addressed all except 2 comments by Frank. waiting for inputs on the 2 outstanding issues

release/4.3a0
lcarlone 2020-12-28 21:03:20 -05:00
parent eea52766d1
commit dfdd206708
3 changed files with 357 additions and 357 deletions

View File

@ -34,21 +34,22 @@ namespace gtsam {
/* ************************************************************************* */
template<class GncParameters>
class GncOptimizer {
public:
/** For each parameter, specify the corresponding optimizer: e.g., GaussNewtonParams -> GaussNewtonOptimizer */
public:
/// For each parameter, specify the corresponding optimizer: e.g., GaussNewtonParams -> GaussNewtonOptimizer.
typedef typename GncParameters::OptimizerType BaseOptimizer;
private:
NonlinearFactorGraph nfg_;
Values state_;
GncParameters params_;
Vector weights_; // this could be a local variable in optimize, but it is useful to make it accessible from outside
private:
NonlinearFactorGraph nfg_; ///< Original factor graph to be solved by GNC.
Values state_; ///< Initial values to be used at each iteration by GNC.
GncParameters params_; ///< GNC parameters.
Vector weights_; ///< Weights associated to each factor in GNC (this could be a local variable in optimize, but it is useful to make it accessible from outside).
public:
/// Constructor
public:
/// Constructor.
GncOptimizer(const NonlinearFactorGraph& graph, const Values& initialValues,
const GncParameters& params = GncParameters()) :
state_(initialValues), params_(params) {
const GncParameters& params = GncParameters())
: state_(initialValues),
params_(params) {
// make sure all noiseModels are Gaussian or convert to Gaussian
nfg_.resize(graph.size());
@ -58,35 +59,39 @@ public:
NoiseModelFactor>(graph[i]);
noiseModel::Robust::shared_ptr robust = boost::dynamic_pointer_cast<
noiseModel::Robust>(factor->noiseModel());
if (robust) { // if the factor has a robust loss, we have to change it:
if (robust) { // if the factor has a robust loss, we have to change it:
SharedNoiseModel gaussianNoise = robust->noise();
NoiseModelFactor::shared_ptr gaussianFactor =
factor->cloneWithNewNoiseModel(gaussianNoise);
NoiseModelFactor::shared_ptr gaussianFactor = factor
->cloneWithNewNoiseModel(gaussianNoise);
nfg_[i] = gaussianFactor;
} else { // else we directly push it back
} else { // else we directly push it back
nfg_[i] = factor;
}
}
}
}
/// Access a copy of the internal factor graph
/// Access a copy of the internal factor graph.
NonlinearFactorGraph getFactors() const {
return NonlinearFactorGraph(nfg_);
}
/// Access a copy of the internal values
/// Access a copy of the internal values.
Values getState() const {
return Values(state_);
}
/// Access a copy of the parameters
/// Access a copy of the parameters.
GncParameters getParams() const {
return GncParameters(params_);
}
/// Access a copy of the GNC weights
/// Access a copy of the GNC weights.
Vector getWeights() const {
return weights_;
}
/// Compute optimal solution using graduated non-convexity
/// Compute optimal solution using graduated non-convexity.
Values optimize() {
// start by assuming all measurements are inliers
weights_ = Vector::Ones(nfg_.size());
@ -94,7 +99,7 @@ public:
Values result = baseOptimizer.optimize();
double mu = initializeMu();
double prev_cost = nfg_.error(result);
double cost = 0.0; // this will be updated in the main loop
double cost = 0.0; // this will be updated in the main loop
// handle the degenerate case that corresponds to small
// maximum residual errors at initialization
@ -103,7 +108,8 @@ public:
if (mu <= 0) {
if (params_.verbosity >= GncParameters::Verbosity::SUMMARY) {
std::cout << "GNC Optimizer stopped because maximum residual at "
"initialization is small." << std::endl;
"initialization is small."
<< std::endl;
}
if (params_.verbosity >= GncParameters::Verbosity::VALUES) {
result.print("result\n");
@ -132,7 +138,9 @@ public:
// stopping condition
cost = graph_iter.error(result);
if (checkConvergence(mu, weights_, cost, prev_cost)) { break; }
if (checkConvergence(mu, weights_, cost, prev_cost)) {
break;
}
// update mu
mu = updateMu(mu);
@ -157,7 +165,7 @@ public:
return result;
}
/// initialize the gnc parameter mu such that loss is approximately convex (remark 5 in GNC paper)
/// Initialize the gnc parameter mu such that loss is approximately convex (remark 5 in GNC paper).
double initializeMu() const {
// compute largest error across all factors
double rmax_sq = 0.0;
@ -168,75 +176,80 @@ public:
}
// set initial mu
switch (params_.lossType) {
case GncParameters::GM:
// surrogate cost is convex for large mu
return 2 * rmax_sq / params_.barcSq; // initial mu
case GncParameters::TLS:
// initialize mu to the value specified in Remark 5 in GNC paper.
