diff --git a/.cproject b/.cproject
index af6b32cd2..a43d32f58 100644
--- a/.cproject
+++ b/.cproject
@@ -568,6 +568,7 @@
make
+
tests/testBayesTree.run
true
false
@@ -575,6 +576,7 @@
make
+
testBinaryBayesNet.run
true
false
@@ -622,6 +624,7 @@
make
+
testSymbolicBayesNet.run
true
false
@@ -629,6 +632,7 @@
make
+
tests/testSymbolicFactor.run
true
false
@@ -636,6 +640,7 @@
make
+
testSymbolicFactorGraph.run
true
false
@@ -651,6 +656,7 @@
make
+
tests/testBayesTree
true
false
@@ -728,46 +734,6 @@
true
true
-
- make
- -j5
- testValues.run
- true
- true
- true
-
-
- make
- -j5
- testOrdering.run
- true
- true
- true
-
-
- make
- -j5
- testKey.run
- true
- true
- true
-
-
- make
- -j5
- testLinearContainerFactor.run
- true
- true
- true
-
-
- make
- -j6 -j8
- testWhiteNoiseFactor.run
- true
- true
- true
-
make
-j2
@@ -1114,6 +1080,7 @@
make
+
testErrors.run
true
false
@@ -1159,6 +1126,14 @@
true
true
+
+ make
+ -j5
+ testParticleFactor.run
+ true
+ true
+ true
+
make
-j2
@@ -1239,14 +1214,6 @@
true
true
-
- make
- -j5
- testParticleFactor.run
- true
- true
- true
-
make
-j2
@@ -1351,6 +1318,22 @@
true
true
+
+ make
+ -j5
+ testImuFactor.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ testCombinedImuFactor.run
+ true
+ true
+ true
+
make
-j2
@@ -1433,7 +1416,6 @@
make
-
testSimulated2DOriented.run
true
false
@@ -1473,7 +1455,6 @@
make
-
testSimulated2D.run
true
false
@@ -1481,7 +1462,6 @@
make
-
testSimulated3D.run
true
false
@@ -1495,22 +1475,6 @@
true
true
-
- make
- -j5
- testImuFactor.run
- true
- true
- true
-
-
- make
- -j5
- testCombinedImuFactor.run
- true
- true
- true
-
make
-j5
@@ -1768,6 +1732,7 @@
cpack
+
-G DEB
true
false
@@ -1775,6 +1740,7 @@
cpack
+
-G RPM
true
false
@@ -1782,6 +1748,7 @@
cpack
+
-G TGZ
true
false
@@ -1789,6 +1756,7 @@
cpack
+
--config CPackSourceConfig.cmake
true
false
@@ -2547,6 +2515,7 @@
make
+
testGraph.run
true
false
@@ -2554,6 +2523,7 @@
make
+
testJunctionTree.run
true
false
@@ -2561,6 +2531,7 @@
make
+
testSymbolicBayesNetB.run
true
false
@@ -2830,6 +2801,62 @@
true
true
+
+ make
+ -j5
+ Pose2SLAMExample_lago.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ Pose2SLAMExample_g2o.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ testLago.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ testLinearContainerFactor.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ testOrdering.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ testValues.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ testWhiteNoiseFactor.run
+ true
+ true
+ true
+
make
-j4
@@ -2848,7 +2875,6 @@
make
-
tests/testGaussianISAM2
true
false
diff --git a/examples/Pose2SLAMExample_g2o.cpp b/examples/Pose2SLAMExample_g2o.cpp
index 393bba86d..565a26965 100644
--- a/examples/Pose2SLAMExample_g2o.cpp
+++ b/examples/Pose2SLAMExample_g2o.cpp
@@ -18,27 +18,22 @@
* @author Luca Carlone
*/
-#include
-#include
-#include
#include
-#include
-#include
+#include
#include
-#include
-#include
#include
-#include
using namespace std;
using namespace gtsam;
+int main(const int argc, const char *argv[]) {
-int main(const int argc, const char *argv[]){
-
+ // Read graph from file
+ string g2oFile;
if (argc < 2)
- std::cout << "Please specify: 1st argument: input file (in g2o format) and 2nd argument: output file" << std::endl;
- const string g2oFile = argv[1];
+ g2oFile = "../../examples/Data/noisyToyGraph.txt";
+ else
+ g2oFile = argv[1];
NonlinearFactorGraph graph;
Values initial;
@@ -46,7 +41,8 @@ int main(const int argc, const char *argv[]){
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = graph;
- noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
+ noiseModel::Diagonal::shared_ptr priorModel = //
+ noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
graphWithPrior.add(PriorFactor(0, Pose2(), priorModel));
std::cout << "Optimizing the factor graph" << std::endl;
@@ -54,10 +50,13 @@ int main(const int argc, const char *argv[]){
Values result = optimizer.optimize();
std::cout << "Optimization complete" << std::endl;
- const string outputFile = argv[2];
- std::cout << "Writing results to file: " << outputFile << std::endl;
- writeG2o(outputFile, graph, result);
- std::cout << "done! " << std::endl;
-
+ if (argc < 3) {
+ result.print("result");
+ } else {
+ const string outputFile = argv[2];
+ std::cout << "Writing results to file: " << outputFile << std::endl;
+ writeG2o(outputFile, graph, result);
+ std::cout << "done! " << std::endl;
+ }
return 0;
}
