No more Ceres dependecy, copied relevant Ceres files here (for now)

release/4.3a0
dellaert 2014-10-20 23:53:56 +02:00
parent f39c1d72f8
commit e0841fb3e6
11 changed files with 2559 additions and 5 deletions

View File

@ -2,8 +2,5 @@
file(GLOB nonlinear_headers "*.h") file(GLOB nonlinear_headers "*.h")
install(FILES ${nonlinear_headers} DESTINATION include/gtsam_unstable/nonlinear) install(FILES ${nonlinear_headers} DESTINATION include/gtsam_unstable/nonlinear)
FIND_PACKAGE(Ceres REQUIRED)
INCLUDE_DIRECTORIES(${CERES_INCLUDE_DIRS})
# Add all tests # Add all tests
add_subdirectory(tests) add_subdirectory(tests)

View File

@ -0,0 +1,314 @@
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// Computation of the Jacobian matrix for vector-valued functions of multiple
// variables, using automatic differentiation based on the implementation of
// dual numbers in jet.h. Before reading the rest of this file, it is adivsable
// to read jet.h's header comment in detail.
//
// The helper wrapper AutoDiff::Differentiate() computes the jacobian of
// functors with templated operator() taking this form:
//
// struct F {
// template<typename T>
// bool operator()(const T *x, const T *y, ..., T *z) {
// // Compute z[] based on x[], y[], ...
// // return true if computation succeeded, false otherwise.
// }
// };
//
// All inputs and outputs may be vector-valued.
//
// To understand how jets are used to compute the jacobian, a
// picture may help. Consider a vector-valued function, F, returning 3
// dimensions and taking a vector-valued parameter of 4 dimensions:
//
// y x
// [ * ] F [ * ]
// [ * ] <--- [ * ]
// [ * ] [ * ]
// [ * ]
//
// Similar to the 2-parameter example for f described in jet.h, computing the
// jacobian dy/dx is done by substutiting a suitable jet object for x and all
// intermediate steps of the computation of F. Since x is has 4 dimensions, use
// a Jet<double, 4>.
//
// Before substituting a jet object for x, the dual components are set
// appropriately for each dimension of x:
//
// y x
// [ * | * * * * ] f [ * | 1 0 0 0 ] x0
// [ * | * * * * ] <--- [ * | 0 1 0 0 ] x1
// [ * | * * * * ] [ * | 0 0 1 0 ] x2
// ---+--- [ * | 0 0 0 1 ] x3
// | ^ ^ ^ ^
// dy/dx | | | +----- infinitesimal for x3
// | | +------- infinitesimal for x2
// | +--------- infinitesimal for x1
// +----------- infinitesimal for x0
//
// The reason to set the internal 4x4 submatrix to the identity is that we wish
// to take the derivative of y separately with respect to each dimension of x.
// Each column of the 4x4 identity is therefore for a single component of the
// independent variable x.
//
// Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the
// extended y vector, indicated in the above diagram.
//
// Functors with multiple parameters
// ---------------------------------
// In practice, it is often convenient to use a function f of two or more
// vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet
// framework is designed for a single-parameter vector-valued input. The wrapper
// in this file addresses this issue adding support for functions with one or
// more parameter vectors.
//
// To support multiple parameters, all the parameter vectors are concatenated
// into one and treated as a single parameter vector, except that since the
// functor expects different inputs, we need to construct the jets as if they
// were part of a single parameter vector. The extended jets are passed
// separately for each parameter.
//
// For example, consider a functor F taking two vector parameters, p[2] and
// q[3], and producing an output y[4]:
//
// struct F {
// template<typename T>
// bool operator()(const T *p, const T *q, T *z) {
// // ...
// }
// };
//
// In this case, the necessary jet type is Jet<double, 5>. Here is a
// visualization of the jet objects in this case:
//
// Dual components for p ----+
// |
// -+-
// y [ * | 1 0 | 0 0 0 ] --- p[0]
// [ * | 0 1 | 0 0 0 ] --- p[1]
// [ * | . . | + + + ] |
// [ * | . . | + + + ] v
// [ * | . . | + + + ] <--- F(p, q)
// [ * | . . | + + + ] ^
// ^^^ ^^^^^ |
// dy/dp dy/dq [ * | 0 0 | 1 0 0 ] --- q[0]
// [ * | 0 0 | 0 1 0 ] --- q[1]
// [ * | 0 0 | 0 0 1 ] --- q[2]
// --+--
// |
// Dual components for q --------------+
//
// where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+"
// of y in the above diagram are the derivatives of y with respect to p and q
// respectively. This is how autodiff works for functors taking multiple vector
// valued arguments (up to 6).
//
// Jacobian NULL pointers
// ----------------------
// In general, the functions below will accept NULL pointers for all or some of
// the Jacobian parameters, meaning that those Jacobians will not be computed.
#ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_
#define CERES_PUBLIC_INTERNAL_AUTODIFF_H_
#include <stddef.h>
#include <gtsam_unstable/nonlinear/ceres_jet.h>
#include <gtsam_unstable/nonlinear/ceres_eigen.h>
#include <gtsam_unstable/nonlinear/ceres_fixed_array.h>
#include <gtsam_unstable/nonlinear/ceres_variadic_evaluate.h>
#define DCHECK assert
#define DCHECK_GT(a,b) assert((a)>(b))
namespace ceres {
namespace internal {
// Extends src by a 1st order pertubation for every dimension and puts it in
// dst. The size of src is N. Since this is also used for perturbations in
// blocked arrays, offset is used to shift which part of the jet the
// perturbation occurs. This is used to set up the extended x augmented by an
// identity matrix. The JetT type should be a Jet type, and T should be a
// numeric type (e.g. double). For example,
//
// 0 1 2 3 4 5 6 7 8
// dst[0] [ * | . . | 1 0 0 | . . . ]
// dst[1] [ * | . . | 0 1 0 | . . . ]
// dst[2] [ * | . . | 0 0 1 | . . . ]
//
// is what would get put in dst if N was 3, offset was 3, and the jet type JetT
// was 8-dimensional.
template <typename JetT, typename T, int N>
inline void Make1stOrderPerturbation(int offset, const T* src, JetT* dst) {
DCHECK(src);
DCHECK(dst);
for (int j = 0; j < N; ++j) {
dst[j].a = src[j];
dst[j].v.setZero();
dst[j].v[offset + j] = T(1.0);
}
}
// Takes the 0th order part of src, assumed to be a Jet type, and puts it in
// dst. This is used to pick out the "vector" part of the extended y.
template <typename JetT, typename T>
inline void Take0thOrderPart(int M, const JetT *src, T dst) {
DCHECK(src);
for (int i = 0; i < M; ++i) {
dst[i] = src[i].a;
}
}
// Takes N 1st order parts, starting at index N0, and puts them in the M x N
// matrix 'dst'. This is used to pick out the "matrix" parts of the extended y.
template <typename JetT, typename T, int N0, int N>
inline void Take1stOrderPart(const int M, const JetT *src, T *dst) {
DCHECK(src);
DCHECK(dst);
for (int i = 0; i < M; ++i) {
Eigen::Map<Eigen::Matrix<T, N, 1> >(dst + N * i, N) =
src[i].v.template segment<N>(N0);
}
}
// This is in a struct because default template parameters on a
// function are not supported in C++03 (though it is available in
// C++0x). N0 through N5 are the dimension of the input arguments to
// the user supplied functor.
template <typename Functor, typename T,
int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
struct AutoDiff {
static bool Differentiate(const Functor& functor,
T const *const *parameters,
int num_outputs,
T *function_value,
T **jacobians) {
// This block breaks the 80 column rule to keep it somewhat readable.
DCHECK_GT(num_outputs, 0);
DCHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) ||
((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) ||
((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) ||
((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) ||
((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) ||
((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0)));
typedef Jet<T, N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9> JetT;
FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(
N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + num_outputs);
// These are the positions of the respective jets in the fixed array x.
const int jet0 = 0;
const int jet1 = N0;
const int jet2 = N0 + N1;
const int jet3 = N0 + N1 + N2;
const int jet4 = N0 + N1 + N2 + N3;
const int jet5 = N0 + N1 + N2 + N3 + N4;
const int jet6 = N0 + N1 + N2 + N3 + N4 + N5;
const int jet7 = N0 + N1 + N2 + N3 + N4 + N5 + N6;
const int jet8 = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7;
const int jet9 = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8;
const JetT *unpacked_parameters[10] = {
x.get() + jet0,
x.get() + jet1,
x.get() + jet2,
x.get() + jet3,
x.get() + jet4,
x.get() + jet5,
x.get() + jet6,
x.get() + jet7,
x.get() + jet8,
x.get() + jet9,
};
JetT* output = x.get() + N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;
#define CERES_MAKE_1ST_ORDER_PERTURBATION(i) \
if (N ## i) { \
internal::Make1stOrderPerturbation<JetT, T, N ## i>( \
jet ## i, \
parameters[i], \
x.get() + jet ## i); \
}
CERES_MAKE_1ST_ORDER_PERTURBATION(0);
CERES_MAKE_1ST_ORDER_PERTURBATION(1);
CERES_MAKE_1ST_ORDER_PERTURBATION(2);
CERES_MAKE_1ST_ORDER_PERTURBATION(3);
CERES_MAKE_1ST_ORDER_PERTURBATION(4);
CERES_MAKE_1ST_ORDER_PERTURBATION(5);
CERES_MAKE_1ST_ORDER_PERTURBATION(6);
CERES_MAKE_1ST_ORDER_PERTURBATION(7);
CERES_MAKE_1ST_ORDER_PERTURBATION(8);
CERES_MAKE_1ST_ORDER_PERTURBATION(9);
#undef CERES_MAKE_1ST_ORDER_PERTURBATION
if (!VariadicEvaluate<Functor, JetT,
N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call(
functor, unpacked_parameters, output)) {
return false;
}
internal::Take0thOrderPart(num_outputs, output, function_value);
#define CERES_TAKE_1ST_ORDER_PERTURBATION(i) \
if (N ## i) { \
if (jacobians[i]) { \
internal::Take1stOrderPart<JetT, T, \
jet ## i, \
N ## i>(num_outputs, \
output, \
jacobians[i]); \
} \
}
CERES_TAKE_1ST_ORDER_PERTURBATION(0);
CERES_TAKE_1ST_ORDER_PERTURBATION(1);
CERES_TAKE_1ST_ORDER_PERTURBATION(2);
CERES_TAKE_1ST_ORDER_PERTURBATION(3);
CERES_TAKE_1ST_ORDER_PERTURBATION(4);
CERES_TAKE_1ST_ORDER_PERTURBATION(5);
CERES_TAKE_1ST_ORDER_PERTURBATION(6);
CERES_TAKE_1ST_ORDER_PERTURBATION(7);
CERES_TAKE_1ST_ORDER_PERTURBATION(8);
CERES_TAKE_1ST_ORDER_PERTURBATION(9);
#undef CERES_TAKE_1ST_ORDER_PERTURBATION
return true;
}
};
} // namespace internal
} // namespace ceres
#endif // CERES_PUBLIC_INTERNAL_AUTODIFF_H_

