fix small typos
parent
a6cc7ef2dc
commit
e2dbfa1b12
|
@ -168,7 +168,7 @@ vector field
|
|||
\end_inset
|
||||
|
||||
, defined as a mapping from
|
||||
\begin_inset Formula $R\times M$
|
||||
\begin_inset Formula $\Rone\times M$
|
||||
\end_inset
|
||||
|
||||
to tangent vectors at
|
||||
|
@ -245,7 +245,7 @@ X(t)=\left\{ R_{0},P_{0}+V_{0}t,V_{0}\right\}
|
|||
then the differential equation describing the trajectory is
|
||||
\begin_inset Formula
|
||||
\[
|
||||
X'(t)=\left[0_{3x3},V_{0},0_{3x1}\right],\,\,\,\,\, X(0)=\left\{ R_{0},P_{0},V_{0}\right\}
|
||||
\dot{X}(t)=\left[0_{3x3},V_{0},0_{3x1}\right],\,\,\,\,\,X(0)=\left\{ R_{0},P_{0},V_{0}\right\}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -264,7 +264,7 @@ Valid vector fields on a NavState manifold are special, in that the attitude
|
|||
:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
X'(t)=\left[W(X,t),V(t),A(X,t)\right]\label{eq:validField}
|
||||
\dot{X}(t)=\left[W(X,t),V(t),A(X,t)\right]\label{eq:validField}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -297,7 +297,7 @@ where
|
|||
, and hence the resulting exact vector field is
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
X'(t)=\left[W(X,t),V(t),A(X,t)\right]=\left[R(t)\Skew{\omega^{b}},V(t),g+R(t)a^{b}(t)\right]\label{eq:bodyField}
|
||||
\dot{X}(t)=\left[W(X,t),V(t),A(X,t)\right]=\left[R(t)\Skew{\omega^{b}},V(t),g+R(t)a^{b}(t)\right]\label{eq:bodyField}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -640,7 +640,7 @@ and taking the derivative for
|
|||
we obtain
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\dot{R}(t)=\frac{d\gamma(\delta)}{d\delta}\biggr\vert_{\delta=0}=\frac{d\Phi_{R(t)}\left(H(\theta)\theta'(t)\delta\right)}{dt}\biggr\vert_{t=0}=R(t)\Skew{H(\theta)\dot{\theta}(t)}
|
||||
\dot{R}(t)=\frac{d\gamma(\delta)}{d\delta}\biggr\vert_{\delta=0}=\frac{d\Phi_{R(t)}\left(H(\theta)\dot{\theta}(t)\delta\right)}{d\delta}\biggr\vert_{\delta=0}=R(t)\Skew{H(\theta)\dot{\theta}(t)}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -782,7 +782,7 @@ Here
|
|||
|
||||
is a 9-vector, with respectively angular, position, and velocity components.
|
||||
The tangent vector at
|
||||
\begin_inset Formula $R_{0}$
|
||||
\begin_inset Formula $X_{0}$
|
||||
\end_inset
|
||||
|
||||
is
|
||||
|
@ -875,7 +875,7 @@ We can create a trajectory
|
|||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\gamma(\delta)=X(t+\delta)=\left\{ \Phi_{R_{0}}\left(\theta(t)+\theta'(t)\delta\right),P_{0}+R_{0}\left\{ p(t)+p'(t)\delta\right\} ,V_{0}+R_{0}\left\{ v(t)+v'(t)\delta\right\} \right\}
|
||||
\gamma(\delta)=X(t+\delta)=\left\{ \Phi_{R_{0}}\left(\theta(t)+\dot{\theta}(t)\delta\right),P_{0}+R_{0}\left\{ p(t)+\dot{p}(t)\delta\right\} ,V_{0}+R_{0}\left\{ v(t)+\dot{v}(t)\delta\right\} \right\}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -887,7 +887,7 @@ and taking the derivative for
|
|||
we obtain
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\dot{X}(t)=\frac{d\gamma(\delta)}{d\delta}\biggr\vert_{\delta=0}=\left[R(t)\Skew{H(\theta)\theta'(t)},R_{0}\, p'(t),R_{0}\, v'(t)\right]
|
||||
\dot{X}(t)=\frac{d\gamma(\delta)}{d\delta}\biggr\vert_{\delta=0}=\left[R(t)\Skew{H(\theta)\dot{\theta}(t)},R_{0}\,\dot{p}(t),R_{0}\,\dot{v}(t)\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -902,7 +902,7 @@ reference "eq:bodyField"
|
|||
, we have exact integration iff
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[R(t)\Skew{H(\theta)\theta'(t)},R_{0}\, p'(t),R_{0}\, v'(t)\right]=\left[R(t)\Skew{\omega^{b}},V(t),g+R(t)a^{b}(t)\right]
|
||||
\left[R(t)\Skew{H(\theta)\dot{\theta}(t)},R_{0}\,\dot{p}(t),R_{0}\,\dot{v}(t)\right]=\left[R(t)\Skew{\omega^{b}},V(t),g+R(t)a^{b}(t)\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -1036,7 +1036,7 @@ The recipe for the IMU factor is then, in summary.
|
|||
Solve the ordinary differential equation
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\dot{\theta}(t) & = & H(\theta)^{-1}\,\omega^{b}\\
|
||||
\dot{\theta}(t) & = & H(\theta(t))^{-1}\,\omega^{b}(t)\\
|
||||
\dot{p}_{v}(t) & = & v_{a}(t)\\
|
||||
\dot{v}_{a}(t) & = & R_{b}^{0}(t)a^{b}(t)
|
||||
\end{eqnarray*}
|
||||
|
|
Loading…
Reference in New Issue