diff --git a/examples/Pose2SLAMExample_lago.cpp b/examples/Pose2SLAMExample_lago.cpp
index d61f1b533..a6340caf7 100644
--- a/examples/Pose2SLAMExample_lago.cpp
+++ b/examples/Pose2SLAMExample_lago.cpp
@@ -12,33 +12,29 @@
/**
* @file Pose2SLAMExample_lago.cpp
* @brief A 2D Pose SLAM example that reads input from g2o, and solve the Pose2 problem
- * using LAGO (Linear Approximation for Graph Optimization). See class LagoInitializer.h
+ * using LAGO (Linear Approximation for Graph Optimization). See class lago.h
* Output is written on a file, in g2o format
* Syntax for the script is ./Pose2SLAMExample_lago input.g2o output.g2o
* @date May 15, 2014
* @author Luca Carlone
*/
-#include
-#include
-#include
+#include
#include
-#include
-#include
-#include
-#include
+#include
#include
-#include
using namespace std;
using namespace gtsam;
+int main(const int argc, const char *argv[]) {
-int main(const int argc, const char *argv[]){
-
+ // Read graph from file
+ string g2oFile;
if (argc < 2)
- std::cout << "Please specify: 1st argument: input file (in g2o format) and 2nd argument: output file" << std::endl;
- const string g2oFile = argv[1];
+ g2oFile = "../../examples/Data/noisyToyGraph.txt";
+ else
+ g2oFile = argv[1];
NonlinearFactorGraph graph;
Values initial;
@@ -46,17 +42,23 @@ int main(const int argc, const char *argv[]){
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = graph;
- noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
+ noiseModel::Diagonal::shared_ptr priorModel = //
+ noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
graphWithPrior.add(PriorFactor(0, Pose2(), priorModel));
+ graphWithPrior.print();
std::cout << "Computing LAGO estimate" << std::endl;
- Values estimateLago = initializeLago(graphWithPrior);
+ Values estimateLago = lago::initialize(graphWithPrior);
std::cout << "done!" << std::endl;
- const string outputFile = argv[2];
- std::cout << "Writing results to file: " << outputFile << std::endl;
- writeG2o(outputFile, graph, estimateLago);
- std::cout << "done! " << std::endl;
+ if (argc < 3) {
+ estimateLago.print("estimateLago");
+ } else {
+ const string outputFile = argv[2];
+ std::cout << "Writing results to file: " << outputFile << std::endl;
+ writeG2o(outputFile, graph, estimateLago);
+ std::cout << "done! " << std::endl;
+ }
return 0;
}
diff --git a/gtsam/nonlinear/LagoInitializer.h b/gtsam/nonlinear/LagoInitializer.h
deleted file mode 100644
index b351365c1..000000000
--- a/gtsam/nonlinear/LagoInitializer.h
+++ /dev/null
@@ -1,100 +0,0 @@
-/* ----------------------------------------------------------------------------
-
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
-
- * See LICENSE for the license information
-
- * -------------------------------------------------------------------------- */
-
-/**
- * @file LagoInitializer.h
- * @brief Initialize Pose2 in a factor graph using LAGO
- * (Linear Approximation for Graph Optimization). see papers:
- *
- * L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
- * approximation for planar pose graph optimization, IJRR, 2014.
- *
- * L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
- * for graph-based simultaneous localization and mapping, RSS, 2011.
- *
- * @param graph: nonlinear factor graph (can include arbitrary factors but we assume
- * that there is a subgraph involving Pose2 and betweenFactors). Also in the current
- * version we assume that there is an odometric spanning path (x0->x1, x1->x2, etc)
- * and a prior on x0. This assumption can be relaxed by using the extra argument
- * useOdometricPath = false, although this part of code is not stable yet.
- * @return Values: initial guess from LAGO (only pose2 are initialized)
- *
- * @author Luca Carlone
- * @author Frank Dellaert
- * @date May 14, 2014
- */
-
-#pragma once
-
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-
-namespace gtsam {
-
-typedef std::map key2doubleMap;
-const Key keyAnchor = symbol('Z',9999999);
-noiseModel::Diagonal::shared_ptr priorOrientationNoise = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
-noiseModel::Diagonal::shared_ptr priorPose2Noise = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
-
-/* This function computes the cumulative orientation (without wrapping) wrt the root of a spanning tree (tree)
- * for a node (nodeKey). The function starts at the nodes and moves towards the root
- * summing up the (directed) rotation measurements. Relative measurements are encoded in "deltaThetaMap"
- * The root is assumed to have orientation zero.