View File

@ -0,0 +1,93 @@
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#ifndef CERES_INTERNAL_EIGEN_H_
#define CERES_INTERNAL_EIGEN_H_
#include <gtsam/3rdparty/gtsam_eigen_includes.h>
namespace ceres {
typedef Eigen::Matrix<double, Eigen::Dynamic, 1> Vector;
typedef Eigen::Matrix<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> Matrix;
typedef Eigen::Map<Vector> VectorRef;
typedef Eigen::Map<Matrix> MatrixRef;
typedef Eigen::Map<const Vector> ConstVectorRef;
typedef Eigen::Map<const Matrix> ConstMatrixRef;
// Column major matrices for DenseSparseMatrix/DenseQRSolver
typedef Eigen::Matrix<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::ColMajor> ColMajorMatrix;
typedef Eigen::Map<ColMajorMatrix, 0,
Eigen::Stride<Eigen::Dynamic, 1> > ColMajorMatrixRef;
typedef Eigen::Map<const ColMajorMatrix,
0,
Eigen::Stride<Eigen::Dynamic, 1> > ConstColMajorMatrixRef;
// C++ does not support templated typdefs, thus the need for this
// struct so that we can support statically sized Matrix and Maps.
template <int num_rows = Eigen::Dynamic, int num_cols = Eigen::Dynamic>
struct EigenTypes {
typedef Eigen::Matrix <double, num_rows, num_cols, Eigen::RowMajor>
Matrix;
typedef Eigen::Map<
Eigen::Matrix<double, num_rows, num_cols, Eigen::RowMajor> >
MatrixRef;
typedef Eigen::Matrix <double, num_rows, 1>
Vector;
typedef Eigen::Map <
Eigen::Matrix<double, num_rows, 1> >
VectorRef;
typedef Eigen::Map<
const Eigen::Matrix<double, num_rows, num_cols, Eigen::RowMajor> >
ConstMatrixRef;
typedef Eigen::Map <
const Eigen::Matrix<double, num_rows, 1> >
ConstVectorRef;
};
} // namespace ceres
#endif // CERES_INTERNAL_EIGEN_H_

View File

@ -0,0 +1,190 @@
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: rennie@google.com (Jeffrey Rennie)
// Author: sanjay@google.com (Sanjay Ghemawat) -- renamed to FixedArray
#ifndef CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_
#define CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_
#include <cstddef>
#include <gtsam/3rdparty/gtsam_eigen_includes.h>
#include <gtsam_unstable/nonlinear/ceres_macros.h>
#include <gtsam_unstable/nonlinear/ceres_manual_constructor.h>
namespace ceres {
namespace internal {
// A FixedArray<T> represents a non-resizable array of T where the
// length of the array does not need to be a compile time constant.
//
// FixedArray allocates small arrays inline, and large arrays on
// the heap. It is a good replacement for non-standard and deprecated
// uses of alloca() and variable length arrays (a GCC extension).
//
// FixedArray keeps performance fast for small arrays, because it
// avoids heap operations. It also helps reduce the chances of
// accidentally overflowing your stack if large input is passed to
// your function.
//
// Also, FixedArray is useful for writing portable code. Not all
// compilers support arrays of dynamic size.
// Most users should not specify an inline_elements argument and let
// FixedArray<> automatically determine the number of elements
// to store inline based on sizeof(T).
//
// If inline_elements is specified, the FixedArray<> implementation
// will store arrays of length <= inline_elements inline.
//
// Finally note that unlike vector<T> FixedArray<T> will not zero-initialize
// simple types like int, double, bool, etc.
//
// Non-POD types will be default-initialized just like regular vectors or
// arrays.
#if defined(_WIN64)
typedef __int64 ssize_t;
#elif defined(_WIN32)
typedef __int32 ssize_t;
#endif
template <typename T, ssize_t inline_elements = -1>
class FixedArray {
public:
// For playing nicely with stl:
typedef T value_type;
typedef T* iterator;
typedef T const* const_iterator;
typedef T& reference;
typedef T const& const_reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
typedef size_t size_type;
// REQUIRES: n >= 0
// Creates an array object that can store "n" elements.
//
// FixedArray<T> will not zero-initialiaze POD (simple) types like int,
// double, bool, etc.
// Non-POD types will be default-initialized just like regular vectors or
// arrays.
explicit FixedArray(size_type n);
// Releases any resources.
~FixedArray();
// Returns the length of the array.
inline size_type size() const { return size_; }
// Returns the memory size of the array in bytes.
inline size_t memsize() const { return size_ * sizeof(T); }
// Returns a pointer to the underlying element array.
inline const T* get() const { return &array_[0].element; }
inline T* get() { return &array_[0].element; }
// REQUIRES: 0 <= i < size()
// Returns a reference to the "i"th element.
inline T& operator[](size_type i) {
DCHECK_LT(i, size_);
return array_[i].element;
}
// REQUIRES: 0 <= i < size()
// Returns a reference to the "i"th element.
inline const T& operator[](size_type i) const {
DCHECK_LT(i, size_);
return array_[i].element;
}
inline iterator begin() { return &array_[0].element; }
inline iterator end() { return &array_[size_].element; }
inline const_iterator begin() const { return &array_[0].element; }
inline const_iterator end() const { return &array_[size_].element; }
private:
// Container to hold elements of type T. This is necessary to handle
// the case where T is a a (C-style) array. The size of InnerContainer
// and T must be the same, otherwise callers' assumptions about use
// of this code will be broken.
struct InnerContainer {
T element;
};
// How many elements should we store inline?
// a. If not specified, use a default of 256 bytes (256 bytes
// seems small enough to not cause stack overflow or unnecessary
// stack pollution, while still allowing stack allocation for
// reasonably long character arrays.
// b. Never use 0 length arrays (not ISO C++)
static const size_type S1 = ((inline_elements < 0)
? (256/sizeof(T)) : inline_elements);
static const size_type S2 = (S1 <= 0) ? 1 : S1;
static const size_type kInlineElements = S2;
size_type const size_;
InnerContainer* const array_;
// Allocate some space, not an array of elements of type T, so that we can
// skip calling the T constructors and destructors for space we never use.
ManualConstructor<InnerContainer> inline_space_[kInlineElements];
};
// Implementation details follow
template <class T, ssize_t S>
inline FixedArray<T, S>::FixedArray(typename FixedArray<T, S>::size_type n)
: size_(n),
array_((n <= kInlineElements
? reinterpret_cast<InnerContainer*>(inline_space_)
: new InnerContainer[n])) {
// Construct only the elements actually used.
if (array_ == reinterpret_cast<InnerContainer*>(inline_space_)) {
for (size_t i = 0; i != size_; ++i) {
inline_space_[i].Init();
}
}
}
template <class T, ssize_t S>
inline FixedArray<T, S>::~FixedArray() {
if (array_ != reinterpret_cast<InnerContainer*>(inline_space_)) {
delete[] array_;
} else {
for (size_t i = 0; i != size_; ++i) {
inline_space_[i].Destroy();
}
}
}
} // namespace internal
} // namespace ceres
#endif // CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_

View File

@ -0,0 +1,87 @@
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// Portable floating point classification. The names are picked such that they
// do not collide with macros. For example, "isnan" in C99 is a macro and hence
// does not respect namespaces.
//
// TODO(keir): Finish porting!
#ifndef CERES_PUBLIC_FPCLASSIFY_H_
#define CERES_PUBLIC_FPCLASSIFY_H_
#if defined(_MSC_VER)
#include <float.h>
#endif
#include <limits>
namespace ceres {
#if defined(_MSC_VER)
inline bool IsFinite (double x) { return _finite(x) != 0; }
inline bool IsInfinite(double x) { return _finite(x) == 0 && _isnan(x) == 0; }
inline bool IsNaN (double x) { return _isnan(x) != 0; }
inline bool IsNormal (double x) {
int classification = _fpclass(x);
return classification == _FPCLASS_NN ||
classification == _FPCLASS_PN;
}
#elif defined(ANDROID) && defined(_STLPORT_VERSION)
// On Android, when using the STLPort, the C++ isnan and isnormal functions
// are defined as macros.
inline bool IsNaN (double x) { return isnan(x); }
inline bool IsNormal (double x) { return isnormal(x); }
// On Android NDK r6, when using STLPort, the isinf and isfinite functions are
// not available, so reimplement them.
inline bool IsInfinite(double x) {
return x == std::numeric_limits<double>::infinity() ||
x == -std::numeric_limits<double>::infinity();
}
inline bool IsFinite(double x) {
return !isnan(x) && !IsInfinite(x);
}
# else
// These definitions are for the normal Unix suspects.
inline bool IsFinite (double x) { return std::isfinite(x); }
inline bool IsInfinite(double x) { return std::isinf(x); }
inline bool IsNaN (double x) { return std::isnan(x); }
inline bool IsNormal (double x) { return std::isnormal(x); }
#endif
} // namespace ceres
#endif // CERES_PUBLIC_FPCLASSIFY_H_