// surrogate cost is convex for mu close to zero
// degenerate case: 2 * rmax_sq - params_.barcSq < 0 (handled in the main loop)
// according to remark mu = params_.barcSq / (2 * rmax_sq - params_.barcSq) = params_.barcSq/ excessResidual
// however, if the denominator is 0 or negative, we return mu = -1 which leads to termination of the main GNC loop
return (2 * rmax_sq - params_.barcSq) > 0 ? params_.barcSq / (2 * rmax_sq - params_.barcSq) : -1;
default:
throw std::runtime_error(
"GncOptimizer::initializeMu: called with unknown loss type.");
case GncParameters::GM:
// surrogate cost is convex for large mu
return 2 * rmax_sq / params_.barcSq; // initial mu
case GncParameters::TLS:
/* initialize mu to the value specified in Remark 5 in GNC paper.
surrogate cost is convex for mu close to zero
degenerate case: 2 * rmax_sq - params_.barcSq < 0 (handled in the main loop)
according to remark mu = params_.barcSq / (2 * rmax_sq - params_.barcSq) = params_.barcSq/ excessResidual
however, if the denominator is 0 or negative, we return mu = -1 which leads to termination of the main GNC loop
*/
return
(2 * rmax_sq - params_.barcSq) > 0 ?
params_.barcSq / (2 * rmax_sq - params_.barcSq) : -1;
default:
throw std::runtime_error(
"GncOptimizer::initializeMu: called with unknown loss type.");
}
}
/// update the gnc parameter mu to gradually increase nonconvexity
/// Update the gnc parameter mu to gradually increase nonconvexity.
double updateMu(const double mu) const {
switch (params_.lossType) {
case GncParameters::GM:
// reduce mu, but saturate at 1 (original cost is recovered for mu -> 1)
return std::max(1.0, mu / params_.muStep);
case GncParameters::TLS:
// increases mu at each iteration (original cost is recovered for mu -> inf)
return mu * params_.muStep;
default:
throw std::runtime_error(
"GncOptimizer::updateMu: called with unknown loss type.");
case GncParameters::GM:
// reduce mu, but saturate at 1 (original cost is recovered for mu -> 1)
return std::max(1.0, mu / params_.muStep);
case GncParameters::TLS:
// increases mu at each iteration (original cost is recovered for mu -> inf)
return mu * params_.muStep;
default:
throw std::runtime_error(
"GncOptimizer::updateMu: called with unknown loss type.");
}
}
/// check if we have reached the value of mu for which the surrogate loss matches the original loss
/// Check if we have reached the value of mu for which the surrogate loss matches the original loss.
bool checkMuConvergence(const double mu) const {
bool muConverged = false;
switch (params_.lossType) {
case GncParameters::GM:
muConverged = std::fabs(mu - 1.0) < 1e-9; // mu=1 recovers the original GM function
break;
case GncParameters::TLS:
muConverged = false; // for TLS there is no stopping condition on mu (it must tend to infinity)
break;
default:
throw std::runtime_error(
"GncOptimizer::checkMuConvergence: called with unknown loss type.");
case GncParameters::GM:
muConverged = std::fabs(mu - 1.0) < 1e-9; // mu=1 recovers the original GM function
break;
case GncParameters::TLS:
muConverged = false; // for TLS there is no stopping condition on mu (it must tend to infinity)
break;
default:
throw std::runtime_error(
"GncOptimizer::checkMuConvergence: called with unknown loss type.");
}
if (muConverged && params_.verbosity >= GncParameters::Verbosity::SUMMARY)
std::cout << "muConverged = true " << std::endl;
return muConverged;
}
/// check convergence of relative cost differences
/// Check convergence of relative cost differences.
bool checkCostConvergence(const double cost, const double prev_cost) const {
bool costConverged = std::fabs(cost - prev_cost) / std::max(prev_cost,1e-7) < params_.relativeCostTol;
bool costConverged = std::fabs(cost - prev_cost) / std::max(prev_cost, 1e-7)
< params_.relativeCostTol;
if (costConverged && params_.verbosity >= GncParameters::Verbosity::SUMMARY)
std::cout << "checkCostConvergence = true " << std::endl;
return costConverged;
}
/// check convergence of weights to binary values
/// Check convergence of weights to binary values.