- */
-GTSAM_EXPORT double computeThetaToRoot(const Key nodeKey, const PredecessorMap& tree,
- const key2doubleMap& deltaThetaMap, const key2doubleMap& thetaFromRootMap);
-
-/* This function computes the cumulative orientations (without wrapping)
- * for all node wrt the root (root has zero orientation)
- */
-GTSAM_EXPORT key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
- const PredecessorMap& tree);
-
-/* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belonging to the tree and to g,
- * and stores the factor slots corresponding to edges in the tree and to chordsIds wrt this tree
- * Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
- * for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
- */
-GTSAM_EXPORT void getSymbolicGraph(
- /*OUTPUTS*/ std::vector& spanningTreeIds, std::vector& chordsIds, key2doubleMap& deltaThetaMap,
- /*INPUTS*/ const PredecessorMap& tree, const NonlinearFactorGraph& g);
-
-/* Retrieves the deltaTheta and the corresponding noise model from a BetweenFactor */
-GTSAM_EXPORT void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
- Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta);
-
-/* Linear factor graph with regularized orientation measurements */
-GTSAM_EXPORT GaussianFactorGraph buildLinearOrientationGraph(const std::vector& spanningTreeIds, const std::vector& chordsIds,
- const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap& tree);
-
-/* Selects the subgraph of betweenFactors and transforms priors into between wrt a fictitious node */
-GTSAM_EXPORT NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph);
-
-/* Returns the orientations of a graph including only BetweenFactors */
-GTSAM_EXPORT VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph, bool useOdometricPath = true);
-
-/* LAGO: Returns the orientations of the Pose2 in a generic factor graph */
-GTSAM_EXPORT VectorValues initializeOrientationsLago(const NonlinearFactorGraph& graph, bool useOdometricPath = true);
-
-/* Returns the values for the Pose2 in a generic factor graph */
-GTSAM_EXPORT Values initializeLago(const NonlinearFactorGraph& graph, bool useOdometricPath = true);
-
-/* Only corrects the orientation part in initialGuess */
-GTSAM_EXPORT Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess);
-
-} // end of namespace gtsam
diff --git a/gtsam/nonlinear/LagoInitializer.cpp b/gtsam/nonlinear/lago.cpp
similarity index 53%
rename from gtsam/nonlinear/LagoInitializer.cpp
rename to gtsam/nonlinear/lago.cpp
index 3451beaf3..c2a7d9454 100644
--- a/gtsam/nonlinear/LagoInitializer.cpp
+++ b/gtsam/nonlinear/lago.cpp
@@ -10,38 +10,57 @@
* -------------------------------------------------------------------------- */
/**
- * @file LagoInitializer.h
+ * @file lago.h
* @author Luca Carlone
* @author Frank Dellaert
* @date May 14, 2014
*/
-#include
-#include
+#include
+#include
+#include
+#include
+#include
+
#include
namespace gtsam {
+namespace lago {
-static Matrix I = eye(1);
-static Matrix I3 = eye(3);
+static const Matrix I = eye(1);
+static const Matrix I3 = eye(3);
+
+static const Key keyAnchor = symbol('Z', 9999999);
+static const noiseModel::Diagonal::shared_ptr priorOrientationNoise =
+ noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
+static const noiseModel::Diagonal::shared_ptr priorPose2Noise =
+ noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
/* ************************************************************************* */
-double computeThetaToRoot(const Key nodeKey, const PredecessorMap& tree,
- const key2doubleMap& deltaThetaMap, const key2doubleMap& thetaFromRootMap) {
+/**
+ * Compute the cumulative orientation (without wrapping) wrt the root of a
+ * spanning tree (tree) for a node (nodeKey). The function starts at the nodes and
+ * moves towards the root summing up the (directed) rotation measurements.
+ * Relative measurements are encoded in "deltaThetaMap".
+ * The root is assumed to have orientation zero.
+ */
+static double computeThetaToRoot(const Key nodeKey,
+ const PredecessorMap& tree, const key2doubleMap& deltaThetaMap,
+ const key2doubleMap& thetaFromRootMap) {
double nodeTheta = 0;
Key key_child = nodeKey; // the node
Key key_parent = 0; // the initialization does not matter
- while(1){
+ while (1) {
// We check if we reached the root
- if(tree.at(key_child)==key_child) // if we reached the root
+ if (tree.at(key_child) == key_child) // if we reached the root
break;
// we sum the delta theta corresponding to the edge parent->child
nodeTheta += deltaThetaMap.at(key_child);
// we get the parent
key_parent = tree.at(key_child); // the parent
// we check if we connected to some part of the tree we know
- if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
+ if (thetaFromRootMap.find(key_parent) != thetaFromRootMap.end()) {
nodeTheta += thetaFromRootMap.at(key_parent);
break;
}
@@ -55,15 +74,14 @@ key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
const PredecessorMap& tree) {
key2doubleMap thetaToRootMap;
- key2doubleMap::const_iterator it;
// Orientation of the roo
thetaToRootMap.insert(std::pair(keyAnchor, 0.0));
// for all nodes in the tree
- for(it = deltaThetaMap.begin(); it != deltaThetaMap.end(); ++it ){
+ BOOST_FOREACH(const key2doubleMap::value_type& it, deltaThetaMap) {
// compute the orientation wrt root
- Key nodeKey = it->first;
+ Key nodeKey = it.first;
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
thetaToRootMap);
thetaToRootMap.insert(std::pair(nodeKey, nodeTheta));
@@ -73,35 +91,38 @@ key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
/* ************************************************************************* */
void getSymbolicGraph(
- /*OUTPUTS*/ std::vector& spanningTreeIds, std::vector& chordsIds, key2doubleMap& deltaThetaMap,
- /*INPUTS*/ const PredecessorMap& tree, const NonlinearFactorGraph& g){
+/*OUTPUTS*/std::vector& spanningTreeIds, std::vector& chordsIds,
+ key2doubleMap& deltaThetaMap,
+ /*INPUTS*/const PredecessorMap& tree, const NonlinearFactorGraph& g) {
// Get keys for which you want the orientation
- size_t id=0;
+ size_t id = 0;
// Loop over the factors
- BOOST_FOREACH(const boost::shared_ptr& factor, g){
- if (factor->keys().size() == 2){
+ BOOST_FOREACH(const boost::shared_ptr& factor, g) {
+ if (factor->keys().size() == 2) {
Key key1 = factor->keys()[0];
Key key2 = factor->keys()[1];
// recast to a between
- boost::shared_ptr< BetweenFactor > pose2Between =
- boost::dynamic_pointer_cast< BetweenFactor >(factor);
- if (!pose2Between) continue;
+ boost::shared_ptr > pose2Between =
+ boost::dynamic_pointer_cast >(factor);
+ if (!pose2Between)
+ continue;
// get the orientation - measured().theta();
double deltaTheta = pose2Between->measured().theta();
// insert (directed) orientations in the map "deltaThetaMap"
- bool inTree=false;
- if(tree.at(key1)==key2){ // key2 -> key1
+ bool inTree = false;
+ if (tree.at(key1) == key2) { // key2 -> key1
deltaThetaMap.insert(std::pair(key1, -deltaTheta));
inTree = true;
- } else if(tree.at(key2)==key1){ // key1 -> key2
- deltaThetaMap.insert(std::pair(key2, deltaTheta));
+ } else if (tree.at(key2) == key1) { // key1 -> key2
+ deltaThetaMap.insert(std::pair(key2, deltaTheta));
inTree = true;
}
// store factor slot, distinguishing spanning tree edges from chordsIds
- if(inTree == true)
+ if (inTree == true)
spanningTreeIds.push_back(id);
- else // it's a chord!