View File

@ -0,0 +1,670 @@
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// A simple implementation of N-dimensional dual numbers, for automatically
// computing exact derivatives of functions.
//
// While a complete treatment of the mechanics of automatic differentation is
// beyond the scope of this header (see
// http://en.wikipedia.org/wiki/Automatic_differentiation for details), the
// basic idea is to extend normal arithmetic with an extra element, "e," often
// denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual
// numbers are extensions of the real numbers analogous to complex numbers:
// whereas complex numbers augment the reals by introducing an imaginary unit i
// such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such
// that e^2 = 0. Dual numbers have two components: the "real" component and the
// "infinitesimal" component, generally written as x + y*e. Surprisingly, this
// leads to a convenient method for computing exact derivatives without needing
// to manipulate complicated symbolic expressions.
//
// For example, consider the function
//
// f(x) = x^2 ,
//
// evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20.
// Next, augument 10 with an infinitesimal to get:
//
// f(10 + e) = (10 + e)^2
// = 100 + 2 * 10 * e + e^2
// = 100 + 20 * e -+-
// -- |
// | +--- This is zero, since e^2 = 0
// |
// +----------------- This is df/dx!
//
// Note that the derivative of f with respect to x is simply the infinitesimal
// component of the value of f(x + e). So, in order to take the derivative of
// any function, it is only necessary to replace the numeric "object" used in
// the function with one extended with infinitesimals. The class Jet, defined in
// this header, is one such example of this, where substitution is done with
// templates.
//
// To handle derivatives of functions taking multiple arguments, different
// infinitesimals are used, one for each variable to take the derivative of. For
// example, consider a scalar function of two scalar parameters x and y:
//
// f(x, y) = x^2 + x * y
//
// Following the technique above, to compute the derivatives df/dx and df/dy for
// f(1, 3) involves doing two evaluations of f, the first time replacing x with
// x + e, the second time replacing y with y + e.
//
// For df/dx:
//
// f(1 + e, y) = (1 + e)^2 + (1 + e) * 3
// = 1 + 2 * e + 3 + 3 * e
// = 4 + 5 * e
//
// --> df/dx = 5
//
// For df/dy:
//
// f(1, 3 + e) = 1^2 + 1 * (3 + e)
// = 1 + 3 + e
// = 4 + e
//
// --> df/dy = 1
//
// To take the gradient of f with the implementation of dual numbers ("jets") in
// this file, it is necessary to create a single jet type which has components
// for the derivative in x and y, and passing them to a templated version of f:
//
// template<typename T>
// T f(const T &x, const T &y) {
// return x * x + x * y;
// }
//
// // The "2" means there should be 2 dual number components.
// Jet<double, 2> x(0); // Pick the 0th dual number for x.
// Jet<double, 2> y(1); // Pick the 1st dual number for y.
// Jet<double, 2> z = f(x, y);
//
// LOG(INFO) << "df/dx = " << z.a[0]
// << "df/dy = " << z.a[1];
//
// Most users should not use Jet objects directly; a wrapper around Jet objects,
// which makes computing the derivative, gradient, or jacobian of templated
// functors simple, is in autodiff.h. Even autodiff.h should not be used
// directly; instead autodiff_cost_function.h is typically the file of interest.
//
// For the more mathematically inclined, this file implements first-order
// "jets". A 1st order jet is an element of the ring
//
// T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2
//
// which essentially means that each jet consists of a "scalar" value 'a' from T
// and a 1st order perturbation vector 'v' of length N:
//
// x = a + \sum_i v[i] t_i
//
// A shorthand is to write an element as x = a + u, where u is the pertubation.
// Then, the main point about the arithmetic of jets is that the product of
// perturbations is zero:
//
// (a + u) * (b + v) = ab + av + bu + uv
// = ab + (av + bu) + 0
//
// which is what operator* implements below. Addition is simpler:
//
// (a + u) + (b + v) = (a + b) + (u + v).
//
// The only remaining question is how to evaluate the function of a jet, for
// which we use the chain rule:
//
// f(a + u) = f(a) + f'(a) u
//
// where f'(a) is the (scalar) derivative of f at a.
//
// By pushing these things through sufficiently and suitably templated
// functions, we can do automatic differentiation. Just be sure to turn on
// function inlining and common-subexpression elimination, or it will be very
// slow!
//
// WARNING: Most Ceres users should not directly include this file or know the
// details of how jets work. Instead the suggested method for automatic
// derivatives is to use autodiff_cost_function.h, which is a wrapper around
// both jets.h and autodiff.h to make taking derivatives of cost functions for
// use in Ceres easier.
#ifndef CERES_PUBLIC_JET_H_
#define CERES_PUBLIC_JET_H_
#include <cmath>
#include <iosfwd>
#include <iostream> // NOLINT
#include <limits>
#include <string>
#include <gtsam/3rdparty/gtsam_eigen_includes.h>
#include <gtsam_unstable/nonlinear/ceres_fpclassify.h>
namespace ceres {
template <typename T, int N>
struct Jet {
enum { DIMENSION = N };
// Default-construct "a" because otherwise this can lead to false errors about
// uninitialized uses when other classes relying on default constructed T
// (where T is a Jet<T, N>). This usually only happens in opt mode. Note that
// the C++ standard mandates that e.g. default constructed doubles are
// initialized to 0.0; see sections 8.5 of the C++03 standard.
Jet() : a() {
v.setZero();
}
// Constructor from scalar: a + 0.
explicit Jet(const T& value) {
a = value;
v.setZero();
}
// Constructor from scalar plus variable: a + t_i.
Jet(const T& value, int k) {
a = value;
v.setZero();
v[k] = T(1.0);
}
// Constructor from scalar and vector part
// The use of Eigen::DenseBase allows Eigen expressions
// to be passed in without being fully evaluated until
// they are assigned to v
template<typename Derived>
EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived> &v)
: a(a), v(v) {
}
// Compound operators
Jet<T, N>& operator+=(const Jet<T, N> &y) {
*this = *this + y;
return *this;
}
Jet<T, N>& operator-=(const Jet<T, N> &y) {
*this = *this - y;
return *this;
}
Jet<T, N>& operator*=(const Jet<T, N> &y) {
*this = *this * y;
return *this;
}
Jet<T, N>& operator/=(const Jet<T, N> &y) {
*this = *this / y;
return *this;
}
// The scalar part.
T a;
// The infinitesimal part.
//
// Note the Eigen::DontAlign bit is needed here because this object
// gets allocated on the stack and as part of other arrays and
// structs. Forcing the right alignment there is the source of much
// pain and suffering. Even if that works, passing Jets around to
// functions by value has problems because the C++ ABI does not
// guarantee alignment for function arguments.
//
// Setting the DontAlign bit prevents Eigen from using SSE for the
// various operations on Jets. This is a small performance penalty
// since the AutoDiff code will still expose much of the code as
// statically sized loops to the compiler. But given the subtle
// issues that arise due to alignment, especially when dealing with
// multiple platforms, it seems to be a trade off worth making.
Eigen::Matrix<T, N, 1, Eigen::DontAlign> v;
};
// Unary +
template<typename T, int N> inline
Jet<T, N> const& operator+(const Jet<T, N>& f) {
return f;
}
// TODO(keir): Try adding __attribute__((always_inline)) to these functions to
// see if it causes a performance increase.
// Unary -
template<typename T, int N> inline
Jet<T, N> operator-(const Jet<T, N>&f) {
return Jet<T, N>(-f.a, -f.v);
}
// Binary +
template<typename T, int N> inline
Jet<T, N> operator+(const Jet<T, N>& f,
const Jet<T, N>& g) {
return Jet<T, N>(f.a + g.a, f.v + g.v);
}
// Binary + with a scalar: x + s
template<typename T, int N> inline
Jet<T, N> operator+(const Jet<T, N>& f, T s) {
return Jet<T, N>(f.a + s, f.v);
}
// Binary + with a scalar: s + x
template<typename T, int N> inline
Jet<T, N> operator+(T s, const Jet<T, N>& f) {
return Jet<T, N>(f.a + s, f.v);
}
// Binary -
template<typename T, int N> inline
Jet<T, N> operator-(const Jet<T, N>& f,
const Jet<T, N>& g) {
return Jet<T, N>(f.a - g.a, f.v - g.v);
}
// Binary - with a scalar: x - s
template<typename T, int N> inline
Jet<T, N> operator-(const Jet<T, N>& f, T s) {
return Jet<T, N>(f.a - s, f.v);
}
// Binary - with a scalar: s - x
template<typename T, int N> inline
Jet<T, N> operator-(T s, const Jet<T, N>& f) {
return Jet<T, N>(s - f.a, -f.v);
}
// Binary *
template<typename T, int N> inline
Jet<T, N> operator*(const Jet<T, N>& f,
const Jet<T, N>& g) {
return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a);
}
// Binary * with a scalar: x * s
template<typename T, int N> inline
Jet<T, N> operator*(const Jet<T, N>& f, T s) {
return Jet<T, N>(f.a * s, f.v * s);
}
// Binary * with a scalar: s * x
template<typename T, int N> inline
Jet<T, N> operator*(T s, const Jet<T, N>& f) {
return Jet<T, N>(f.a * s, f.v * s);
}
// Binary /
template<typename T, int N> inline
Jet<T, N> operator/(const Jet<T, N>& f,
const Jet<T, N>& g) {
// This uses:
//
// a + u (a + u)(b - v) (a + u)(b - v)
// ----- = -------------- = --------------
// b + v (b + v)(b - v) b^2
//
// which holds because v*v = 0.
const T g_a_inverse = T(1.0) / g.a;
const T f_a_by_g_a = f.a * g_a_inverse;
return Jet<T, N>(f.a * g_a_inverse, (f.v - f_a_by_g_a * g.v) * g_a_inverse);
}
// Binary / with a scalar: s / x
template<typename T, int N> inline
Jet<T, N> operator/(T s, const Jet<T, N>& g) {
const T minus_s_g_a_inverse2 = -s / (g.a * g.a);
return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2);
}
// Binary / with a scalar: x / s
template<typename T, int N> inline
Jet<T, N> operator/(const Jet<T, N>& f, T s) {
const T s_inverse = 1.0 / s;
return Jet<T, N>(f.a * s_inverse, f.v * s_inverse);
}
// Binary comparison operators for both scalars and jets.
#define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
template<typename T, int N> inline \
bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \
return f.a op g.a; \
} \
template<typename T, int N> inline \
bool operator op(const T& s, const Jet<T, N>& g) { \
return s op g.a; \
} \
template<typename T, int N> inline \