bool checkWeightsConvergence(const Vector& weights) const {
bool weightsConverged = false;
switch (params_.lossType) {
bool weightsConverged = false;
switch (params_.lossType) {
case GncParameters::GM:
weightsConverged = false; // for GM, there is no clear binary convergence for the weights
weightsConverged = false; // for GM, there is no clear binary convergence for the weights
break;
case GncParameters::TLS:
weightsConverged = true;
for(size_t i=0; i<weights.size(); i++){
if( std::fabs ( weights[i] - std::round(weights[i]) ) > params_.weightsTol ){
for (size_t i = 0; i < weights.size(); i++) {
if (std::fabs(weights[i] - std::round(weights[i]))
> params_.weightsTol) {
weightsConverged = false;
break;
}
@ -245,23 +258,21 @@ public:
default:
throw std::runtime_error(
"GncOptimizer::checkWeightsConvergence: called with unknown loss type.");
}
if (weightsConverged && params_.verbosity >= GncParameters::Verbosity::SUMMARY)
std::cout << "weightsConverged = true " << std::endl;
return weightsConverged;
}
/// check for convergence between consecutive GNC iterations
bool checkConvergence(const double mu,
const Vector& weights,
const double cost,
const double prev_cost) const {
return checkCostConvergence(cost,prev_cost) ||
checkWeightsConvergence(weights) ||
checkMuConvergence(mu);
if (weightsConverged
&& params_.verbosity >= GncParameters::Verbosity::SUMMARY)
std::cout << "weightsConverged = true " << std::endl;
return weightsConverged;
}
/// create a graph where each factor is weighted by the gnc weights
/// Check for convergence between consecutive GNC iterations.
bool checkConvergence(const double mu, const Vector& weights,
const double cost, const double prev_cost) const {
return checkCostConvergence(cost, prev_cost)
|| checkWeightsConvergence(weights) || checkMuConvergence(mu);
}
/// Create a graph where each factor is weighted by the gnc weights.
NonlinearFactorGraph makeWeightedGraph(const Vector& weights) const {
// make sure all noiseModels are Gaussian or convert to Gaussian
NonlinearFactorGraph newGraph;
@ -287,7 +298,7 @@ public:
return newGraph;
}
/// calculate gnc weights
/// Calculate gnc weights.
Vector calculateWeights(const Values& currentEstimate, const double mu) {
Vector weights = Vector::Ones(nfg_.size());
@ -298,42 +309,43 @@ public:
}
std::vector<size_t> unknownWeights;
std::set_difference(allWeights.begin(), allWeights.end(),
params_.knownInliers.begin(), params_.knownInliers.end(),
std::inserter(unknownWeights, unknownWeights.begin()));
params_.knownInliers.begin(),
params_.knownInliers.end(),
std::inserter(unknownWeights, unknownWeights.begin()));
// update weights of known inlier/outlier measurements
switch (params_.lossType) {
case GncParameters::GM: { // use eq (12) in GNC paper
for (size_t k : unknownWeights) {
if (nfg_[k]) {
double u2_k = nfg_[k]->error(currentEstimate); // squared (and whitened) residual
weights[k] = std::pow(
(mu * params_.barcSq) / (u2_k + mu * params_.barcSq), 2);
}
}
return weights;
}
case GncParameters::TLS: { // use eq (14) in GNC paper
double upperbound = (mu + 1) / mu * params_.barcSq;
double lowerbound = mu / (mu + 1) * params_.barcSq;
for (size_t k : unknownWeights) {
if (nfg_[k]) {
double u2_k = nfg_[k]->error(
currentEstimate); // squared (and whitened) residual
if (u2_k >= upperbound) {
weights[k] = 0;
} else if (u2_k <= lowerbound) {
weights[k] = 1;
} else {
weights[k] = std::sqrt(params_.barcSq * mu * (mu + 1) / u2_k) - mu;
case GncParameters::GM: { // use eq (12) in GNC paper
for (size_t k : unknownWeights) {
if (nfg_[k]) {
double u2_k = nfg_[k]->error(currentEstimate); // squared (and whitened) residual
weights[k] = std::pow(
(mu * params_.barcSq) / (u2_k + mu * params_.barcSq), 2);
}
}
return weights;
}
return weights;
}
default:
throw std::runtime_error(
"GncOptimizer::calculateWeights: called with unknown loss type.");
case GncParameters::TLS: { // use eq (14) in GNC paper
double upperbound = (mu + 1) / mu * params_.barcSq;
double lowerbound = mu / (mu + 1) * params_.barcSq;
for (size_t k : unknownWeights) {
if (nfg_[k]) {
double u2_k = nfg_[k]->error(currentEstimate); // squared (and whitened) residual
if (u2_k >= upperbound) {
weights[k] = 0;
} else if (u2_k <= lowerbound) {
weights[k] = 1;
} else {
weights[k] = std::sqrt(params_.barcSq * mu * (mu + 1) / u2_k)
- mu;
}
}
}
return weights;
}
default:
throw std::runtime_error(
"GncOptimizer::calculateWeights: called with unknown loss type.");
}
}
};

View File

@ -34,47 +34,50 @@ namespace gtsam {
/* ************************************************************************* */
template<class BaseOptimizerParameters>
class GncParams {
public:
/** For each parameter, specify the corresponding optimizer: e.g., GaussNewtonParams -> GaussNewtonOptimizer */
public:
/// For each parameter, specify the corresponding optimizer: e.g., GaussNewtonParams -> GaussNewtonOptimizer.