+ else
+ // it's a chord!
chordsIds.push_back(id);
}
id++;
@@ -109,14 +130,16 @@ void getSymbolicGraph(
}
/* ************************************************************************* */
-void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
+// Retrieve the deltaTheta and the corresponding noise model from a BetweenFactor
+static void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
// Get the relative rotation measurement from the between factor
boost::shared_ptr > pose2Between =
boost::dynamic_pointer_cast >(factor);
if (!pose2Between)
- throw std::invalid_argument("buildLinearOrientationGraph: invalid between factor!");
+ throw std::invalid_argument(
+ "buildLinearOrientationGraph: invalid between factor!");
deltaTheta = (Vector(1) << pose2Between->measured().theta());
// Retrieve the noise model for the relative rotation
@@ -124,114 +147,130 @@ void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
boost::shared_ptr diagonalModel =
boost::dynamic_pointer_cast(model);
if (!diagonalModel)
- throw std::invalid_argument("buildLinearOrientationGraph: invalid noise model "
- "(current version assumes diagonal noise model)!");
- Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2) ); // std on the angular measurement
+ throw std::invalid_argument(
+ "buildLinearOrientationGraph: invalid noise model "
+ "(current version assumes diagonal noise model)!");
+ Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2)); // std on the angular measurement
model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
}
/* ************************************************************************* */
-GaussianFactorGraph buildLinearOrientationGraph(const std::vector& spanningTreeIds, const std::vector& chordsIds,
- const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap& tree){
+GaussianFactorGraph buildLinearOrientationGraph(
+ const std::vector& spanningTreeIds,
+ const std::vector& chordsIds, const NonlinearFactorGraph& g,
+ const key2doubleMap& orientationsToRoot, const PredecessorMap& tree) {
GaussianFactorGraph lagoGraph;
Vector deltaTheta;
noiseModel::Diagonal::shared_ptr model_deltaTheta;
// put original measurements in the spanning tree
- BOOST_FOREACH(const size_t& factorId, spanningTreeIds){
+ BOOST_FOREACH(const size_t& factorId, spanningTreeIds) {
const FastVector& keys = g[factorId]->keys();
Key key1 = keys[0], key2 = keys[1];
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
- lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
+ lagoGraph.add(
+ JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
}
// put regularized measurements in the chordsIds
- BOOST_FOREACH(const size_t& factorId, chordsIds){
+ BOOST_FOREACH(const size_t& factorId, chordsIds) {
const FastVector& keys = g[factorId]->keys();
Key key1 = keys[0], key2 = keys[1];
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
double key1_DeltaTheta_key2 = deltaTheta(0);
///std::cout << "REG: key1= " << DefaultKeyFormatter(key1) << " key2= " << DefaultKeyFormatter(key2) << std::endl;
- double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
- double k = boost::math::round(k2pi_noise/(2*M_PI));
+ double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1)
+ - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
+ double k = boost::math::round(k2pi_noise / (2 * M_PI));
//if (k2pi_noise - 2*k*M_PI > 1e-5) std::cout << k2pi_noise - 2*k*M_PI << std::endl; // for debug
- Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*M_PI);
- lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
+ Vector deltaThetaRegularized = (Vector(1)
+ << key1_DeltaTheta_key2 - 2 * k * M_PI);
+ lagoGraph.add(
+ JacobianFactor(key1, -I, key2, I, deltaThetaRegularized,
+ model_deltaTheta));
}
// prior on the anchor orientation
- lagoGraph.add(JacobianFactor(keyAnchor, I, (Vector(1) << 0.0), priorOrientationNoise));
+ lagoGraph.add(
+ JacobianFactor(keyAnchor, I, (Vector(1) << 0.0), priorOrientationNoise));
return lagoGraph;
}
/* ************************************************************************* */
-NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph){
+// Select the subgraph of betweenFactors and transforms priors into between wrt a fictitious node
+static NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph) {
NonlinearFactorGraph pose2Graph;
- BOOST_FOREACH(const boost::shared_ptr& factor, graph){
+ BOOST_FOREACH(const boost::shared_ptr& factor, graph) {
// recast to a between on Pose2
- boost::shared_ptr< BetweenFactor > pose2Between =
- boost::dynamic_pointer_cast< BetweenFactor >(factor);
+ boost::shared_ptr > pose2Between =
+ boost::dynamic_pointer_cast >(factor);
if (pose2Between)
pose2Graph.add(pose2Between);
// recast PriorFactor to BetweenFactor
- boost::shared_ptr< PriorFactor > pose2Prior =