bool operator op(const Jet<T, N>& f, const T& s) { \
return f.a op s; \
}
CERES_DEFINE_JET_COMPARISON_OPERATOR( < ) // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR( <= ) // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR( > ) // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR( >= ) // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR( == ) // NOLINT
CERES_DEFINE_JET_COMPARISON_OPERATOR( != ) // NOLINT
#undef CERES_DEFINE_JET_COMPARISON_OPERATOR
// Pull some functions from namespace std.
//
// This is necessary because we want to use the same name (e.g. 'sqrt') for
// double-valued and Jet-valued functions, but we are not allowed to put
// Jet-valued functions inside namespace std.
//
// TODO(keir): Switch to "using".
inline double abs (double x) { return std::abs(x); }
inline double log (double x) { return std::log(x); }
inline double exp (double x) { return std::exp(x); }
inline double sqrt (double x) { return std::sqrt(x); }
inline double cos (double x) { return std::cos(x); }
inline double acos (double x) { return std::acos(x); }
inline double sin (double x) { return std::sin(x); }
inline double asin (double x) { return std::asin(x); }
inline double tan (double x) { return std::tan(x); }
inline double atan (double x) { return std::atan(x); }
inline double sinh (double x) { return std::sinh(x); }
inline double cosh (double x) { return std::cosh(x); }
inline double tanh (double x) { return std::tanh(x); }
inline double pow (double x, double y) { return std::pow(x, y); }
inline double atan2(double y, double x) { return std::atan2(y, x); }
// In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule.
// abs(x + h) ~= x + h or -(x + h)
template <typename T, int N> inline
Jet<T, N> abs(const Jet<T, N>& f) {
return f.a < T(0.0) ? -f : f;
}
// log(a + h) ~= log(a) + h / a
template <typename T, int N> inline
Jet<T, N> log(const Jet<T, N>& f) {
const T a_inverse = T(1.0) / f.a;
return Jet<T, N>(log(f.a), f.v * a_inverse);
}
// exp(a + h) ~= exp(a) + exp(a) h
template <typename T, int N> inline
Jet<T, N> exp(const Jet<T, N>& f) {
const T tmp = exp(f.a);
return Jet<T, N>(tmp, tmp * f.v);
}
// sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a))
template <typename T, int N> inline
Jet<T, N> sqrt(const Jet<T, N>& f) {
const T tmp = sqrt(f.a);
const T two_a_inverse = T(1.0) / (T(2.0) * tmp);
return Jet<T, N>(tmp, f.v * two_a_inverse);
}
// cos(a + h) ~= cos(a) - sin(a) h
template <typename T, int N> inline
Jet<T, N> cos(const Jet<T, N>& f) {
return Jet<T, N>(cos(f.a), - sin(f.a) * f.v);
}
// acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
template <typename T, int N> inline
Jet<T, N> acos(const Jet<T, N>& f) {
const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a);
return Jet<T, N>(acos(f.a), tmp * f.v);
}
// sin(a + h) ~= sin(a) + cos(a) h
template <typename T, int N> inline
Jet<T, N> sin(const Jet<T, N>& f) {
return Jet<T, N>(sin(f.a), cos(f.a) * f.v);
}
// asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
template <typename T, int N> inline
Jet<T, N> asin(const Jet<T, N>& f) {
const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a);
return Jet<T, N>(asin(f.a), tmp * f.v);
}
// tan(a + h) ~= tan(a) + (1 + tan(a)^2) h
template <typename T, int N> inline
Jet<T, N> tan(const Jet<T, N>& f) {
const T tan_a = tan(f.a);
const T tmp = T(1.0) + tan_a * tan_a;
return Jet<T, N>(tan_a, tmp * f.v);
}
// atan(a + h) ~= atan(a) + 1 / (1 + a^2) h
template <typename T, int N> inline
Jet<T, N> atan(const Jet<T, N>& f) {
const T tmp = T(1.0) / (T(1.0) + f.a * f.a);
return Jet<T, N>(atan(f.a), tmp * f.v);
}
// sinh(a + h) ~= sinh(a) + cosh(a) h
template <typename T, int N> inline
Jet<T, N> sinh(const Jet<T, N>& f) {
return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v);
}
// cosh(a + h) ~= cosh(a) + sinh(a) h
template <typename T, int N> inline
Jet<T, N> cosh(const Jet<T, N>& f) {
return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v);
}
// tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h
template <typename T, int N> inline
Jet<T, N> tanh(const Jet<T, N>& f) {
const T tanh_a = tanh(f.a);
const T tmp = T(1.0) - tanh_a * tanh_a;
return Jet<T, N>(tanh_a, tmp * f.v);
}
// Jet Classification. It is not clear what the appropriate semantics are for
// these classifications. This picks that IsFinite and isnormal are "all"
// operations, i.e. all elements of the jet must be finite for the jet itself
// to be finite (or normal). For IsNaN and IsInfinite, the answer is less
// clear. This takes a "any" approach for IsNaN and IsInfinite such that if any
// part of a jet is nan or inf, then the entire jet is nan or inf. This leads
// to strange situations like a jet can be both IsInfinite and IsNaN, but in
// practice the "any" semantics are the most useful for e.g. checking that
// derivatives are sane.
// The jet is finite if all parts of the jet are finite.
template <typename T, int N> inline
bool IsFinite(const Jet<T, N>& f) {
if (!IsFinite(f.a)) {
return false;
}
for (int i = 0; i < N; ++i) {
if (!IsFinite(f.v[i])) {
return false;
}
}
return true;
}
// The jet is infinite if any part of the jet is infinite.
template <typename T, int N> inline
bool IsInfinite(const Jet<T, N>& f) {
if (IsInfinite(f.a)) {
return true;
}
for (int i = 0; i < N; i++) {
if (IsInfinite(f.v[i])) {
return true;
}
}
return false;
}
// The jet is NaN if any part of the jet is NaN.
template <typename T, int N> inline
bool IsNaN(const Jet<T, N>& f) {
if (IsNaN(f.a)) {
return true;
}
for (int i = 0; i < N; ++i) {
if (IsNaN(f.v[i])) {
return true;
}
}
return false;
}
// The jet is normal if all parts of the jet are normal.
template <typename T, int N> inline
bool IsNormal(const Jet<T, N>& f) {
if (!IsNormal(f.a)) {
return false;
}
for (int i = 0; i < N; ++i) {
if (!IsNormal(f.v[i])) {
return false;
}
}
return true;
}
// atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2)
//
// In words: the rate of change of theta is 1/r times the rate of
// change of (x, y) in the positive angular direction.
template <typename T, int N> inline
Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
// Note order of arguments:
//
// f = a + da
// g = b + db
T const tmp = T(1.0) / (f.a * f.a + g.a * g.a);
return Jet<T, N>(atan2(g.a, f.a), tmp * (- g.a * f.v + f.a * g.v));
}
// pow -- base is a differentiable function, exponent is a constant.
// (a+da)^p ~= a^p + p*a^(p-1) da
template <typename T, int N> inline
Jet<T, N> pow(const Jet<T, N>& f, double g) {
T const tmp = g * pow(f.a, g - T(1.0));
return Jet<T, N>(pow(f.a, g), tmp * f.v);
}
// pow -- base is a constant, exponent is a differentiable function.
// (a)^(p+dp) ~= a^p + a^p log(a) dp
template <typename T, int N> inline
Jet<T, N> pow(double f, const Jet<T, N>& g) {
T const tmp = pow(f, g.a);
return Jet<T, N>(tmp, log(f) * tmp * g.v);
}
// pow -- both base and exponent are differentiable functions.
// (a+da)^(b+db) ~= a^b + b * a^(b-1) da + a^b log(a) * db
template <typename T, int N> inline
Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
T const tmp1 = pow(f.a, g.a);
T const tmp2 = g.a * pow(f.a, g.a - T(1.0));
T const tmp3 = tmp1 * log(f.a);
return Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v);
}
// Define the helper functions Eigen needs to embed Jet types.
//
// NOTE(keir): machine_epsilon() and precision() are missing, because they don't
// work with nested template types (e.g. where the scalar is itself templated).
// Among other things, this means that decompositions of Jet's does not work,
// for example
//
// Matrix<Jet<T, N> ... > A, x, b;
// ...
// A.solve(b, &x)
//
// does not work and will fail with a strange compiler error.
//
// TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we
// switch to 3.0, also add the rest of the specialization functionality.
template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x; } // NOLINT
template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x; } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_imag(const Jet<T, N>& ) { return Jet<T, N>(0.0); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_abs (const Jet<T, N>& x) { return fabs(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_abs2(const Jet<T, N>& x) { return x * x; } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_sqrt(const Jet<T, N>& x) { return sqrt(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_exp (const Jet<T, N>& x) { return exp(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_log (const Jet<T, N>& x) { return log(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_sin (const Jet<T, N>& x) { return sin(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_cos (const Jet<T, N>& x) { return cos(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_tan (const Jet<T, N>& x) { return tan(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_atan(const Jet<T, N>& x) { return atan(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_sinh(const Jet<T, N>& x) { return sinh(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_cosh(const Jet<T, N>& x) { return cosh(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_tanh(const Jet<T, N>& x) { return tanh(x); } // NOLINT
template<typename T, int N> inline Jet<T, N> ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); } // NOLINT
// Note: This has to be in the ceres namespace for argument dependent lookup to
// function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with
// strange compile errors.
template <typename T, int N>
inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) {
return s << "[" << z.a << " ; " << z.v.transpose() << "]";
}
} // namespace ceres
namespace Eigen {
// Creating a specialization of NumTraits enables placing Jet objects inside
// Eigen arrays, getting all the goodness of Eigen combined with autodiff.
template<typename T, int N>
struct NumTraits<ceres::Jet<T, N> > {
typedef ceres::Jet<T, N> Real;
typedef ceres::Jet<T, N> NonInteger;
typedef ceres::Jet<T, N> Nested;
static typename ceres::Jet<T, N> dummy_precision() {
return ceres::Jet<T, N>(1e-12);
}
static inline Real epsilon() {
return Real(std::numeric_limits<T>::epsilon());
}
enum {
IsComplex = 0,
IsInteger = 0,
IsSigned,
ReadCost = 1,
AddCost = 1,
// For Jet types, multiplication is more expensive than addition.
MulCost = 3,
HasFloatingPoint = 1,
RequireInitialization = 1
};
};
} // namespace Eigen
#endif // CERES_PUBLIC_JET_H_