typedef typename BaseOptimizerParameters::OptimizerType OptimizerType;
/** Verbosity levels */
/// Verbosity levels
enum Verbosity {
SILENT = 0, SUMMARY, VALUES
SILENT = 0,
SUMMARY,
VALUES
};
/** Choice of robust loss function for GNC */
/// Choice of robust loss function for GNC.
enum GncLossType {
GM /*Geman McClure*/, TLS /*Truncated least squares*/
GM /*Geman McClure*/,
TLS /*Truncated least squares*/
};
/// Constructor
GncParams(const BaseOptimizerParameters& baseOptimizerParams) :
baseOptimizerParams(baseOptimizerParams) {
/// Constructor.
GncParams(const BaseOptimizerParameters& baseOptimizerParams)
: baseOptimizerParams(baseOptimizerParams) {
}
/// Default constructor
GncParams() :
baseOptimizerParams() {
/// Default constructor.
GncParams()
: baseOptimizerParams() {
}
/// GNC parameters
BaseOptimizerParameters baseOptimizerParams; /*optimization parameters used to solve the weighted least squares problem at each GNC iteration*/
/// GNC parameters.
BaseOptimizerParameters baseOptimizerParams; ///< Optimization parameters used to solve the weighted least squares problem at each GNC iteration
/// any other specific GNC parameters:
GncLossType lossType = TLS; /* default loss*/
size_t maxIterations = 100; /* maximum number of iterations*/
double barcSq = 1.0; /* a factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance*/
double muStep = 1.4; /* multiplicative factor to reduce/increase the mu in gnc */
double relativeCostTol = 1e-5; ///< if relative cost change is below this threshold, stop iterating
double weightsTol = 1e-4; ///< if the weights are within weightsTol from being binary, stop iterating (only for TLS)
Verbosity verbosity = SILENT; /* verbosity level */
std::vector<size_t> knownInliers = std::vector<size_t>(); /* slots in the factor graph corresponding to measurements that we know are inliers */
GncLossType lossType = TLS; ///< Default loss
size_t maxIterations = 100; ///< Maximum number of iterations
double barcSq = 1.0; ///< A factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance
double muStep = 1.4; ///< Multiplicative factor to reduce/increase the mu in gnc
double relativeCostTol = 1e-5; ///< If relative cost change is below this threshold, stop iterating
double weightsTol = 1e-4; ///< If the weights are within weightsTol from being binary, stop iterating (only for TLS)
Verbosity verbosity = SILENT; ///< Verbosity level
std::vector<size_t> knownInliers = std::vector<size_t>(); ///< Slots in the factor graph corresponding to measurements that we know are inliers
/// Set the robust loss function to be used in GNC (chosen among the ones in GncLossType)
/// Set the robust loss function to be used in GNC (chosen among the ones in GncLossType).
void setLossType(const GncLossType type) {
lossType = type;
}
/// Set the maximum number of iterations in GNC (changing the max nr of iters might lead to less accurate solutions and is not recommended)
/// Set the maximum number of iterations in GNC (changing the max nr of iters might lead to less accurate solutions and is not recommended).
void setMaxIterations(const size_t maxIter) {
std::cout
<< "setMaxIterations: changing the max nr of iters might lead to less accurate solutions and is not recommended! "
@ -85,22 +88,24 @@ public:
* the inlier threshold is the largest value of f(x) for the corresponding measurement to be considered an inlier.
* In other words, an inlier at x is such that 0.5 * || r(x) ||^2_Omega <= barcSq.
* Assuming a isotropic measurement covariance sigma^2 * Identity, the cost becomes: 0.5 * 1/sigma^2 || r(x) ||^2 <= barcSq.
* Hence || r(x) ||^2 <= 2 * barcSq * sigma^2
* Hence || r(x) ||^2 <= 2 * barcSq * sigma^2.