- boost::dynamic_pointer_cast< PriorFactor >(factor);
+ boost::shared_ptr > pose2Prior =
+ boost::dynamic_pointer_cast >(factor);
if (pose2Prior)
- pose2Graph.add(BetweenFactor(keyAnchor, pose2Prior->keys()[0],
- pose2Prior->prior(), pose2Prior->get_noiseModel()));
+ pose2Graph.add(
+ BetweenFactor(keyAnchor, pose2Prior->keys()[0],
+ pose2Prior->prior(), pose2Prior->get_noiseModel()));
}
return pose2Graph;
}
/* ************************************************************************* */
-PredecessorMap findOdometricPath(const NonlinearFactorGraph& pose2Graph) {
+static PredecessorMap findOdometricPath(
+ const NonlinearFactorGraph& pose2Graph) {
PredecessorMap tree;
Key minKey;
bool minUnassigned = true;
- BOOST_FOREACH(const boost::shared_ptr& factor, pose2Graph){
+ BOOST_FOREACH(const boost::shared_ptr& factor, pose2Graph) {
Key key1 = std::min(factor->keys()[0], factor->keys()[1]);
Key key2 = std::max(factor->keys()[0], factor->keys()[1]);
- if(minUnassigned){
+ if (minUnassigned) {
minKey = key1;
minUnassigned = false;
}
- if( key2 - key1 == 1){ // consecutive keys
+ if (key2 - key1 == 1) { // consecutive keys
tree.insert(key2, key1);
- if(key1 < minKey)
+ if (key1 < minKey)
minKey = key1;
}
}
- tree.insert(minKey,keyAnchor);
- tree.insert(keyAnchor,keyAnchor); // root
+ tree.insert(minKey, keyAnchor);
+ tree.insert(keyAnchor, keyAnchor); // root
return tree;
}
/* ************************************************************************* */
-VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph, bool useOdometricPath){
+// Return the orientations of a graph including only BetweenFactors
+static VectorValues computeOrientations(const NonlinearFactorGraph& pose2Graph,
+ bool useOdometricPath) {
// Find a minimum spanning tree
PredecessorMap tree;
if (useOdometricPath)
tree = findOdometricPath(pose2Graph);
else
- tree = findMinimumSpanningTree >(pose2Graph);
+ tree = findMinimumSpanningTree >(pose2Graph);
// Create a linear factor graph (LFG) of scalars
key2doubleMap deltaThetaMap;
std::vector spanningTreeIds; // ids of between factors forming the spanning tree T
- std::vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
+ std::vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph);
// temporary structure to correct wraparounds along loops
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
// regularize measurements and plug everything in a factor graph
- GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, pose2Graph, orientationsToRoot, tree);
+ GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds,
+ chordsIds, pose2Graph, orientationsToRoot, tree);
// Solve the LFG
VectorValues orientationsLago = lagoGraph.optimize();
@@ -240,70 +279,81 @@ VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph, boo
}
/* ************************************************************************* */
-VectorValues initializeOrientationsLago(const NonlinearFactorGraph& graph, bool useOdometricPath) {
+VectorValues initializeOrientations(const NonlinearFactorGraph& graph,
+ bool useOdometricPath) {
// We "extract" the Pose2 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
// Get orientations from relative orientation measurements
- return computeLagoOrientations(pose2Graph, useOdometricPath);
+ return computeOrientations(pose2Graph, useOdometricPath);
}
/* ************************************************************************* */
-Values computeLagoPoses(const NonlinearFactorGraph& pose2graph, VectorValues& orientationsLago) {
+Values computePoses(const NonlinearFactorGraph& pose2graph,
+ VectorValues& orientationsLago) {
// Linearized graph on full poses
GaussianFactorGraph linearPose2graph;
// We include the linear version of each between factor
- BOOST_FOREACH(const boost::shared_ptr& factor, pose2graph){
+ BOOST_FOREACH(const boost::shared_ptr& factor, pose2graph) {
- boost::shared_ptr< BetweenFactor > pose2Between =
- boost::dynamic_pointer_cast< BetweenFactor >(factor);
+ boost::shared_ptr > pose2Between =
+ boost::dynamic_pointer_cast >(factor);
- if(pose2Between){
+ if (pose2Between) {
Key key1 = pose2Between->keys()[0];
double theta1 = orientationsLago.at(key1)(0);
- double s1 = sin(theta1); double c1 = cos(theta1);
+ double s1 = sin(theta1);
+ double c1 = cos(theta1);
Key key2 = pose2Between->keys()[1];
double theta2 = orientationsLago.at(key2)(0);
- double linearDeltaRot = theta2 - theta1 - pose2Between->measured().theta();
+ double linearDeltaRot = theta2 - theta1
+ - pose2Between->measured().theta();
linearDeltaRot = Rot2(linearDeltaRot).theta(); // to normalize
double dx = pose2Between->measured().x();
double dy = pose2Between->measured().y();
- Vector globalDeltaCart = (Vector(2) << c1*dx - s1*dy, s1*dx + c1*dy);
