Some more refactoring
parent
bf779af3d1
commit
dfee108e53
|
|
@ -33,21 +33,20 @@ static const boost::shared_ptr<Cal3_S2> sharedCal = //
|
|||
boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
|
||||
|
||||
// Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
static const Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
gtsam::Point3(0, 0, 1));
|
||||
PinholeCamera<Cal3_S2> level_camera(level_pose, *sharedCal);
|
||||
static const Rot3 upright = Rot3::ypr(-M_PI / 2, 0., -M_PI / 2);
|
||||
static const Pose3 pose1 = Pose3(upright, gtsam::Point3(0, 0, 1));
|
||||
PinholeCamera<Cal3_S2> camera1(pose1, *sharedCal);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
static const Pose3 level_pose_right = level_pose
|
||||
* Pose3(Rot3(), Point3(1, 0, 0));
|
||||
PinholeCamera<Cal3_S2> level_camera_right(level_pose_right, *sharedCal);
|
||||
static const Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
PinholeCamera<Cal3_S2> camera2(pose2, *sharedCal);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
static const Point3 landmark(5, 0.5, 1.2);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 level_uv = level_camera.project(landmark);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark);
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z2 = camera2.project(landmark);
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
@ -56,8 +55,8 @@ TEST( triangulation, twoPoses) {
|
|||
vector<Pose3> poses;
|
||||
vector<Point2> measurements;
|
||||
|
||||
poses += level_pose, level_pose_right;
|
||||
measurements += level_uv, level_uv_right;
|
||||
poses += pose1, pose2;
|
||||
measurements += z1, z2;
|
||||
|
||||
bool optimize = true;
|
||||
double rank_tol = 1e-9;
|
||||
|
|
@ -81,18 +80,18 @@ TEST( triangulation, twoPosesBundler) {
|
|||
|
||||
boost::shared_ptr<Cal3Bundler> bundlerCal = //
|
||||
boost::make_shared<Cal3Bundler>(1500, 0, 0, 640, 480);
|
||||
PinholeCamera<Cal3Bundler> level_camera(level_pose, *bundlerCal);
|
||||
PinholeCamera<Cal3Bundler> level_camera_right(level_pose_right, *bundlerCal);
|
||||
PinholeCamera<Cal3Bundler> camera1(pose1, *bundlerCal);
|
||||
PinholeCamera<Cal3Bundler> camera2(pose2, *bundlerCal);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 level_uv = level_camera.project(landmark);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark);
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z2 = camera2.project(landmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
vector<Point2> measurements;
|
||||
|
||||
poses += level_pose, level_pose_right;
|
||||
measurements += level_uv, level_uv_right;
|
||||
poses += pose1, pose2;
|
||||
measurements += z1, z2;
|
||||
|
||||
bool optimize = true;
|
||||
double rank_tol = 1e-9;
|
||||
|
|
@ -116,8 +115,8 @@ TEST( triangulation, fourPoses) {
|
|||
vector<Pose3> poses;
|
||||
vector<Point2> measurements;
|
||||
|
||||
poses += level_pose, level_pose_right;
|
||||
measurements += level_uv, level_uv_right;
|
||||
poses += pose1, pose2;
|
||||
measurements += z1, z2;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
||||
sharedCal, measurements);
|
||||
|
|
@ -127,21 +126,20 @@ TEST( triangulation, fourPoses) {
|
|||
measurements.at(0) += Point2(0.1, 0.5);
|
||||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
|
||||
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
|
||||
sharedCal, measurements);
|
||||
boost::optional<Point3> triangulated_landmark_noise = //
|
||||
triangulatePoint3(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
|
||||
// 3. Add a slightly rotated third camera above, again with measurement noise
|
||||
Pose3 pose_top = level_pose
|
||||
* Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
SimpleCamera camera_top(pose_top, *sharedCal);
|
||||
Point2 top_uv = camera_top.project(landmark);
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
SimpleCamera camera3(pose3, *sharedCal);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
|
||||
poses += pose_top;
|
||||
measurements += top_uv + Point2(0.1, -0.1);
|
||||
poses += pose3;
|
||||
measurements += z3 + Point2(0.1, -0.1);
|
||||
|
||||
boost::optional<Point3> triangulated_3cameras = triangulatePoint3(poses,
|
||||
sharedCal, measurements);
|
||||
boost::optional<Point3> triangulated_3cameras = //
|
||||
triangulatePoint3(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
|
||||
|
||||
// Again with nonlinear optimization
|
||||
|
|
@ -150,14 +148,13 @@ TEST( triangulation, fourPoses) {
|
|||
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
