diff --git a/gtsam/linear/ConjugateGradientSolver.cpp b/gtsam/linear/ConjugateGradientSolver.cpp index 006e7d67d..b2725ea1e 100644 --- a/gtsam/linear/ConjugateGradientSolver.cpp +++ b/gtsam/linear/ConjugateGradientSolver.cpp @@ -26,13 +26,13 @@ namespace gtsam { /*****************************************************************************/ void ConjugateGradientParameters::print(ostream &os) const { - Base::print(os); - cout << "ConjugateGradientParameters" << endl - << "minIter: " << minIterations_ << endl - << "maxIter: " << maxIterations_ << endl - << "resetIter: " << reset_ << endl - << "eps_rel: " << epsilon_rel_ << endl - << "eps_abs: " << epsilon_abs_ << endl; + Base::print(os); + cout << "ConjugateGradientParameters" << endl + << "minIter: " << minIterations << endl + << "maxIter: " << maxIterations << endl + << "resetIter: " << reset << endl + << "eps_rel: " << epsilon_rel << endl + << "eps_abs: " << epsilon_abs << endl; } /*****************************************************************************/ diff --git a/gtsam/linear/ConjugateGradientSolver.h b/gtsam/linear/ConjugateGradientSolver.h index ccdab45da..ab804e3f4 100644 --- a/gtsam/linear/ConjugateGradientSolver.h +++ b/gtsam/linear/ConjugateGradientSolver.h @@ -26,38 +26,50 @@ namespace gtsam { /** * Parameters for the Conjugate Gradient method */ -class GTSAM_EXPORT ConjugateGradientParameters : public IterativeOptimizationParameters { - - public: +struct GTSAM_EXPORT ConjugateGradientParameters + : public IterativeOptimizationParameters { typedef IterativeOptimizationParameters Base; typedef std::shared_ptr shared_ptr; - protected: - size_t minIterations_; ///< minimum number of cg iterations - size_t maxIterations_; ///< maximum number of cg iterations - size_t reset_; ///< number of iterations before reset - double epsilon_rel_; ///< threshold for relative error decrease - double epsilon_abs_; ///< threshold for absolute error decrease + size_t minIterations; ///< minimum number of cg iterations + size_t maxIterations; ///< maximum number of cg iterations + size_t reset; ///< number of iterations before reset + double epsilon_rel; ///< threshold for relative error decrease + double epsilon_abs; ///< threshold for absolute error decrease - public: /* Matrix Operation Kernel */ enum BLASKernel { - GTSAM = 0, ///< Jacobian Factor Graph of GTSAM - } blas_kernel_ ; + GTSAM = 0, ///< Jacobian Factor Graph of GTSAM + } blas_kernel; ConjugateGradientParameters() - : minIterations_(1), maxIterations_(500), reset_(501), epsilon_rel_(1e-3), - epsilon_abs_(1e-3), blas_kernel_(GTSAM) {} + : minIterations(1), + maxIterations(500), + reset(501), + epsilon_rel(1e-3), + epsilon_abs(1e-3), + blas_kernel(GTSAM) {} - ConjugateGradientParameters(size_t minIterations, size_t maxIterations, size_t reset, - double epsilon_rel, double epsilon_abs, BLASKernel blas) - : minIterations_(minIterations), maxIterations_(maxIterations), reset_(reset), - epsilon_rel_(epsilon_rel), epsilon_abs_(epsilon_abs), blas_kernel_(blas) {} + ConjugateGradientParameters(size_t minIterations, size_t maxIterations, + size_t reset, double epsilon_rel, + double epsilon_abs, BLASKernel blas) + : minIterations(minIterations), + maxIterations(maxIterations), + reset(reset), + epsilon_rel(epsilon_rel), + epsilon_abs(epsilon_abs), + blas_kernel(blas) {} ConjugateGradientParameters(const ConjugateGradientParameters &p) - : Base(p), minIterations_(p.minIterations_), maxIterations_(p.maxIterations_), reset_(p.reset_), - epsilon_rel_(p.epsilon_rel_), epsilon_abs_(p.epsilon_abs_), blas_kernel_(GTSAM) {} + : Base(p), + minIterations(p.minIterations), + maxIterations(p.maxIterations), + reset(p.reset), + epsilon_rel(p.epsilon_rel), + epsilon_abs(p.epsilon_abs), + blas_kernel(GTSAM) {} +#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V43 /* general interface */ inline size_t minIterations() const { return minIterations_; } inline size_t maxIterations() const { return maxIterations_; } @@ -79,6 +91,7 @@ class GTSAM_EXPORT ConjugateGradientParameters : public IterativeOptimizationPar inline void setEpsilon(double value) { epsilon_rel_ = value; } inline void setEpsilon_rel(double value) { epsilon_rel_ = value; } inline void setEpsilon_abs(double value) { epsilon_abs_ = value; } +#endif void print() const { Base::print(); } @@ -111,18 +124,19 @@ V preconditionedConjugateGradient(const S &system, const V &initial, double currentGamma = system.dot(residual, residual), prevGamma, alpha, beta; - const size_t iMaxIterations = parameters.maxIterations(), - iMinIterations = parameters.minIterations(), - iReset = parameters.reset() ; - const double threshold = std::max(parameters.epsilon_abs(), - parameters.epsilon() * parameters.epsilon() * currentGamma); + const size_t iMaxIterations = parameters.maxIterations, + iMinIterations = parameters.minIterations, + iReset = parameters.reset; + const double threshold = + std::max(parameters.epsilon_abs, + parameters.epsilon_rel * parameters.epsilon_rel * currentGamma); - if (parameters.verbosity() >= ConjugateGradientParameters::COMPLEXITY ) - std::cout << "[PCG] epsilon = " << parameters.epsilon() - << ", max = " << parameters.maxIterations() - << ", reset = " << parameters.reset() - << ", ||r0||^2 = " << currentGamma - << ", threshold = " << threshold << std::endl; + if (parameters.verbosity() >= ConjugateGradientParameters::COMPLEXITY) + std::cout << "[PCG] epsilon = " << parameters.epsilon_rel + << ", max = " << parameters.maxIterations + << ", reset = " << parameters.reset + << ", ||r0||^2 = " << currentGamma + << ", threshold = " << threshold << std::endl; size_t k; for ( k = 1 ; k <= iMaxIterations && (currentGamma > threshold || k <= iMinIterations) ; k++ ) { diff --git a/gtsam/linear/iterative-inl.h b/gtsam/linear/iterative-inl.h index c96d643b2..a8185b544 100644 --- a/gtsam/linear/iterative-inl.h +++ b/gtsam/linear/iterative-inl.h @@ -49,10 +49,12 @@ namespace gtsam { // init gamma and calculate threshold gamma = dot(g,g); - threshold = std::max(parameters_.epsilon_abs(), parameters_.epsilon() * parameters_.epsilon() * gamma); + threshold = + std::max(parameters_.epsilon_abs, + parameters_.epsilon_rel * parameters_.epsilon_rel * gamma); // Allocate and calculate A*d for first iteration - if (gamma > parameters_.epsilon_abs()) Ad = Ab * d; + if (gamma > parameters_.epsilon_abs) Ad = Ab * d; } /* ************************************************************************* */ @@ -79,13 +81,13 @@ namespace gtsam { // take a step, return true if converged bool step(const S& Ab, V& x) { - if ((++k) >= ((int)parameters_.maxIterations())) return true; + if ((++k) >= ((int)parameters_.maxIterations)) return true; //----------------------------------> double alpha = takeOptimalStep(x); // update gradient (or re-calculate at reset time) - if (k % parameters_.reset() == 0) g = Ab.gradient(x); + if (k % parameters_.reset == 0) g = Ab.gradient(x); // axpy(alpha, Ab ^ Ad, g); // g += alpha*(Ab^Ad) else Ab.transposeMultiplyAdd(alpha, Ad, g); @@ -126,11 +128,10 @@ namespace gtsam { CGState state(Ab, x, parameters, steepest); if (parameters.verbosity() != ConjugateGradientParameters::SILENT) - std::cout << "CG: epsilon = " << parameters.epsilon() - << ", maxIterations = " << parameters.maxIterations() + std::cout << "CG: epsilon = " << parameters.epsilon_rel + << ", maxIterations = " << parameters.maxIterations << ", ||g0||^2 = " << state.gamma - << ", threshold = " << state.threshold - << std::endl; + << ", threshold = " << state.threshold << std::endl; if ( state.gamma < state.threshold ) { if (parameters.verbosity() != ConjugateGradientParameters::SILENT)