- Vector b = (Vector(3) << globalDeltaCart, linearDeltaRot );// rhs
- Matrix J1 = - I3;
- J1(0,2) = s1*dx + c1*dy;
- J1(1,2) = -c1*dx + s1*dy;
+ Vector globalDeltaCart = (Vector(2) << c1 * dx - s1 * dy, s1 * dx
+ + c1 * dy);
+ Vector b = (Vector(3) << globalDeltaCart, linearDeltaRot); // rhs
+ Matrix J1 = -I3;
+ J1(0, 2) = s1 * dx + c1 * dy;
+ J1(1, 2) = -c1 * dx + s1 * dy;
// Retrieve the noise model for the relative rotation
boost::shared_ptr diagonalModel =
- boost::dynamic_pointer_cast(pose2Between->get_noiseModel());
+ boost::dynamic_pointer_cast(
+ pose2Between->get_noiseModel());
- linearPose2graph.add(JacobianFactor(key1, J1, key2, I3, b, diagonalModel));
- }else{
- throw std::invalid_argument("computeLagoPoses: cannot manage non between factor here!");
+ linearPose2graph.add(
+ JacobianFactor(key1, J1, key2, I3, b, diagonalModel));
+ } else {
+ throw std::invalid_argument(
+ "computeLagoPoses: cannot manage non between factor here!");
}
}
// add prior
- noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4));
- linearPose2graph.add(JacobianFactor(keyAnchor, I3, (Vector(3) << 0.0,0.0,0.0), priorModel));
+ noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances(
+ (Vector(3) << 1e-2, 1e-2, 1e-4));
+ linearPose2graph.add(
+ JacobianFactor(keyAnchor, I3, (Vector(3) << 0.0, 0.0, 0.0), priorModel));
// optimize
VectorValues posesLago = linearPose2graph.optimize();
// put into Values structure
Values initialGuessLago;
- for(VectorValues::const_iterator it = posesLago.begin(); it != posesLago.end(); ++it ){
- Key key = it->first;
- if (key != keyAnchor){
- Vector poseVector = posesLago.at(key);
- Pose2 poseLago = Pose2(poseVector(0),poseVector(1),orientationsLago.at(key)(0)+poseVector(2));
+ BOOST_FOREACH(const VectorValues::value_type& it, posesLago) {
+ Key key = it.first;
+ if (key != keyAnchor) {
+ const Vector& poseVector = it.second;
+ Pose2 poseLago = Pose2(poseVector(0), poseVector(1),
+ orientationsLago.at(key)(0) + poseVector(2));
initialGuessLago.insert(key, poseLago);
}
}
@@ -311,37 +361,40 @@ Values computeLagoPoses(const NonlinearFactorGraph& pose2graph, VectorValues& or
}
/* ************************************************************************* */
-Values initializeLago(const NonlinearFactorGraph& graph, bool useOdometricPath) {
+Values initialize(const NonlinearFactorGraph& graph, bool useOdometricPath) {
// We "extract" the Pose2 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
// Get orientations from relative orientation measurements
- VectorValues orientationsLago = computeLagoOrientations(pose2Graph, useOdometricPath);
+ VectorValues orientationsLago = computeOrientations(pose2Graph,
+ useOdometricPath);
// Compute the full poses
- return computeLagoPoses(pose2Graph, orientationsLago);
+ return computePoses(pose2Graph, orientationsLago);
}
/* ************************************************************************* */
-Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
+Values initialize(const NonlinearFactorGraph& graph,
+ const Values& initialGuess) {
Values initialGuessLago;
// get the orientation estimates from LAGO
- VectorValues orientations = initializeOrientationsLago(graph);
+ VectorValues orientations = initializeOrientations(graph);
// for all nodes in the tree
- for(VectorValues::const_iterator it = orientations.begin(); it != orientations.end(); ++it ){
- Key key = it->first;
- if (key != keyAnchor){
- Pose2 pose = initialGuess.at(key);
- Vector orientation = orientations.at(key);
- Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
+ BOOST_FOREACH(const VectorValues::value_type& it, orientations) {
+ Key key = it.first;
+ if (key != keyAnchor) {
+ const Pose2& pose = initialGuess.at(key);
+ const Vector& orientation = it.second;
+ Pose2 poseLago = Pose2(pose.x(), pose.y(), orientation(0));
initialGuessLago.insert(key, poseLago);
}
}
return initialGuessLago;
}
+} // end of namespace lago
} // end of namespace gtsam
diff --git a/gtsam/nonlinear/lago.h b/gtsam/nonlinear/lago.h
new file mode 100644
index 000000000..0df80ac42
--- /dev/null
+++ b/gtsam/nonlinear/lago.h
@@ -0,0 +1,86 @@
+/* ----------------------------------------------------------------------------
+
+ * GTSAM Copyright 2010, Georgia Tech Research Corporation,
+ * Atlanta, Georgia 30332-0415
+ * All Rights Reserved
+ * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
+
+ * See LICENSE for the license information
+
+ * -------------------------------------------------------------------------- */
+
+/**
+ * @file lago.h
+ * @brief Initialize Pose2 in a factor graph using LAGO
+ * (Linear Approximation for Graph Optimization). see papers:
+ *
+ * L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
+ * approximation for planar pose graph optimization, IJRR, 2014.