|
||||
|
||||
// 4. Test failure: Add a 4th camera facing the wrong way
|
||||
Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2),
|
||||
Point3(0, 0, 1));
|
||||
SimpleCamera camera_180(level_pose180, *sharedCal);
|
||||
Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
SimpleCamera camera4(pose4, *sharedCal);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
CHECK_EXCEPTION(camera_180.project(landmark);, CheiralityException);
|
||||
CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
|
||||
|
||||
poses += level_pose180;
|
||||
poses += pose4;
|
||||
measurements += Point2(400, 400);
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
|
||||
|
|
@ -170,24 +167,24 @@ TEST( triangulation, fourPoses) {
|
|||
TEST( triangulation, fourPoses_distinct_Ks) {
|
||||
Cal3_S2 K1(1500, 1200, 0, 640, 480);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
SimpleCamera level_camera(level_pose, K1);
|
||||
SimpleCamera camera1(pose1, K1);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Cal3_S2 K2(1600, 1300, 0, 650, 440);
|
||||
SimpleCamera level_camera_right(level_pose_right, K2);
|
||||
SimpleCamera camera2(pose2, K2);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 level_uv = level_camera.project(landmark);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark);
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z2 = camera2.project(landmark);
|
||||
|
||||
vector<SimpleCamera> cameras;
|
||||
vector<Point2> measurements;
|
||||
|
||||
cameras += level_camera, level_camera_right;
|
||||
measurements += level_uv, level_uv_right;
|
||||
cameras += camera1, camera2;
|
||||
measurements += z1, z2;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(cameras,
|
||||
measurements);
|
||||
boost::optional<Point3> triangulated_landmark = //
|
||||
triangulatePoint3(cameras, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
|
|
@ -199,17 +196,16 @@ TEST( triangulation, fourPoses_distinct_Ks) {
|
|||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
|
||||
// 3. Add a slightly rotated third camera above, again with measurement noise
|
||||
Pose3 pose_top = level_pose
|
||||
* Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
Cal3_S2 K3(700, 500, 0, 640, 480);
|
||||
SimpleCamera camera_top(pose_top, K3);
|
||||
Point2 top_uv = camera_top.project(landmark);
|
||||
SimpleCamera camera3(pose3, K3);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
|
||||
cameras += camera_top;
|
||||
measurements += top_uv + Point2(0.1, -0.1);
|
||||
cameras += camera3;
|
||||
measurements += z3 + Point2(0.1, -0.1);
|
||||
|
||||
boost::optional<Point3> triangulated_3cameras = triangulatePoint3(cameras,
|
||||
measurements);
|
||||
boost::optional<Point3> triangulated_3cameras = //
|
||||
triangulatePoint3(cameras, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
|
||||
|
||||
// Again with nonlinear optimization
|
||||
|
|
@ -218,15 +214,14 @@ TEST( triangulation, fourPoses_distinct_Ks) {
|
|||
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
|
||||
|
||||
// 4. Test failure: Add a 4th camera facing the wrong way
|
||||
Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2),
|
||||
Point3(0, 0, 1));
|
||||
Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
Cal3_S2 K4(700, 500, 0, 640, 480);
|
||||
SimpleCamera camera_180(level_pose180, K4);
|
||||
SimpleCamera camera4(pose4, K4);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
CHECK_EXCEPTION(camera_180.project(landmark);, CheiralityException);
|
||||
CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
|
||||
|
||||
cameras += camera_180;
|
||||
cameras += camera4;
|
||||
measurements += Point2(400, 400);
|
||||
CHECK_EXCEPTION(triangulatePoint3(cameras, measurements),
|
||||
TriangulationCheiralityException);
|
||||
|
|
@ -237,16 +232,16 @@ TEST( triangulation, fourPoses_distinct_Ks) {
|
|||
|
||||
TEST( triangulation, twoIdenticalPoses) {
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
SimpleCamera level_camera(level_pose, *sharedCal);
|
||||
SimpleCamera camera1(pose1, *sharedCal);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 level_uv = level_camera.project(landmark);
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
vector<Point2> measurements;
|
||||
|
||||
poses += level_pose, level_pose;
|
||||
measurements += level_uv, level_uv;
|
||||
poses += pose1, pose1;
|
||||
measurements += z1, z1;
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
|
||||
TriangulationUnderconstrainedException);
|
||||
|
|
|
|||
Loading…
Reference in New Issue