_return_type)][assign_a(isEigen, T)]) |
|
||||
(className_p[assign_a(actual_return_type)][assign_a(isEigen, F)]) |
|
||||
(eigenType_p[assign_a(actual_return_type)][assign_a(isEigen, T)]);
|
||||
|
||||
Rule testFunc_p = returnType_p >> funcName_p[assign_a(actual_function_name)] >> str_p("();");
|
||||
|
||||
|
|
Loading…
Reference in New Issue