* */
void setInlierCostThreshold(const double inth) {
barcSq = inth;
}
/// Set the graduated non-convexity step: at each GNC iteration, mu is updated as mu <- mu * muStep
/// Set the graduated non-convexity step: at each GNC iteration, mu is updated as mu <- mu * muStep.
void setMuStep(const double step) {
muStep = step;
}
/// Set the maximum relative difference in mu values to stop iterating
void setRelativeCostTol(double value) { relativeCostTol = value;
/// Set the maximum relative difference in mu values to stop iterating.
void setRelativeCostTol(double value) {
relativeCostTol = value;
}
/// Set the maximum difference between the weights and their rounding in {0,1} to stop iterating
void setWeightsTol(double value) { weightsTol = value;
/// Set the maximum difference between the weights and their rounding in {0,1} to stop iterating.
void setWeightsTol(double value) {
weightsTol = value;
}
/// Set the verbosity level
/// Set the verbosity level.
void setVerbosityGNC(const Verbosity value) {
verbosity = value;
}
@ -108,33 +113,32 @@ public:
* corresponds to the slots in the factor graph. For instance, if you have a nonlinear factor graph nfg,
* and you provide knownIn = {0, 2, 15}, GNC will not apply outlier rejection to nfg[0], nfg[2], and nfg[15].
* This functionality is commonly used in SLAM when one may assume the odometry is outlier free, and
* only apply GNC to prune outliers from the loop closures
* only apply GNC to prune outliers from the loop closures.
* */
void setKnownInliers(const std::vector<size_t>& knownIn) {
for (size_t i = 0; i < knownIn.size(); i++)
knownInliers.push_back(knownIn[i]);
}
/// equals
/// Equals.
bool equals(const GncParams& other, double tol = 1e-9) const {
return baseOptimizerParams.equals(other.baseOptimizerParams)
&& lossType == other.lossType && maxIterations == other.maxIterations
&& std::fabs(barcSq - other.barcSq) <= tol
&& std::fabs(muStep - other.muStep) <= tol
&& verbosity == other.verbosity
&& knownInliers == other.knownInliers;
&& verbosity == other.verbosity && knownInliers == other.knownInliers;
}
/// print function
/// Print.
void print(const std::string& str) const {
std::cout << str << "\n";
switch (lossType) {
case GM:
std::cout << "lossType: Geman McClure" << "\n";
break;
case TLS:
std::cout << "lossType: Truncated Least-squares" << "\n";
break;
default:
throw std::runtime_error("GncParams::print: unknown loss type.");
case GM:
std::cout << "lossType: Geman McClure" << "\n";
break;
case TLS:
std::cout << "lossType: Truncated Least-squares" << "\n";
break;
default:
throw std::runtime_error("GncParams::print: unknown loss type.");
}
std::cout << "maxIterations: " << maxIterations << "\n";
std::cout << "barcSq: " << barcSq << "\n";

View File

@ -73,16 +73,16 @@ TEST(GncOptimizer, gncParamsConstructor) {
/* ************************************************************************* */
TEST(GncOptimizer, gncConstructor) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor
// on a 2D point
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor
// on a 2D point
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
GncParams<LevenbergMarquardtParams> gncParams;
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
CHECK(gnc.getFactors().equals(fg));
CHECK(gnc.getState().equals(initial));
@ -100,8 +100,9 @@ TEST(GncOptimizer, gncConstructorWithRobustGraphAsInput) {
initial.insert(X(1), p0);
GncParams<LevenbergMarquardtParams> gncParams;
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(
fg_robust, initial, gncParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg_robust,
initial,
gncParams);
// make sure that when parsing the graph is transformed into one without
// robust loss
@ -118,19 +119,17 @@ TEST(GncOptimizer, initializeMu) {
// testing GM mu initialization
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::GM);
auto gnc_gm =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::GncLossType::GM);
auto gnc_gm = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
// according to rmk 5 in the gnc paper: m0 = 2 rmax^2 / barcSq
// (barcSq=1 in this example)
EXPECT_DOUBLES_EQUAL(gnc_gm.initializeMu(), 2 * 198.999, 1e-3);
// testing TLS mu initialization
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc_tls =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc_tls = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
// according to rmk 5 in the gnc paper: m0 = barcSq / (2 * rmax^2 - barcSq)
// (barcSq=1 in this example)
EXPECT_DOUBLES_EQUAL(gnc_tls.initializeMu(), 1 / (2 * 198.999 - 1), 1e-3);
@ -146,11 +145,10 @@ TEST(GncOptimizer, updateMuGM) {
initial.insert(X(1), p0);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::GM);
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::GncLossType::GM);
gncParams.setMuStep(1.4);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double mu = 5.0;
EXPECT_DOUBLES_EQUAL(gnc.updateMu(mu), mu / 1.4, tol);
@ -171,10 +169,9 @@ TEST(GncOptimizer, updateMuTLS) {
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setMuStep(1.4);
