Removed SLAM namespaces from SPCG example. Still needs better documentation by someone who knows what SPCG is.

release/4.3a0
Stephen Williams 2012-07-22 05:34:22 +00:00
parent 45d1c4f0ed
commit e3a6282ff8
1 changed files with 83 additions and 47 deletions

View File

@ -16,79 +16,115 @@
* @date June 2, 2012 * @date June 2, 2012
*/ */
/**
* A simple 2D pose slam example solved using a Conjugate-Gradient method
* - The robot moves in a 2 meter square
* - The robot moves 2 meters each step, turning 90 degrees after each step
* - The robot initially faces along the X axis (horizontal, to the right in 2D)
* - We have full odometry between pose
* - We have a loop closure constraint when the robot returns to the first position
*/
// As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
// the robot positions
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Point2.h>
// Each variable in the system (poses) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use simple integer keys
#include <gtsam/nonlinear/Key.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
// Here we will use Between factors for the relative motion described by odometry measurements.
// We will also use a Between Factor to encode the loop closure constraint
// Also, we will initialize the robot at the origin using a Prior factor.
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
// are nonlinear factors, we will need a Nonlinear Factor Graph.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
// nonlinear functions around an initial linearization point, then solve the linear system
// to update the linearization point. This happens repeatedly until the solver converges
// to a consistent set of variable values. This requires us to specify an initial guess
// for each variable, held in a Values container.
#include <gtsam/nonlinear/Values.h>
// ???
#include <gtsam/linear/SimpleSPCGSolver.h> #include <gtsam/linear/SimpleSPCGSolver.h>
#include <gtsam/linear/SubgraphSolver.h> #include <gtsam/linear/SubgraphSolver.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/slam/pose2SLAM.h>
#include <boost/shared_ptr.hpp>
#include <boost/make_shared.hpp>
using namespace std; using namespace std;
using namespace gtsam; using namespace gtsam;
using namespace gtsam::noiseModel;
/* ************************************************************************* */ int main(int argc, char** argv) {
int main(void) {
// 1. Create graph container and add factors to it // 1. Create a factor graph container and add factors to it
pose2SLAM::Graph graph ; NonlinearFactorGraph graph;
// 2a. Add Gaussian prior // 2a. Add a prior on the first pose, setting it to the origin
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin // A prior factor consists of a mean and a noise model (covariance matrix)
SharedDiagonal priorNoise = Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); Pose2 prior(0.0, 0.0, 0.0); // prior at origin
graph.addPosePrior(1, priorMean, priorNoise); noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
graph.add(PriorFactor<Pose2>(1, prior, priorNoise));
// 2b. Add odometry factors // 2b. Add odometry factors
SharedDiagonal odometryNoise = Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); // For simplicity, we will use the same noise model for each odometry factor
graph.addRelativePose(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise); noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
graph.addRelativePose(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise); // Create odometry (Between) factors between consecutive poses
graph.addRelativePose(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise); graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
graph.addRelativePose(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise); graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
// 2c. Add pose constraint // 2c. Add the loop closure constraint
SharedDiagonal constraintUncertainty = Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); // This factor encodes the fact that we have returned to the same pose. In real systems,
graph.addRelativePose(5, 2, Pose2(2.0, 0.0, M_PI_2), constraintUncertainty); // these constraints may be identified in many ways, such as appearance-based techniques
// with camera images.
// We will use another Between Factor to enforce this constraint, with the distance set to zero,
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
graph.add(BetweenFactor<Pose2>(5, 1, Pose2(0.0, 0.0, 0.0), model));
graph.print("\nFactor Graph:\n"); // print
// print
graph.print("\nFactor graph:\n");
// 3. Create the data structure to hold the initialEstimate estinmate to the solution // 3. Create the data structure to hold the initialEstimate estimate to the solution
pose2SLAM::Values initialEstimate; // For illustrative purposes, these have been deliberately set to incorrect values
Pose2 x1(0.5, 0.0, 0.2 ); initialEstimate.insertPose(1, x1); Values initialEstimate;
Pose2 x2(2.3, 0.1,-0.2 ); initialEstimate.insertPose(2, x2); initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
Pose2 x3(4.1, 0.1, M_PI_2); initialEstimate.insertPose(3, x3); initialEstimate.insert(2, Pose2(2.3, 0.1, 1.1));
Pose2 x4(4.0, 2.0, M_PI ); initialEstimate.insertPose(4, x4); initialEstimate.insert(3, Pose2(2.1, 1.9, 2.8));
Pose2 x5(2.1, 2.1,-M_PI_2); initialEstimate.insertPose(5, x5); initialEstimate.insert(4, Pose2(-.3, 2.5, 4.2));
initialEstimate.print("\nInitial estimate:\n "); initialEstimate.insert(5, Pose2(0.1,-0.7, 5.8));
cout << "initial error = " << graph.error(initialEstimate) << endl ; initialEstimate.print("\nInitial Estimate:\n"); // print
// 4. Single Step Optimization using Levenberg-Marquardt // 4. Single Step Optimization using Levenberg-Marquardt
LevenbergMarquardtParams param; LevenbergMarquardtParams parameters;
param.verbosity = NonlinearOptimizerParams::ERROR; parameters.verbosity = NonlinearOptimizerParams::ERROR;
param.verbosityLM = LevenbergMarquardtParams::LAMBDA; parameters.verbosityLM = LevenbergMarquardtParams::LAMBDA;
param.linearSolverType = SuccessiveLinearizationParams::CG; parameters.linearSolverType = SuccessiveLinearizationParams::CG;
{ {
param.iterativeParams = boost::make_shared<SimpleSPCGSolverParameters>(); parameters.iterativeParams = boost::make_shared<SimpleSPCGSolverParameters>();
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, param); LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
Values result = optimizer.optimize(); Values result = optimizer.optimize();
result.print("\nFinal result:\n"); result.print("Final Result:\n");
cout << "simple spcg solver final error = " << graph.error(result) << endl; cout << "simple spcg solver final error = " << graph.error(result) << endl;
} }
{ {
param.iterativeParams = boost::make_shared<SubgraphSolverParameters>(); parameters.iterativeParams = boost::make_shared<SubgraphSolverParameters>();
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, param); LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
Values result = optimizer.optimize(); Values result = optimizer.optimize();
result.print("\nFinal result:\n"); result.print("Final Result:\n");
cout << "subgraph solver final error = " << graph.error(result) << endl; cout << "subgraph solver final error = " << graph.error(result) << endl;
} }
{ return 0;
Values result = graph.optimizeSPCG(initialEstimate);
result.print("\nFinal result:\n");
}
return 0 ;
} }