Grabbed some methods from JacobianSchurFactor, added VectorValues versions
parent
3d8f980577
commit
e15cfb3d33
|
@ -21,25 +21,34 @@
|
|||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* JacobianFactor with constant sized blocks
|
||||
* Provides raw memory access versions of linear operator.
|
||||
* Is base class for JacobianQFactor, JacobianFactorQR, and JacobianFactorSVD
|
||||
*/
|
||||
template<size_t D>
|
||||
class RegularJacobianFactor: public JacobianFactor {
|
||||
|
||||
private:
|
||||
|
||||
/** Use eigen magic to access raw memory */
|
||||
// Use eigen magic to access raw memory
|
||||
typedef Eigen::Matrix<double, D, 1> DVector;
|
||||
typedef Eigen::Map<DVector> DMap;
|
||||
typedef Eigen::Map<const DVector> ConstDMap;
|
||||
|
||||
public:
|
||||
|
||||
/// Default constructor
|
||||
RegularJacobianFactor() {}
|
||||
|
||||
/** Construct an n-ary factor
|
||||
* @tparam TERMS A container whose value type is std::pair<Key, Matrix>, specifying the
|
||||
* collection of keys and matrices making up the factor. */
|
||||
* collection of keys and matrices making up the factor.
|
||||
* TODO Verify terms are regular
|
||||
*/
|
||||
template<typename TERMS>
|
||||
RegularJacobianFactor(const TERMS& terms, const Vector& b,
|
||||
const SharedDiagonal& model = SharedDiagonal()) :
|
||||
|
@ -49,7 +58,9 @@ public:
|
|||
/** Constructor with arbitrary number keys, and where the augmented matrix is given all together
|
||||
* instead of in block terms. Note that only the active view of the provided augmented matrix
|
||||
* is used, and that the matrix data is copied into a newly-allocated matrix in the constructed
|
||||
* factor. */
|
||||
* factor.
|
||||
* TODO Verify complies to regular
|
||||
*/
|
||||
template<typename KEYS>
|
||||
RegularJacobianFactor(const KEYS& keys,
|
||||
const VerticalBlockMatrix& augmentedMatrix, const SharedDiagonal& sigmas =
|
||||
|
@ -63,52 +74,11 @@ public:
|
|||
JacobianFactor::multiplyHessianAdd(alpha, x, y);
|
||||
}
|
||||
|
||||
/** Raw memory access version of multiplyHessianAdd y += alpha * A'*A*x
|
||||
* Note: this is not assuming a fixed dimension for the variables,
|
||||
* but requires the vector accumulatedDims to tell the dimension of
|
||||
* each variable: e.g.: x0 has dim 3, x2 has dim 6, x3 has dim 2,
|
||||
* then accumulatedDims is [0 3 9 11 13]
|
||||
* NOTE: size of accumulatedDims is size of keys + 1!! */
|
||||
void multiplyHessianAdd(double alpha, const double* x, double* y,
|
||||
const std::vector<size_t>& accumulatedDims) const {
|
||||
|
||||
/// Use eigen magic to access raw memory
|
||||
typedef Eigen::Matrix<double, Eigen::Dynamic, 1> VectorD;
|
||||
typedef Eigen::Map<VectorD> MapD;
|
||||
typedef Eigen::Map<const VectorD> ConstMapD;
|
||||
|
||||
if (empty())
|
||||
return;
|
||||
Vector Ax = zero(Ab_.rows());
|
||||
|
||||
/// Just iterate over all A matrices and multiply in correct config part (looping over keys)
|
||||
/// E.g.: Jacobian A = [A0 A1 A2] multiplies x = [x0 x1 x2]'
|
||||
/// Hence: Ax = A0 x0 + A1 x1 + A2 x2 (hence we loop over the keys and accumulate)
|
||||
for (size_t pos = 0; pos < size(); ++pos) {
|
||||
Ax += Ab_(pos)
|
||||
* ConstMapD(x + accumulatedDims[keys_[pos]],
|
||||
accumulatedDims[keys_[pos] + 1] - accumulatedDims[keys_[pos]]);
|
||||
}
|
||||
/// Deal with noise properly, need to Double* whiten as we are dividing by variance
|
||||
if (model_) {
|
||||
model_->whitenInPlace(Ax);
|
||||
model_->whitenInPlace(Ax);
|
||||
}
|
||||
|
||||
/// multiply with alpha
|
||||
Ax *= alpha;
|
||||
|
||||
/// Again iterate over all A matrices and insert Ai^T into y
|
||||
for (size_t pos = 0; pos < size(); ++pos) {
|
||||
MapD(y + accumulatedDims[keys_[pos]],
|
||||
accumulatedDims[keys_[pos] + 1] - accumulatedDims[keys_[pos]]) += Ab_(
|
||||
pos).transpose() * Ax;
|
||||
}
|
||||
}
|
||||
|
||||
/** Raw memory access version of multiplyHessianAdd */
|
||||
/**
|
||||
* @brief double* Hessian-vector multiply, i.e. y += A'*(A*x)
|
||||
* RAW memory access! Assumes keys start at 0 and go to M-1, and x and and y are laid out that way
|
||||
*/
|
||||
void multiplyHessianAdd(double alpha, const double* x, double* y) const {
|
||||
|
||||
if (empty())
|
||||
return;
|
||||
Vector Ax = zero(Ab_.rows());
|
||||
|
@ -131,10 +101,13 @@ public:
|
|||
DMap(y + D * keys_[pos]) += Ab_(pos).transpose() * Ax;
|
||||
}
|
||||
|
||||
/** Raw memory access version of hessianDiagonal
|
||||