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double mu = 5.0;
EXPECT_DOUBLES_EQUAL(gnc.updateMu(mu), mu * 1.4, tol);
@ -190,24 +187,23 @@ TEST(GncOptimizer, checkMuConvergence) {
initial.insert(X(1), p0);
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::GM);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::GncLossType::GM);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double mu = 1.0;
CHECK(gnc.checkMuConvergence(mu));
double mu = 1.0;
CHECK(gnc.checkMuConvergence(mu));
}
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double mu = 1.0;
CHECK(!gnc.checkMuConvergence(mu)); //always false for TLS
double mu = 1.0;
CHECK(!gnc.checkMuConvergence(mu)); //always false for TLS
}
}
@ -221,26 +217,26 @@ TEST(GncOptimizer, checkCostConvergence) {
initial.insert(X(1), p0);
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setRelativeCostTol(0.49);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setRelativeCostTol(0.49);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double prev_cost = 1.0;
double cost = 0.5;
// relative cost reduction = 0.5 > 0.49, hence checkCostConvergence = false
CHECK(!gnc.checkCostConvergence(cost, prev_cost));
double prev_cost = 1.0;
double cost = 0.5;
// relative cost reduction = 0.5 > 0.49, hence checkCostConvergence = false
CHECK(!gnc.checkCostConvergence(cost, prev_cost));
}
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setRelativeCostTol(0.51);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setRelativeCostTol(0.51);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double prev_cost = 1.0;
double cost = 0.5;
// relative cost reduction = 0.5 < 0.51, hence checkCostConvergence = true
CHECK(gnc.checkCostConvergence(cost, prev_cost));
double prev_cost = 1.0;
double cost = 0.5;
// relative cost reduction = 0.5 < 0.51, hence checkCostConvergence = true
CHECK(gnc.checkCostConvergence(cost, prev_cost));
}
}
@ -254,48 +250,47 @@ TEST(GncOptimizer, checkWeightsConvergence) {
initial.insert(X(1), p0);
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::GM);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::GncLossType::GM);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
Vector weights = Vector::Ones(fg.size());
CHECK(!gnc.checkWeightsConvergence(weights)); //always false for GM
Vector weights = Vector::Ones(fg.size());
CHECK(!gnc.checkWeightsConvergence(weights)); //always false for GM
}
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
Vector weights = Vector::Ones(fg.size());
// weights are binary, so checkWeightsConvergence = true
CHECK(gnc.checkWeightsConvergence(weights));
Vector weights = Vector::Ones(fg.size());
// weights are binary, so checkWeightsConvergence = true
CHECK(gnc.checkWeightsConvergence(weights));
}
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
Vector weights = Vector::Ones(fg.size());
weights[0] = 0.9; // more than weightsTol = 1e-4 from 1, hence checkWeightsConvergence = false
CHECK(!gnc.checkWeightsConvergence(weights));
Vector weights = Vector::Ones(fg.size());
weights[0] = 0.9; // more than weightsTol = 1e-4 from 1, hence checkWeightsConvergence = false
CHECK(!gnc.checkWeightsConvergence(weights));
}
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
gncParams.setWeightsTol(0.1);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
gncParams.setWeightsTol(0.1);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
Vector weights = Vector::Ones(fg.size());
weights[0] = 0.9; // exactly weightsTol = 0.1 from 1, hence checkWeightsConvergence = true
CHECK(gnc.checkWeightsConvergence(weights));
Vector weights = Vector::Ones(fg.size());
weights[0] = 0.9; // exactly weightsTol = 0.1 from 1, hence checkWeightsConvergence = true
CHECK(gnc.checkWeightsConvergence(weights));
}
}
@ -310,10 +305,9 @@ TEST(GncOptimizer, checkConvergenceTLS) {
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setRelativeCostTol(1e-5);
gncParams.setLossType(
GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
CHECK(gnc.checkCostConvergence(1.0, 1.0));
CHECK(!gnc.checkCostConvergence(1.0, 2.0));
@ -333,12 +327,11 @@ TEST(GncOptimizer, calculateWeightsGM) {
weights_expected[0] = 1.0; // zero error
weights_expected[1] = 1.0; // zero error
weights_expected[2] = 1.0; // zero error
weights_expected[3] = std::pow(1.0 / (50.0 + 1.0), 2); // outlier, error = 50
weights_expected[3] = std::pow(1.0 / (50.0 + 1.0), 2); // outlier, error = 50
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(
GncParams<GaussNewtonParams>::GncLossType::GM);
gncParams.setLossType(GncParams<GaussNewtonParams>::GncLossType::GM);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
double mu = 1.0;
Vector weights_actual = gnc.calculateWeights(initial, mu);
@ -346,11 +339,10 @@ TEST(GncOptimizer, calculateWeightsGM) {
mu = 2.0;
double barcSq = 5.0;
weights_expected[3] =
std::pow(mu * barcSq / (50.0 + mu * barcSq), 2); // outlier, error = 50
weights_expected[3] = std::pow(mu * barcSq / (50.0 + mu * barcSq), 2); // outlier, error = 50