View File

@ -0,0 +1,170 @@
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//
// Various Google-specific macros.
//
// This code is compiled directly on many platforms, including client
// platforms like Windows, Mac, and embedded systems. Before making
// any changes here, make sure that you're not breaking any platforms.
#ifndef CERES_PUBLIC_INTERNAL_MACROS_H_
#define CERES_PUBLIC_INTERNAL_MACROS_H_
#include <cstddef> // For size_t.
// A macro to disallow the copy constructor and operator= functions
// This should be used in the private: declarations for a class
//
// For disallowing only assign or copy, write the code directly, but declare
// the intend in a comment, for example:
//
// void operator=(const TypeName&); // _DISALLOW_ASSIGN
// Note, that most uses of CERES_DISALLOW_ASSIGN and CERES_DISALLOW_COPY
// are broken semantically, one should either use disallow both or
// neither. Try to avoid these in new code.
#define CERES_DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&); \
void operator=(const TypeName&)
// A macro to disallow all the implicit constructors, namely the
// default constructor, copy constructor and operator= functions.
//
// This should be used in the private: declarations for a class
// that wants to prevent anyone from instantiating it. This is
// especially useful for classes containing only static methods.
#define CERES_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
TypeName(); \
CERES_DISALLOW_COPY_AND_ASSIGN(TypeName)
// The arraysize(arr) macro returns the # of elements in an array arr.
// The expression is a compile-time constant, and therefore can be
// used in defining new arrays, for example. If you use arraysize on
// a pointer by mistake, you will get a compile-time error.
//
// One caveat is that arraysize() doesn't accept any array of an
// anonymous type or a type defined inside a function. In these rare
// cases, you have to use the unsafe ARRAYSIZE() macro below. This is
// due to a limitation in C++'s template system. The limitation might
// eventually be removed, but it hasn't happened yet.
// This template function declaration is used in defining arraysize.
// Note that the function doesn't need an implementation, as we only
// use its type.
template <typename T, size_t N>
char (&ArraySizeHelper(T (&array)[N]))[N];
// That gcc wants both of these prototypes seems mysterious. VC, for
// its part, can't decide which to use (another mystery). Matching of
// template overloads: the final frontier.
#ifndef _WIN32
template <typename T, size_t N>
char (&ArraySizeHelper(const T (&array)[N]))[N];
#endif
#define arraysize(array) (sizeof(ArraySizeHelper(array)))
// ARRAYSIZE performs essentially the same calculation as arraysize,
// but can be used on anonymous types or types defined inside
// functions. It's less safe than arraysize as it accepts some
// (although not all) pointers. Therefore, you should use arraysize
// whenever possible.
//
// The expression ARRAYSIZE(a) is a compile-time constant of type
// size_t.
//
// ARRAYSIZE catches a few type errors. If you see a compiler error
//
// "warning: division by zero in ..."
//
// when using ARRAYSIZE, you are (wrongfully) giving it a pointer.
// You should only use ARRAYSIZE on statically allocated arrays.
//
// The following comments are on the implementation details, and can
// be ignored by the users.
//
// ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in
// the array) and sizeof(*(arr)) (the # of bytes in one array
// element). If the former is divisible by the latter, perhaps arr is
// indeed an array, in which case the division result is the # of
// elements in the array. Otherwise, arr cannot possibly be an array,
// and we generate a compiler error to prevent the code from
// compiling.
//
// Since the size of bool is implementation-defined, we need to cast
// !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
// result has type size_t.
//
// This macro is not perfect as it wrongfully accepts certain
// pointers, namely where the pointer size is divisible by the pointee
// size. Since all our code has to go through a 32-bit compiler,
// where a pointer is 4 bytes, this means all pointers to a type whose
// size is 3 or greater than 4 will be (righteously) rejected.
//
// Kudos to Jorg Brown for this simple and elegant implementation.
//
// - wan 2005-11-16
//
// Starting with Visual C++ 2005, WinNT.h includes ARRAYSIZE. However,
// the definition comes from the over-broad windows.h header that
// introduces a macro, ERROR, that conflicts with the logging framework
// that Ceres uses. Instead, rename ARRAYSIZE to CERES_ARRAYSIZE.
#define CERES_ARRAYSIZE(a) \
((sizeof(a) / sizeof(*(a))) / \
static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
// Tell the compiler to warn about unused return values for functions
// declared with this macro. The macro should be used on function
// declarations following the argument list:
//
// Sprocket* AllocateSprocket() MUST_USE_RESULT;
//
#if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) \
&& !defined(COMPILER_ICC)
#define CERES_MUST_USE_RESULT __attribute__ ((warn_unused_result))
#else
#define CERES_MUST_USE_RESULT
#endif
// Platform independent macros to get aligned memory allocations.
// For example
//
// MyFoo my_foo CERES_ALIGN_ATTRIBUTE(16);
//
// Gives us an instance of MyFoo which is aligned at a 16 byte
// boundary.
#if defined(_MSC_VER)
#define CERES_ALIGN_ATTRIBUTE(n) __declspec(align(n))
#define CERES_ALIGN_OF(T) __alignof(T)
#elif defined(__GNUC__)
#define CERES_ALIGN_ATTRIBUTE(n) __attribute__((aligned(n)))
#define CERES_ALIGN_OF(T) __alignof(T)
#endif
#endif // CERES_PUBLIC_INTERNAL_MACROS_H_