+ *
+ * L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
+ * for graph-based simultaneous localization and mapping, RSS, 2011.
+ *
+ * @param graph: nonlinear factor graph (can include arbitrary factors but we assume
+ * that there is a subgraph involving Pose2 and betweenFactors). Also in the current
+ * version we assume that there is an odometric spanning path (x0->x1, x1->x2, etc)
+ * and a prior on x0. This assumption can be relaxed by using the extra argument
+ * useOdometricPath = false, although this part of code is not stable yet.
+ * @return Values: initial guess from LAGO (only pose2 are initialized)
+ *
+ * @author Luca Carlone
+ * @author Frank Dellaert
+ * @date May 14, 2014
+ */
+
+#pragma once
+
+#include
+#include
+#include
+#include
+
+namespace gtsam {
+namespace lago {
+
+typedef std::map key2doubleMap;
+
+/**
+ * Compute the cumulative orientations (without wrapping)
+ * for all nodes wrt the root (root has zero orientation).
+ */
+GTSAM_EXPORT key2doubleMap computeThetasToRoot(
+ const key2doubleMap& deltaThetaMap, const PredecessorMap& tree);
+
+/**
+ * Given a factor graph "g", and a spanning tree "tree", select the nodes belonging
+ * to the tree and to g, and stores the factor slots corresponding to edges in the
+ * tree and to chordsIds wrt this tree.
+ * Also it computes deltaThetaMap which is a fast way to encode relative
+ * orientations along the tree: for a node key2, s.t. tree[key2]=key1,
+ * the value deltaThetaMap[key2] is relative orientation theta[key2]-theta[key1]
+ */
+GTSAM_EXPORT void getSymbolicGraph(
+/*OUTPUTS*/std::vector& spanningTreeIds, std::vector& chordsIds,
+ key2doubleMap& deltaThetaMap,
+ /*INPUTS*/const PredecessorMap& tree, const NonlinearFactorGraph& g);
+
+/** Linear factor graph with regularized orientation measurements */
+GTSAM_EXPORT GaussianFactorGraph buildLinearOrientationGraph(
+ const std::vector& spanningTreeIds,
+ const std::vector& chordsIds, const NonlinearFactorGraph& g,
+ const key2doubleMap& orientationsToRoot, const PredecessorMap& tree);
+
+/** LAGO: Return the orientations of the Pose2 in a generic factor graph */
+GTSAM_EXPORT VectorValues initializeOrientations(
+ const NonlinearFactorGraph& graph, bool useOdometricPath = true);
+
+/** Return the values for the Pose2 in a generic factor graph */
+GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph,
+ bool useOdometricPath = true);
+
+/** Only correct the orientation part in initialGuess */
+GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph,
+ const Values& initialGuess);
+
+} // end of namespace lago
+} // end of namespace gtsam
diff --git a/gtsam/nonlinear/tests/testLagoInitializer.cpp b/gtsam/nonlinear/tests/testLago.cpp
similarity index 75%
rename from gtsam/nonlinear/tests/testLagoInitializer.cpp
rename to gtsam/nonlinear/tests/testLago.cpp
index 64e43ae9b..f2cab4506 100644
--- a/gtsam/nonlinear/tests/testLagoInitializer.cpp
+++ b/gtsam/nonlinear/tests/testLago.cpp
@@ -19,20 +19,14 @@
* @date May 14, 2014
*/
-#include
-
+#include
+#include
+#include
+#include
#include
-#include
-#include
-#include
-
-#include
-#include
-
-#include
#include
-#include
+
#include
using namespace std;
@@ -77,10 +71,10 @@ TEST( Lago, checkSTandChords ) {
PredecessorMap tree = findMinimumSpanningTree >(g);
- key2doubleMap deltaThetaMap;
+ lago::key2doubleMap deltaThetaMap;
vector spanningTreeIds; // ids of between factors forming the spanning tree T
vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
- getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
+ lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
DOUBLES_EQUAL(spanningTreeIds[0], 0, 1e-6); // factor 0 is the first in the ST (0->1)
DOUBLES_EQUAL(spanningTreeIds[1], 3, 1e-6); // factor 3 is the second in the ST(2->0)
@@ -100,19 +94,19 @@ TEST( Lago, orientationsOverSpanningTree ) {
EXPECT_LONGS_EQUAL(tree[x2], x0);
EXPECT_LONGS_EQUAL(tree[x3], x0);
- key2doubleMap expected;
+ lago::key2doubleMap expected;
expected[x0]= 0;
expected[x1]= M_PI/2; // edge x0->x1 (consistent with edge (x0,x1))
expected[x2]= -M_PI; // edge x0->x2 (traversed backwards wrt edge (x2,x0))
expected[x3]= -M_PI/2; // edge x0->x3 (consistent with edge (x0,x3))
- key2doubleMap deltaThetaMap;
+ lago::key2doubleMap deltaThetaMap;
vector spanningTreeIds; // ids of between factors forming the spanning tree T
vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
- getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
+ lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
- key2doubleMap actual;
- actual = computeThetasToRoot(deltaThetaMap, tree);
+ lago::key2doubleMap actual;
+ actual = lago::computeThetasToRoot(deltaThetaMap, tree);
DOUBLES_EQUAL(expected[x0], actual[x0], 1e-6);
DOUBLES_EQUAL(expected[x1], actual[x1], 1e-6);
DOUBLES_EQUAL(expected[x2], actual[x2], 1e-6);
@@ -125,14 +119,14 @@ TEST( Lago, regularizedMeasurements ) {
PredecessorMap tree = findMinimumSpanningTree >(g);
- key2doubleMap deltaThetaMap;
+ lago::key2doubleMap deltaThetaMap;
vector spanningTreeIds; // ids of between factors forming the spanning tree T
vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
- getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
+ lago::getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
- key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
+ lago::key2doubleMap orientationsToRoot = lago::computeThetasToRoot(deltaThetaMap, tree);
- GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, g, orientationsToRoot, tree);
+ GaussianFactorGraph lagoGraph = lago::buildLinearOrientationGraph(spanningTreeIds, chordsIds, g, orientationsToRoot, tree);
std::pair actualAb = lagoGraph.jacobian();
// jacobian corresponding to the orientation measurements (last entry is the prior on the anchor and is disregarded)
