include missing headers for msvc and fix warning
parent
b215d3a377
commit
e36583e6d5
|
|
@ -66,7 +66,7 @@ void HybridConditional::print(const std::string &s,
|
|||
if (isDiscrete_) std::cout << "Disc. ";
|
||||
if (isHybrid_) std::cout << "Hybr. ";
|
||||
std::cout << "P(";
|
||||
int index = 0;
|
||||
size_t index = 0;
|
||||
const size_t N = keys().size();
|
||||
const size_t contN = N - discreteKeys_.size();
|
||||
while (index < N) {
|
||||
|
|
|
|||
|
|
@ -22,6 +22,7 @@
|
|||
#include <gtsam/discrete/Assignment.h>
|
||||
#include <gtsam/discrete/DiscreteEliminationTree.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/discrete/DiscreteJunctionTree.h>
|
||||
#include <gtsam/hybrid/GaussianMixtureConditional.h>
|
||||
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
||||
#include <gtsam/hybrid/HybridConditional.h>
|
||||
|
|
@ -34,6 +35,7 @@
|
|||
#include <gtsam/inference/EliminateableFactorGraph-inst.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/linear/GaussianConditional.h>
|
||||
#include <gtsam/linear/GaussianEliminationTree.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/HessianFactor.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
|
|
@ -104,9 +106,10 @@ EliminateHybrid(const HybridFactorGraph &factors, const Ordering &frontalKeys) {
|
|||
// Because of all these reasons, we need to think very carefully about how to
|
||||
// implement the hybrid factors so that we do not get poor performance.
|
||||
//
|
||||
// The first thing is how to represent the GaussianMixtureConditional. A very possible
|
||||
// scenario is that the incoming factors will have different levels of
|
||||
// discrete keys. For example, imagine we are going to eliminate the fragment:
|
||||
// The first thing is how to represent the GaussianMixtureConditional. A very
|
||||
// possible scenario is that the incoming factors will have different levels
|
||||
// of discrete keys. For example, imagine we are going to eliminate the
|
||||
// fragment:
|
||||
// $\phi(x1,c1,c2)$, $\phi(x1,c2,c3)$, which is perfectly valid. Now we will
|
||||
// need to know how to retrieve the corresponding continuous densities for the
|
||||
// assi- -gnment (c1,c2,c3) (OR (c2,c3,c1)! note there is NO defined order!).
|
||||
|
|
|
|||
Loading…
Reference in New Issue