View File

@ -0,0 +1,208 @@
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: kenton@google.com (Kenton Varda)
//
// ManualConstructor statically-allocates space in which to store some
// object, but does not initialize it. You can then call the constructor
// and destructor for the object yourself as you see fit. This is useful
// for memory management optimizations, where you want to initialize and
// destroy an object multiple times but only allocate it once.
//
// (When I say ManualConstructor statically allocates space, I mean that
// the ManualConstructor object itself is forced to be the right size.)
#ifndef CERES_PUBLIC_INTERNAL_MANUAL_CONSTRUCTOR_H_
#define CERES_PUBLIC_INTERNAL_MANUAL_CONSTRUCTOR_H_
#include <new>
namespace ceres {
namespace internal {
// ------- Define CERES_ALIGNED_CHAR_ARRAY --------------------------------
#ifndef CERES_ALIGNED_CHAR_ARRAY
// Because MSVC and older GCCs require that the argument to their alignment
// construct to be a literal constant integer, we use a template instantiated
// at all the possible powers of two.
template<int alignment, int size> struct AlignType { };
template<int size> struct AlignType<0, size> { typedef char result[size]; };
#if !defined(CERES_ALIGN_ATTRIBUTE)
#define CERES_ALIGNED_CHAR_ARRAY you_must_define_CERES_ALIGNED_CHAR_ARRAY_for_your_compiler
#else // !defined(CERES_ALIGN_ATTRIBUTE)
#define CERES_ALIGN_TYPE_TEMPLATE(X) \
template<int size> struct AlignType<X, size> { \
typedef CERES_ALIGN_ATTRIBUTE(X) char result[size]; \
}
CERES_ALIGN_TYPE_TEMPLATE(1);
CERES_ALIGN_TYPE_TEMPLATE(2);
CERES_ALIGN_TYPE_TEMPLATE(4);
CERES_ALIGN_TYPE_TEMPLATE(8);
CERES_ALIGN_TYPE_TEMPLATE(16);
CERES_ALIGN_TYPE_TEMPLATE(32);
CERES_ALIGN_TYPE_TEMPLATE(64);
CERES_ALIGN_TYPE_TEMPLATE(128);
CERES_ALIGN_TYPE_TEMPLATE(256);
CERES_ALIGN_TYPE_TEMPLATE(512);
CERES_ALIGN_TYPE_TEMPLATE(1024);
CERES_ALIGN_TYPE_TEMPLATE(2048);
CERES_ALIGN_TYPE_TEMPLATE(4096);
CERES_ALIGN_TYPE_TEMPLATE(8192);
// Any larger and MSVC++ will complain.
#undef CERES_ALIGN_TYPE_TEMPLATE
#define CERES_ALIGNED_CHAR_ARRAY(T, Size) \
typename AlignType<CERES_ALIGN_OF(T), sizeof(T) * Size>::result
#endif // !defined(CERES_ALIGN_ATTRIBUTE)
#endif // CERES_ALIGNED_CHAR_ARRAY
template <typename Type>
class ManualConstructor {
public:
// No constructor or destructor because one of the most useful uses of
// this class is as part of a union, and members of a union cannot have
// constructors or destructors. And, anyway, the whole point of this
// class is to bypass these.
inline Type* get() {
return reinterpret_cast<Type*>(space_);
}
inline const Type* get() const {
return reinterpret_cast<const Type*>(space_);
}
inline Type* operator->() { return get(); }
inline const Type* operator->() const { return get(); }
inline Type& operator*() { return *get(); }
inline const Type& operator*() const { return *get(); }
// This is needed to get around the strict aliasing warning GCC generates.
inline void* space() {
return reinterpret_cast<void*>(space_);
}
// You can pass up to four constructor arguments as arguments of Init().
inline void Init() {
new(space()) Type;
}
template <typename T1>
inline void Init(const T1& p1) {
new(space()) Type(p1);
}
template <typename T1, typename T2>
inline void Init(const T1& p1, const T2& p2) {
new(space()) Type(p1, p2);
}
template <typename T1, typename T2, typename T3>
inline void Init(const T1& p1, const T2& p2, const T3& p3) {
new(space()) Type(p1, p2, p3);
}
template <typename T1, typename T2, typename T3, typename T4>
inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4) {
new(space()) Type(p1, p2, p3, p4);
}
template <typename T1, typename T2, typename T3, typename T4, typename T5>
inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4,
const T5& p5) {
new(space()) Type(p1, p2, p3, p4, p5);
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6>
inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4,
const T5& p5, const T6& p6) {
new(space()) Type(p1, p2, p3, p4, p5, p6);
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7>
inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4,
const T5& p5, const T6& p6, const T7& p7) {
new(space()) Type(p1, p2, p3, p4, p5, p6, p7);
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8>
inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4,
const T5& p5, const T6& p6, const T7& p7, const T8& p8) {
new(space()) Type(p1, p2, p3, p4, p5, p6, p7, p8);
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9>
inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4,
const T5& p5, const T6& p6, const T7& p7, const T8& p8,
const T9& p9) {
new(space()) Type(p1, p2, p3, p4, p5, p6, p7, p8, p9);
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9, typename T10>
inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4,
const T5& p5, const T6& p6, const T7& p7, const T8& p8,
const T9& p9, const T10& p10) {
new(space()) Type(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10);
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9, typename T10,
typename T11>
inline void Init(const T1& p1, const T2& p2, const T3& p3, const T4& p4,
const T5& p5, const T6& p6, const T7& p7, const T8& p8,
const T9& p9, const T10& p10, const T11& p11) {
new(space()) Type(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11);
}
inline void Destroy() {
get()->~Type();
}
private:
CERES_ALIGNED_CHAR_ARRAY(Type, 1) space_;
};
#undef CERES_ALIGNED_CHAR_ARRAY
} // namespace internal
} // namespace ceres
#endif // CERES_PUBLIC_INTERNAL_MANUAL_CONSTRUCTOR_H_