* TODO: currently assumes all variables of the same size D (templated) and keys arranged from 0 to n
|
||||
*/
|
||||
virtual void hessianDiagonal(double* d) const {
|
||||
/// Expose base class hessianDiagonal
|
||||
virtual VectorValues hessianDiagonal() const {
|
||||
return JacobianFactor::hessianDiagonal();
|
||||
}
|
||||
|
||||
/// Raw memory access version of hessianDiagonal
|
||||
void hessianDiagonal(double* d) const {
|
||||
// Loop over all variables in the factor
|
||||
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
|
||||
// Get the diagonal block, and insert its diagonal
|
||||
|
@ -152,10 +125,13 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
/** Raw memory access version of gradientAtZero
|
||||
* TODO: currently assumes all variables of the same size D (templated) and keys arranged from 0 to n
|
||||
*/
|
||||
virtual void gradientAtZero(double* d) const {
|
||||
/// Expose base class gradientAtZero
|
||||
virtual VectorValues gradientAtZero() const {
|
||||
return JacobianFactor::gradientAtZero();
|
||||
}
|
||||
|
||||
/// Raw memory access version of gradientAtZero
|
||||
void gradientAtZero(double* d) const {
|
||||
|
||||
// Get vector b not weighted
|
||||
Vector b = getb();
|
||||
|
@ -179,7 +155,78 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief double* Transpose Matrix-vector multiply, i.e. x += A'*e
|
||||
* RAW memory access! Assumes keys start at 0 and go to M-1, and y is laid out that way
|
||||
*/
|
||||
void transposeMultiplyAdd(double alpha, const Vector& e, double* x) const {
|
||||
Vector E = alpha * (model_ ? model_->whiten(e) : e);
|
||||
// Just iterate over all A matrices and insert Ai^e into y
|
||||
for (size_t pos = 0; pos < size(); ++pos)
|
||||
DMap(x + D * keys_[pos]) += Ab_(pos).transpose() * E;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief double* Matrix-vector multiply, i.e. y = A*x
|
||||
* RAW memory access! Assumes keys start at 0 and go to M-1, and x is laid out that way
|
||||
*/
|
||||
Vector operator*(const double* x) const {
|
||||
Vector Ax = zero(Ab_.rows());
|
||||
if (empty())
|
||||
return Ax;
|
||||
|
||||
// Just iterate over all A matrices and multiply in correct config part
|
||||
for (size_t pos = 0; pos < size(); ++pos)
|
||||
Ax += Ab_(pos) * ConstDMap(x + D * keys_[pos]);
|
||||
|
||||
return model_ ? model_->whiten(Ax) : Ax;
|
||||
}
|
||||
|
||||
/** Raw memory access version of multiplyHessianAdd y += alpha * A'*A*x
|
||||
* Note: this is not assuming a fixed dimension for the variables,
|
||||
* but requires the vector accumulatedDims to tell the dimension of
|
||||
* each variable: e.g.: x0 has dim 3, x2 has dim 6, x3 has dim 2,
|
||||
* then accumulatedDims is [0 3 9 11 13]
|
||||
* NOTE: size of accumulatedDims is size of keys + 1!!
|
||||
* TODO Frank asks: why is this here if not regular ????
|
||||
*/
|
||||
void multiplyHessianAdd(double alpha, const double* x, double* y,
|
||||
const std::vector<size_t>& accumulatedDims) const {
|
||||
|
||||
/// Use Eigen magic to access raw memory
|
||||
typedef Eigen::Map<Vector> VectorMap;
|
||||
typedef Eigen::Map<const Vector> ConstVectorMap;
|
||||
|
||||
if (empty())
|
||||
return;
|
||||
Vector Ax = zero(Ab_.rows());
|
||||
|
||||
/// Just iterate over all A matrices and multiply in correct config part (looping over keys)
|
||||
/// E.g.: Jacobian A = [A0 A1 A2] multiplies x = [x0 x1 x2]'
|
||||
/// Hence: Ax = A0 x0 + A1 x1 + A2 x2 (hence we loop over the keys and accumulate)
|
||||
for (size_t pos = 0; pos < size(); ++pos) {
|
||||
size_t offset = accumulatedDims[keys_[pos]];
|
||||
size_t dim = accumulatedDims[keys_[pos] + 1] - offset;
|
||||
Ax += Ab_(pos) * ConstVectorMap(x + offset, dim);
|
||||
}
|
||||
/// Deal with noise properly, need to Double* whiten as we are dividing by variance
|
||||
if (model_) {
|
||||
model_->whitenInPlace(Ax);
|
||||
model_->whitenInPlace(Ax);
|
||||
}
|
||||
|
||||
/// multiply with alpha
|
||||
Ax *= alpha;
|
||||
|
||||
/// Again iterate over all A matrices and insert Ai^T into y
|
||||
for (size_t pos = 0; pos < size(); ++pos) {
|
||||
size_t offset = accumulatedDims[keys_[pos]];
|
||||
size_t dim = accumulatedDims[keys_[pos] + 1] - offset;
|
||||
VectorMap(y + offset, dim) += Ab_(pos).transpose() * Ax;
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
// end class RegularJacobianFactor
|
||||
|
||||
}
|
||||
|
||||
}// end namespace gtsam
|
||||
|
|
Loading…
Reference in New Issue