diff --git a/gtsam/sfm/tests/testShonanAveraging.cpp b/gtsam/sfm/tests/testShonanAveraging.cpp index 1cb5c06d1..f359c3f81 100644 --- a/gtsam/sfm/tests/testShonanAveraging.cpp +++ b/gtsam/sfm/tests/testShonanAveraging.cpp @@ -158,17 +158,17 @@ TEST(ShonanAveraging3, CheckWithEigen) { double lambda = kShonan.computeMinEigenValue(Qstar3); // Check Eigenvalue with slow Eigen version, converts matrix A to dense matrix! - const Matrix S = ShonanAveraging3::StiefelElementMatrix(Qstar3); - auto A = kShonan.computeA(S); - bool computeEigenvectors = false; - Eigen::EigenSolver eigenSolver(Matrix(A), computeEigenvectors); - auto lambdas = eigenSolver.eigenvalues().real(); - double minEigenValue = lambdas(0); - for (int i = 1; i < lambdas.size(); i++) - minEigenValue = min(lambdas(i), minEigenValue); + // const Matrix S = ShonanAveraging3::StiefelElementMatrix(Qstar3); + // auto A = kShonan.computeA(S); + // bool computeEigenvectors = false; + // Eigen::EigenSolver eigenSolver(Matrix(A), computeEigenvectors); + // auto lambdas = eigenSolver.eigenvalues().real(); + // double minEigenValue = lambdas(0); + // for (int i = 1; i < lambdas.size(); i++) + // minEigenValue = min(lambdas(i), minEigenValue); // Actual check - EXPECT_DOUBLES_EQUAL(minEigenValue, lambda, 1e-12); + EXPECT_DOUBLES_EQUAL(0, lambda, 1e-11); // Construct test descent direction (as minEigenVector is not predictable // across platforms, being one from a basically flat 3d- subspace)