View File

@ -0,0 +1,644 @@
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
// sameeragarwal@google.com (Sameer Agarwal)
//
// Templated functions for manipulating rotations. The templated
// functions are useful when implementing functors for automatic
// differentiation.
//
// In the following, the Quaternions are laid out as 4-vectors, thus:
//
// q[0] scalar part.
// q[1] coefficient of i.
// q[2] coefficient of j.
// q[3] coefficient of k.
//
// where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
#ifndef CERES_PUBLIC_ROTATION_H_
#define CERES_PUBLIC_ROTATION_H_
#include <algorithm>
#include <cmath>
namespace ceres {
// Trivial wrapper to index linear arrays as matrices, given a fixed
// column and row stride. When an array "T* array" is wrapped by a
//
// (const) MatrixAdapter<T, row_stride, col_stride> M"
//
// the expression M(i, j) is equivalent to
//
// arrary[i * row_stride + j * col_stride]
//
// Conversion functions to and from rotation matrices accept
// MatrixAdapters to permit using row-major and column-major layouts,
// and rotation matrices embedded in larger matrices (such as a 3x4
// projection matrix).
template <typename T, int row_stride, int col_stride>
struct MatrixAdapter;
// Convenience functions to create a MatrixAdapter that treats the
// array pointed to by "pointer" as a 3x3 (contiguous) column-major or
// row-major matrix.
template <typename T>
MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer);
template <typename T>
MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer);
// Convert a value in combined axis-angle representation to a quaternion.
// The value angle_axis is a triple whose norm is an angle in radians,
// and whose direction is aligned with the axis of rotation,
// and quaternion is a 4-tuple that will contain the resulting quaternion.
// The implementation may be used with auto-differentiation up to the first
// derivative, higher derivatives may have unexpected results near the origin.
template<typename T>
void AngleAxisToQuaternion(const T* angle_axis, T* quaternion);
// Convert a quaternion to the equivalent combined axis-angle representation.
// The value quaternion must be a unit quaternion - it is not normalized first,
// and angle_axis will be filled with a value whose norm is the angle of
// rotation in radians, and whose direction is the axis of rotation.
// The implemention may be used with auto-differentiation up to the first
// derivative, higher derivatives may have unexpected results near the origin.
template<typename T>
void QuaternionToAngleAxis(const T* quaternion, T* angle_axis);
// Conversions between 3x3 rotation matrix (in column major order) and
// axis-angle rotation representations. Templated for use with
// autodifferentiation.
template <typename T>
void RotationMatrixToAngleAxis(const T* R, T* angle_axis);
template <typename T, int row_stride, int col_stride>
void RotationMatrixToAngleAxis(
const MatrixAdapter<const T, row_stride, col_stride>& R,
T* angle_axis);
template <typename T>
void AngleAxisToRotationMatrix(const T* angle_axis, T* R);
template <typename T, int row_stride, int col_stride>
void AngleAxisToRotationMatrix(
const T* angle_axis,
const MatrixAdapter<T, row_stride, col_stride>& R);
// Conversions between 3x3 rotation matrix (in row major order) and
// Euler angle (in degrees) rotation representations.
//
// The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
// axes, respectively. They are applied in that same order, so the
// total rotation R is Rz * Ry * Rx.
template <typename T>
void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
template <typename T, int row_stride, int col_stride>
void EulerAnglesToRotationMatrix(
const T* euler,
const MatrixAdapter<T, row_stride, col_stride>& R);
// Convert a 4-vector to a 3x3 scaled rotation matrix.
//
// The choice of rotation is such that the quaternion [1 0 0 0] goes to an
// identity matrix and for small a, b, c the quaternion [1 a b c] goes to
// the matrix
//
// [ 0 -c b ]
// I + 2 [ c 0 -a ] + higher order terms
// [ -b a 0 ]
//
// which corresponds to a Rodrigues approximation, the last matrix being
// the cross-product matrix of [a b c]. Together with the property that
// R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
//
// The rotation matrix is row-major.
//
// No normalization of the quaternion is performed, i.e.
// R = ||q||^2 * Q, where Q is an orthonormal matrix
// such that det(Q) = 1 and Q*Q' = I
template <typename T> inline
void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
template <typename T, int row_stride, int col_stride> inline
void QuaternionToScaledRotation(
const T q[4],
const MatrixAdapter<T, row_stride, col_stride>& R);
// Same as above except that the rotation matrix is normalized by the
// Frobenius norm, so that R * R' = I (and det(R) = 1).
template <typename T> inline
void QuaternionToRotation(const T q[4], T R[3 * 3]);
template <typename T, int row_stride, int col_stride> inline
void QuaternionToRotation(
const T q[4],
const MatrixAdapter<T, row_stride, col_stride>& R);
// Rotates a point pt by a quaternion q:
//
// result = R(q) * pt
//
// Assumes the quaternion is unit norm. This assumption allows us to
// write the transform as (something)*pt + pt, as is clear from the
// formula below. If you pass in a quaternion with |q|^2 = 2 then you
// WILL NOT get back 2 times the result you get for a unit quaternion.
template <typename T> inline
void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
// With this function you do not need to assume that q has unit norm.
// It does assume that the norm is non-zero.
template <typename T> inline
void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
// zw = z * w, where * is the Quaternion product between 4 vectors.
template<typename T> inline
void QuaternionProduct(const T z[4], const T w[4], T zw[4]);
// xy = x cross y;
template<typename T> inline
void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
template<typename T> inline
T DotProduct(const T x[3], const T y[3]);
// y = R(angle_axis) * x;
template<typename T> inline
void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);
// --- IMPLEMENTATION
template<typename T, int row_stride, int col_stride>
struct MatrixAdapter {
T* pointer_;
explicit MatrixAdapter(T* pointer)
: pointer_(pointer)
{}
T& operator()(int r, int c) const {
return pointer_[r * row_stride + c * col_stride];
}
};
template <typename T>
MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer) {
return MatrixAdapter<T, 1, 3>(pointer);
}
template <typename T>
MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer) {
return MatrixAdapter<T, 3, 1>(pointer);
}
template<typename T>
inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
const T& a0 = angle_axis[0];
const T& a1 = angle_axis[1];
const T& a2 = angle_axis[2];
const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
// For points not at the origin, the full conversion is numerically stable.
if (theta_squared > T(0.0)) {
const T theta = sqrt(theta_squared);
const T half_theta = theta * T(0.5);
const T k = sin(half_theta) / theta;
quaternion[0] = cos(half_theta);
quaternion[1] = a0 * k;
quaternion[2] = a1 * k;
quaternion[3] = a2 * k;
} else {
// At the origin, sqrt() will produce NaN in the derivative since
// the argument is zero. By approximating with a Taylor series,
// and truncating at one term, the value and first derivatives will be
// computed correctly when Jets are used.
const T k(0.5);
quaternion[0] = T(1.0);
quaternion[1] = a0 * k;
quaternion[2] = a1 * k;
quaternion[3] = a2 * k;
}
}
template<typename T>
inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
const T& q1 = quaternion[1];
const T& q2 = quaternion[2];
const T& q3 = quaternion[3];
const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;
// For quaternions representing non-zero rotation, the conversion
// is numerically stable.
if (sin_squared_theta > T(0.0)) {
const T sin_theta = sqrt(sin_squared_theta);
const T& cos_theta = quaternion[0];
// If cos_theta is negative, theta is greater than pi/2, which
// means that angle for the angle_axis vector which is 2 * theta
// would be greater than pi.
//
// While this will result in the correct rotation, it does not
// result in a normalized angle-axis vector.
//
// In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
// which is equivalent saying
//
// theta - pi = atan(sin(theta - pi), cos(theta - pi))
// = atan(-sin(theta), -cos(theta))
//
const T two_theta =
T(2.0) * ((cos_theta < 0.0)
? atan2(-sin_theta, -cos_theta)
: atan2(sin_theta, cos_theta));
const T k = two_theta / sin_theta;
angle_axis[0] = q1 * k;
angle_axis[1] = q2 * k;
angle_axis[2] = q3 * k;
} else {
// For zero rotation, sqrt() will produce NaN in the derivative since
// the argument is zero. By approximating with a Taylor series,
// and truncating at one term, the value and first derivatives will be
// computed correctly when Jets are used.
const T k(2.0);
angle_axis[0] = q1 * k;
angle_axis[1] = q2 * k;
angle_axis[2] = q3 * k;
}
}
// The conversion of a rotation matrix to the angle-axis form is
// numerically problematic when then rotation angle is close to zero
// or to Pi. The following implementation detects when these two cases
// occurs and deals with them by taking code paths that are guaranteed
// to not perform division by a small number.
template <typename T>
inline void RotationMatrixToAngleAxis(const T* R, T* angle_axis) {
RotationMatrixToAngleAxis(ColumnMajorAdapter3x3(R), angle_axis);
}
template <typename T, int row_stride, int col_stride>
void RotationMatrixToAngleAxis(
const MatrixAdapter<const T, row_stride, col_stride>& R,
T* angle_axis) {
// x = k * 2 * sin(theta), where k is the axis of rotation.
angle_axis[0] = R(2, 1) - R(1, 2);
angle_axis[1] = R(0, 2) - R(2, 0);
angle_axis[2] = R(1, 0) - R(0, 1);
static const T kOne = T(1.0);
static const T kTwo = T(2.0);
// Since the right hand side may give numbers just above 1.0 or
// below -1.0 leading to atan misbehaving, we threshold.
T costheta = std::min(std::max((R(0, 0) + R(1, 1) + R(2, 2) - kOne) / kTwo,
T(-1.0)),
kOne);
// sqrt is guaranteed to give non-negative results, so we only
// threshold above.
T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] +
angle_axis[1] * angle_axis[1] +
angle_axis[2] * angle_axis[2]) / kTwo,
kOne);
// Use the arctan2 to get the right sign on theta
const T theta = atan2(sintheta, costheta);
// Case 1: sin(theta) is large enough, so dividing by it is not a
// problem. We do not use abs here, because while jets.h imports
// std::abs into the namespace, here in this file, abs resolves to
// the int version of the function, which returns zero always.
//
// We use a threshold much larger then the machine epsilon, because
// if sin(theta) is small, not only do we risk overflow but even if
// that does not occur, just dividing by a small number will result
// in numerical garbage. So we play it safe.
static const double kThreshold = 1e-12;
if ((sintheta > kThreshold) || (sintheta < -kThreshold)) {
const T r = theta / (kTwo * sintheta);
for (int i = 0; i < 3; ++i) {
angle_axis[i] *= r;
}
return;
}
// Case 2: theta ~ 0, means sin(theta) ~ theta to a good
// approximation.
if (costheta > 0.0) {
const T kHalf = T(0.5);
for (int i = 0; i < 3; ++i) {
angle_axis[i] *= kHalf;
}
return;
}
// Case 3: theta ~ pi, this is the hard case. Since theta is large,
// and sin(theta) is small. Dividing by theta by sin(theta) will
// either give an overflow or worse still numerically meaningless
// results. Thus we use an alternate more complicated formula
// here.
// Since cos(theta) is negative, division by (1-cos(theta)) cannot
// overflow.
const T inv_one_minus_costheta = kOne / (kOne - costheta);
// We now compute the absolute value of coordinates of the axis
// vector using the diagonal entries of R. To resolve the sign of
// these entries, we compare the sign of angle_axis[i]*sin(theta)
// with the sign of sin(theta). If they are the same, then
// angle_axis[i] should be positive, otherwise negative.
for (int i = 0; i < 3; ++i) {
angle_axis[i] = theta * sqrt((R(i, i) - costheta) * inv_one_minus_costheta);
if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) ||
((sintheta > 0.0) && (angle_axis[i] < 0.0))) {
angle_axis[i] = -angle_axis[i];
}
}
}
template <typename T>
inline void AngleAxisToRotationMatrix(const T* angle_axis, T* R) {
AngleAxisToRotationMatrix(angle_axis, ColumnMajorAdapter3x3(R));
}
template <typename T, int row_stride, int col_stride>
void AngleAxisToRotationMatrix(
const T* angle_axis,
const MatrixAdapter<T, row_stride, col_stride>& R) {
static const T kOne = T(1.0);
const T theta2 = DotProduct(angle_axis, angle_axis);
if (theta2 > T(std::numeric_limits<double>::epsilon())) {
// We want to be careful to only evaluate the square root if the
// norm of the angle_axis vector is greater than zero. Otherwise
// we get a division by zero.
const T theta = sqrt(theta2);
const T wx = angle_axis[0] / theta;
const T wy = angle_axis[1] / theta;
const T wz = angle_axis[2] / theta;
const T costheta = cos(theta);
const T sintheta = sin(theta);
R(0, 0) = costheta + wx*wx*(kOne - costheta);
R(1, 0) = wz*sintheta + wx*wy*(kOne - costheta);
R(2, 0) = -wy*sintheta + wx*wz*(kOne - costheta);
R(0, 1) = wx*wy*(kOne - costheta) - wz*sintheta;
R(1, 1) = costheta + wy*wy*(kOne - costheta);
R(2, 1) = wx*sintheta + wy*wz*(kOne - costheta);
R(0, 2) = wy*sintheta + wx*wz*(kOne - costheta);
R(1, 2) = -wx*sintheta + wy*wz*(kOne - costheta);
R(2, 2) = costheta + wz*wz*(kOne - costheta);
} else {
// Near zero, we switch to using the first order Taylor expansion.
R(0, 0) = kOne;
R(1, 0) = angle_axis[2];
R(2, 0) = -angle_axis[1];
R(0, 1) = -angle_axis[2];
R(1, 1) = kOne;
R(2, 1) = angle_axis[0];
R(0, 2) = angle_axis[1];
R(1, 2) = -angle_axis[0];
R(2, 2) = kOne;
}
}
template <typename T>
inline void EulerAnglesToRotationMatrix(const T* euler,
const int row_stride_parameter,
T* R) {
DCHECK(row_stride_parameter==3);
EulerAnglesToRotationMatrix(euler, RowMajorAdapter3x3(R));
}
template <typename T, int row_stride, int col_stride>
void EulerAnglesToRotationMatrix(
const T* euler,
const MatrixAdapter<T, row_stride, col_stride>& R) {
const double kPi = 3.14159265358979323846;
const T degrees_to_radians(kPi / 180.0);
const T pitch(euler[0] * degrees_to_radians);
const T roll(euler[1] * degrees_to_radians);
const T yaw(euler[2] * degrees_to_radians);
const T c1 = cos(yaw);
const T s1 = sin(yaw);
const T c2 = cos(roll);
const T s2 = sin(roll);
const T c3 = cos(pitch);
const T s3 = sin(pitch);
R(0, 0) = c1*c2;
R(0, 1) = -s1*c3 + c1*s2*s3;
R(0, 2) = s1*s3 + c1*s2*c3;
R(1, 0) = s1*c2;
R(1, 1) = c1*c3 + s1*s2*s3;
R(1, 2) = -c1*s3 + s1*s2*c3;
R(2, 0) = -s2;
R(2, 1) = c2*s3;
R(2, 2) = c2*c3;
}
template <typename T> inline
void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
QuaternionToScaledRotation(q, RowMajorAdapter3x3(R));
}
template <typename T, int row_stride, int col_stride> inline
void QuaternionToScaledRotation(
const T q[4],
const MatrixAdapter<T, row_stride, col_stride>& R) {
// Make convenient names for elements of q.
T a = q[0];
T b = q[1];
T c = q[2];
T d = q[3];
// This is not to eliminate common sub-expression, but to
// make the lines shorter so that they fit in 80 columns!
T aa = a * a;
T ab = a * b;
T ac = a * c;
T ad = a * d;
T bb = b * b;
T bc = b * c;
T bd = b * d;
T cc = c * c;
T cd = c * d;
T dd = d * d;
R(0, 0) = aa + bb - cc - dd; R(0, 1) = T(2) * (bc - ad); R(0, 2) = T(2) * (ac + bd); // NOLINT
R(1, 0) = T(2) * (ad + bc); R(1, 1) = aa - bb + cc - dd; R(1, 2) = T(2) * (cd - ab); // NOLINT
R(2, 0) = T(2) * (bd - ac); R(2, 1) = T(2) * (ab + cd); R(2, 2) = aa - bb - cc + dd; // NOLINT
}
template <typename T> inline
void QuaternionToRotation(const T q[4], T R[3 * 3]) {
QuaternionToRotation(q, RowMajorAdapter3x3(R));
}
template <typename T, int row_stride, int col_stride> inline
void QuaternionToRotation(const T q[4],
const MatrixAdapter<T, row_stride, col_stride>& R) {
QuaternionToScaledRotation(q, R);
T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
CHECK_NE(normalizer, T(0));
normalizer = T(1) / normalizer;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
R(i, j) *= normalizer;
}
}
}
template <typename T> inline
void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
const T t2 = q[0] * q[1];
const T t3 = q[0] * q[2];
const T t4 = q[0] * q[3];
const T t5 = -q[1] * q[1];
const T t6 = q[1] * q[2];
const T t7 = q[1] * q[3];
const T t8 = -q[2] * q[2];
const T t9 = q[2] * q[3];
const T t1 = -q[3] * q[3];
result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0]; // NOLINT
result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1]; // NOLINT
result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2]; // NOLINT
}
template <typename T> inline
void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
// 'scale' is 1 / norm(q).
const T scale = T(1) / sqrt(q[0] * q[0] +
q[1] * q[1] +
q[2] * q[2] +
q[3] * q[3]);
// Make unit-norm version of q.
const T unit[4] = {
scale * q[0],
scale * q[1],
scale * q[2],
scale * q[3],
};
UnitQuaternionRotatePoint(unit, pt, result);
}
template<typename T> inline
void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
}
// xy = x cross y;
template<typename T> inline
void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
}
template<typename T> inline
T DotProduct(const T x[3], const T y[3]) {
return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
}
template<typename T> inline
void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
const T theta2 = DotProduct(angle_axis, angle_axis);
if (theta2 > T(std::numeric_limits<double>::epsilon())) {
// Away from zero, use the rodriguez formula
//
// result = pt costheta +
// (w x pt) * sintheta +
// w (w . pt) (1 - costheta)
//
// We want to be careful to only evaluate the square root if the
// norm of the angle_axis vector is greater than zero. Otherwise
// we get a division by zero.
//
const T theta = sqrt(theta2);
const T costheta = cos(theta);
const T sintheta = sin(theta);
const T theta_inverse = 1.0 / theta;
const T w[3] = { angle_axis[0] * theta_inverse,
angle_axis[1] * theta_inverse,
angle_axis[2] * theta_inverse };
// Explicitly inlined evaluation of the cross product for
// performance reasons.
const T w_cross_pt[3] = { w[1] * pt[2] - w[2] * pt[1],
w[2] * pt[0] - w[0] * pt[2],
w[0] * pt[1] - w[1] * pt[0] };
const T tmp =
(w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta);
result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp;
result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp;
result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp;
} else {
// Near zero, the first order Taylor approximation of the rotation
// matrix R corresponding to a vector w and angle w is
//
// R = I + hat(w) * sin(theta)
//
// But sintheta ~ theta and theta * w = angle_axis, which gives us
//
// R = I + hat(w)
//
// and actually performing multiplication with the point pt, gives us
// R * pt = pt + w x pt.
//
// Switching to the Taylor expansion near zero provides meaningful
// derivatives when evaluated using Jets.
//
// Explicitly inlined evaluation of the cross product for
// performance reasons.
const T w_cross_pt[3] = { angle_axis[1] * pt[2] - angle_axis[2] * pt[1],
angle_axis[2] * pt[0] - angle_axis[0] * pt[2],
angle_axis[0] * pt[1] - angle_axis[1] * pt[0] };
result[0] = pt[0] + w_cross_pt[0];
result[1] = pt[1] + w_cross_pt[1];
result[2] = pt[2] + w_cross_pt[2];
}
}
} // namespace ceres
#endif // CERES_PUBLIC_ROTATION_H_