Vector actual = (Vector(5) << actualAb.second(0),actualAb.second(1),actualAb.second(2),actualAb.second(3),actualAb.second(4));
@@ -147,25 +141,25 @@ TEST( Lago, regularizedMeasurements ) {
/* *************************************************************************** */
TEST( Lago, smallGraphVectorValues ) {
bool useOdometricPath = false;
- VectorValues initialGuessLago = initializeOrientationsLago(simple::graph(), useOdometricPath);
+ VectorValues initial = lago::initializeOrientations(simple::graph(), useOdometricPath);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
- EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
- EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
- EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
- EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
+ EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, smallGraphVectorValuesSP ) {
- VectorValues initialGuessLago = initializeOrientationsLago(simple::graph());
+ VectorValues initial = lago::initializeOrientations(simple::graph());
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
- EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
- EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
- EXPECT(assert_equal((Vector(1) << M_PI ), initialGuessLago.at(x2), 1e-6));
- EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initialGuessLago.at(x3), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
+ EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
@@ -173,26 +167,26 @@ TEST( Lago, multiplePosePriors ) {
bool useOdometricPath = false;
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor(x1, simple::pose1, model));
- VectorValues initialGuessLago = initializeOrientationsLago(g, useOdometricPath);
+ VectorValues initial = lago::initializeOrientations(g, useOdometricPath);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
- EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
- EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
- EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
- EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
+ EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, multiplePosePriorsSP ) {
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor(x1, simple::pose1, model));
- VectorValues initialGuessLago = initializeOrientationsLago(g);
+ VectorValues initial = lago::initializeOrientations(g);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
- EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
- EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
- EXPECT(assert_equal((Vector(1) << M_PI ), initialGuessLago.at(x2), 1e-6));
- EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initialGuessLago.at(x3), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
+ EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
@@ -200,26 +194,26 @@ TEST( Lago, multiplePoseAndRotPriors ) {
bool useOdometricPath = false;
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor(x1, simple::pose1.theta(), model));
- VectorValues initialGuessLago = initializeOrientationsLago(g, useOdometricPath);
+ VectorValues initial = lago::initializeOrientations(g, useOdometricPath);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
- EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
- EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
- EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
- EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
+ EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initial.at(x2), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, multiplePoseAndRotPriorsSP ) {
NonlinearFactorGraph g = simple::graph();
g.add(PriorFactor(x1, simple::pose1.theta(), model));
- VectorValues initialGuessLago = initializeOrientationsLago(g);
+ VectorValues initial = lago::initializeOrientations(g);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
- EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
- EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
- EXPECT(assert_equal((Vector(1) << M_PI ), initialGuessLago.at(x2), 1e-6));
- EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initialGuessLago.at(x3), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initial.at(x1), 1e-6));
+ EXPECT(assert_equal((Vector(1) << M_PI ), initial.at(x2), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 1.5 * M_PI ), initial.at(x3), 1e-6));
}
/* *************************************************************************** */
@@ -233,7 +227,7 @@ TEST( Lago, smallGraphValues ) {
initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
// lago does not touch the Cartesian part and only fixed the orientations
- Values actual = initializeLago(simple::graph(), initialGuess);
+ Values actual = lago::initialize(simple::graph(), initialGuess);
// we are in a noiseless case
Values expected;
@@ -249,7 +243,7 @@ TEST( Lago, smallGraphValues ) {
TEST( Lago, smallGraph2 ) {
// lago does not touch the Cartesian part and only fixed the orientations
- Values actual = initializeLago(simple::graph());
+ Values actual = lago::initialize(simple::graph());
// we are in a noiseless case
Values expected;
@@ -274,7 +268,7 @@ TEST( Lago, largeGraphNoisy_orientations ) {
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4));
graphWithPrior.add(PriorFactor(0, Pose2(), priorModel));
- VectorValues actualVV = initializeOrientationsLago(graphWithPrior);
+ VectorValues actualVV = lago::initializeOrientations(graphWithPrior);
Values actual;
Key keyAnc = symbol('Z',9999999);
for(VectorValues::const_iterator it = actualVV.begin(); it != actualVV.end(); ++it ){
@@ -309,7 +303,7 @@ TEST( Lago, largeGraphNoisy ) {
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4));
graphWithPrior.add(PriorFactor(0, Pose2(), priorModel));
- Values actual = initializeLago(graphWithPrior);
+ Values actual = lago::initialize(graphWithPrior);
NonlinearFactorGraph gmatlab;
Values expected;