gncParams.setInlierCostThreshold(barcSq);
auto gnc2 =
GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
auto gnc2 = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
weights_actual = gnc2.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, tol));
}
@ -372,8 +364,7 @@ TEST(GncOptimizer, calculateWeightsTLS) {
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(
GncParams<GaussNewtonParams>::GncLossType::TLS);
gncParams.setLossType(GncParams<GaussNewtonParams>::GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
double mu = 1.0;
Vector weights_actual = gnc.calculateWeights(initial, mu);
@ -391,45 +382,44 @@ TEST(GncOptimizer, calculateWeightsTLS2) {
// create very simple factor graph with a single factor 0.5 * 1/sigma^2 * || x - [1;0] ||^2
double sigma = 1;
SharedDiagonal noise =
noiseModel::Diagonal::Sigmas(Vector2(sigma, sigma));
SharedDiagonal noise = noiseModel::Diagonal::Sigmas(Vector2(sigma, sigma));
NonlinearFactorGraph nfg;
nfg.add(PriorFactor<Point2>(X(1),x_prior,noise));
nfg.add(PriorFactor<Point2>(X(1), x_prior, noise));
// cost of the factor:
DOUBLES_EQUAL(0.5 * 1/(sigma*sigma), nfg.error(initial), tol);
DOUBLES_EQUAL(0.5 * 1 / (sigma * sigma), nfg.error(initial), tol);
// check the TLS weights are correct: CASE 1: residual below barcsq
{
// expected:
Vector weights_expected = Vector::Zero(1);
weights_expected[0] = 1.0; // inlier
// actual:
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(
GncParams<GaussNewtonParams>::GncLossType::TLS);
gncParams.setInlierCostThreshold(0.51); // if inlier threshold is slightly larger than 0.5, then measurement is inlier
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(nfg, initial, gncParams);
double mu = 1e6;
Vector weights_actual = gnc.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, tol));
// expected:
Vector weights_expected = Vector::Zero(1);
weights_expected[0] = 1.0; // inlier
// actual:
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(GncParams<GaussNewtonParams>::GncLossType::TLS);
gncParams.setInlierCostThreshold(0.51); // if inlier threshold is slightly larger than 0.5, then measurement is inlier
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(nfg, initial,
gncParams);
double mu = 1e6;
Vector weights_actual = gnc.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, tol));
}
// check the TLS weights are correct: CASE 2: residual above barcsq
{
// expected:
Vector weights_expected = Vector::Zero(1);
weights_expected[0] = 0.0; // outlier
// actual:
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(
GncParams<GaussNewtonParams>::GncLossType::TLS);
gncParams.setInlierCostThreshold(0.49); // if inlier threshold is slightly below 0.5, then measurement is outlier
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(nfg, initial, gncParams);
double mu = 1e6; // very large mu recovers original TLS cost
Vector weights_actual = gnc.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, tol));
// expected:
Vector weights_expected = Vector::Zero(1);
weights_expected[0] = 0.0; // outlier
// actual:
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(GncParams<GaussNewtonParams>::GncLossType::TLS);
gncParams.setInlierCostThreshold(0.49); // if inlier threshold is slightly below 0.5, then measurement is outlier
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(nfg, initial,
gncParams);
double mu = 1e6; // very large mu recovers original TLS cost
Vector weights_actual = gnc.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, tol));
}
// check the TLS weights are correct: CASE 2: residual at barcsq
{
@ -439,11 +429,11 @@ TEST(GncOptimizer, calculateWeightsTLS2) {
// actual:
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(
GncParams<GaussNewtonParams>::GncLossType::TLS);
gncParams.setInlierCostThreshold(0.5); // if inlier threshold is slightly below 0.5, then measurement is outlier
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(nfg, initial, gncParams);
double mu = 1e6; // very large mu recovers original TLS cost
gncParams.setLossType(GncParams<GaussNewtonParams>::GncLossType::TLS);
gncParams.setInlierCostThreshold(0.5); // if inlier threshold is slightly below 0.5, then measurement is outlier
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(nfg, initial,
gncParams);
double mu = 1e6; // very large mu recovers original TLS cost
Vector weights_actual = gnc.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, 1e-5));
}
@ -453,17 +443,16 @@ TEST(GncOptimizer, calculateWeightsTLS2) {
TEST(GncOptimizer, makeWeightedGraph) {
// create original factor
double sigma1 = 0.1;
NonlinearFactorGraph nfg =
example::nonlinearFactorGraphWithGivenSigma(sigma1);
NonlinearFactorGraph nfg = example::nonlinearFactorGraphWithGivenSigma(
sigma1);
// create expected
double sigma2 = 10;
NonlinearFactorGraph expected =
example::nonlinearFactorGraphWithGivenSigma(sigma2);
NonlinearFactorGraph expected = example::nonlinearFactorGraphWithGivenSigma(
sigma2);
// create weights
Vector weights = Vector::Ones(