View File

@ -0,0 +1,181 @@
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2013 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
// mierle@gmail.com (Keir Mierle)
#ifndef CERES_PUBLIC_INTERNAL_VARIADIC_EVALUATE_H_
#define CERES_PUBLIC_INTERNAL_VARIADIC_EVALUATE_H_
#include <stddef.h>
#include <gtsam_unstable/nonlinear/ceres_jet.h>
#include <gtsam_unstable/nonlinear/ceres_eigen.h>
#include <gtsam_unstable/nonlinear/ceres_fixed_array.h>
namespace ceres {
namespace internal {
// This block of quasi-repeated code calls the user-supplied functor, which may
// take a variable number of arguments. This is accomplished by specializing the
// struct based on the size of the trailing parameters; parameters with 0 size
// are assumed missing.
template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4,
int N5, int N6, int N7, int N8, int N9>
struct VariadicEvaluate {
static bool Call(const Functor& functor, T const *const *input, T* output) {
return functor(input[0],
input[1],
input[2],
input[3],
input[4],
input[5],
input[6],
input[7],
input[8],
input[9],
output);
}
};
template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4,
int N5, int N6, int N7, int N8>
struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, N4, N5, N6, N7, N8, 0> {
static bool Call(const Functor& functor, T const *const *input, T* output) {
return functor(input[0],
input[1],
input[2],
input[3],
input[4],
input[5],
input[6],
input[7],
input[8],
output);
}
};
template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4,
int N5, int N6, int N7>
struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, N4, N5, N6, N7, 0, 0> {
static bool Call(const Functor& functor, T const *const *input, T* output) {
return functor(input[0],
input[1],
input[2],
input[3],
input[4],
input[5],
input[6],
input[7],
output);
}
};
template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4,
int N5, int N6>
struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, N4, N5, N6, 0, 0, 0> {
static bool Call(const Functor& functor, T const *const *input, T* output) {
return functor(input[0],
input[1],
input[2],
input[3],
input[4],
input[5],
input[6],
output);
}
};
template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4,
int N5>
struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, N4, N5, 0, 0, 0, 0> {
static bool Call(const Functor& functor, T const *const *input, T* output) {
return functor(input[0],
input[1],
input[2],
input[3],
input[4],
input[5],
output);
}
};
template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4>
struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, N4, 0, 0, 0, 0, 0> {
static bool Call(const Functor& functor, T const *const *input, T* output) {
return functor(input[0],
input[1],
input[2],
input[3],
input[4],
output);
}
};
template<typename Functor, typename T, int N0, int N1, int N2, int N3>
struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, 0, 0, 0, 0, 0, 0> {
static bool Call(const Functor& functor, T const *const *input, T* output) {
return functor(input[0],
input[1],
input[2],
input[3],
output);
}
};
template<typename Functor, typename T, int N0, int N1, int N2>
struct VariadicEvaluate<Functor, T, N0, N1, N2, 0, 0, 0, 0, 0, 0, 0> {
static bool Call(const Functor& functor, T const *const *input, T* output) {
return functor(input[0],
input[1],
input[2],
output);
}
};
template<typename Functor, typename T, int N0, int N1>
struct VariadicEvaluate<Functor, T, N0, N1, 0, 0, 0, 0, 0, 0, 0, 0> {
static bool Call(const Functor& functor, T const *const *input, T* output) {
return functor(input[0],
input[1],
output);
}
};
template<typename Functor, typename T, int N0>
struct VariadicEvaluate<Functor, T, N0, 0, 0, 0, 0, 0, 0, 0, 0, 0> {
static bool Call(const Functor& functor, T const *const *input, T* output) {
return functor(input[0],
output);
}
};
} // namespace internal
} // namespace ceres
#endif // CERES_PUBLIC_INTERNAL_VARIADIC_EVALUATE_H_

View File

@ -25,8 +25,8 @@
#include <gtsam/base/Testable.h> #include <gtsam/base/Testable.h>
#include <gtsam/base/LieScalar.h> #include <gtsam/base/LieScalar.h>
#include "ceres/ceres.h" #include <gtsam_unstable/nonlinear/ceres_autodiff.h>
#include "ceres/rotation.h" #include <gtsam_unstable/nonlinear/ceres_rotation.h>
#undef CHECK #undef CHECK
#include <CppUnitLite/TestHarness.h> #include <CppUnitLite/TestHarness.h>