1); // original info:1/0.1^2 = 100. New info: 1/10^2 = 0.01. Ratio is 10-4
Vector weights = Vector::Ones(1); // original info:1/0.1^2 = 100. New info: 1/10^2 = 0.01. Ratio is 10-4
weights[0] = 1e-4;
// create actual
@ -491,8 +480,8 @@ TEST(GncOptimizer, optimizeSimple) {
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
auto gnc =
GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
Values actual = gnc.optimize();
DOUBLES_EQUAL(0, fg.error(actual), tol);
@ -515,15 +504,13 @@ TEST(GncOptimizer, optimize) {
CHECK(assert_equal(Point2(0.25, 0.0), gn_results.at<Point2>(X(1)), 1e-3));
// try with robust loss function and standard GN
auto fg_robust =
example::sharedRobustFactorGraphWithOutliers(); // same as fg, but with
// factors wrapped in
// Geman McClure losses
auto fg_robust = example::sharedRobustFactorGraphWithOutliers(); // same as fg, but with
// factors wrapped in
// Geman McClure losses
GaussNewtonOptimizer gn2(fg_robust, initial, gnParams);
Values gn2_results = gn2.optimize();
// converges to incorrect point, this time due to the nonconvexity of the loss
CHECK(
assert_equal(Point2(0.999706, 0.0), gn2_results.at<Point2>(X(1)), 1e-3));
CHECK(assert_equal(Point2(0.999706, 0.0), gn2_results.at<Point2>(X(1)), 1e-3));
// .. but graduated nonconvexity ensures both robustness and convergence in
// the face of nonconvexity
@ -549,59 +536,59 @@ TEST(GncOptimizer, optimizeWithKnownInliers) {
// nonconvexity with known inliers
{
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(
GncParams<GaussNewtonParams>::GncLossType::GM);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(GncParams<GaussNewtonParams>::GncLossType::GM);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
}
{
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(
GncParams<GaussNewtonParams>::GncLossType::TLS);
// gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(GncParams<GaussNewtonParams>::GncLossType::TLS);
// gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(0.0, finalWeights[3], tol);
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(0.0, finalWeights[3], tol);
}
{
// if we set the threshold large, they are all inliers
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(
GncParams<GaussNewtonParams>::GncLossType::TLS);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::VALUES);
gncParams.setInlierCostThreshold( 100.0 );
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
// if we set the threshold large, they are all inliers
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(GncParams<GaussNewtonParams>::GncLossType::TLS);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::VALUES);
gncParams.setInlierCostThreshold(100.0);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.25, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.25, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(1.0, finalWeights[3], tol);
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(1.0, finalWeights[3], tol);
}
}
@ -613,24 +600,22 @@ TEST(GncOptimizer, optimizeSmallPoseGraph) {
Values::shared_ptr initial;
boost::tie(graph, initial) = load2D(filename);
// Add a Gaussian prior on first poses
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
SharedDiagonal priorNoise =
noiseModel::Diagonal::Sigmas(Vector3(0.01, 0.01, 0.01));
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(
Vector3(0.01, 0.01, 0.01));
graph->addPrior(0, priorMean, priorNoise);
/// get expected values by optimizing outlier-free graph
Values expected = LevenbergMarquardtOptimizer(*graph, *initial).optimize();
// add a few outliers
SharedDiagonal betweenNoise =
noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.01));
graph->push_back(BetweenFactor<Pose2>(
90, 50, Pose2(),
betweenNoise)); // some arbitrary and incorrect between factor
SharedDiagonal betweenNoise = noiseModel::Diagonal::Sigmas(
Vector3(0.1, 0.1, 0.01));
graph->push_back(BetweenFactor<Pose2>(90, 50, Pose2(), betweenNoise)); // some arbitrary and incorrect between factor
/// get expected values by optimizing outlier-free graph
Values expectedWithOutliers =
LevenbergMarquardtOptimizer(*graph, *initial).optimize();
Values expectedWithOutliers = LevenbergMarquardtOptimizer(*graph, *initial)
.optimize();
// as expected, the following test fails due to the presence of an outlier!
// CHECK(assert_equal(expected, expectedWithOutliers, 1e-3));
@ -639,13 +624,12 @@ TEST(GncOptimizer, optimizeSmallPoseGraph) {
// inliers, but this problem is simple enought to succeed even without that
// assumption std::vector<size_t> knownInliers;
GncParams<GaussNewtonParams> gncParams;
auto gnc =
GncOptimizer<GncParams<GaussNewtonParams>>(*graph, *initial, gncParams);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(*graph, *initial,
gncParams);
Values actual = gnc.optimize();
// compare
CHECK(
assert_equal(expected, actual, 1e-3)); // yay! we are robust to outliers!
CHECK(assert_equal(expected, actual, 1e-3)); // yay! we are robust to outliers!
}
/* ************************************************************************* */