remove timers

release/4.3a0
Varun Agrawal 2023-07-24 19:23:16 -04:00
parent 62d020a531
commit df0c5d7ca0
2 changed files with 1 additions and 9 deletions

View File

@ -129,7 +129,6 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
DecisionTreeFactor HybridBayesNet::pruneDiscreteConditionals( DecisionTreeFactor HybridBayesNet::pruneDiscreteConditionals(
size_t maxNrLeaves) { size_t maxNrLeaves) {
// Get the joint distribution of only the discrete keys // Get the joint distribution of only the discrete keys
gttic_(HybridBayesNet_PruneDiscreteConditionals);
// The joint discrete probability. // The joint discrete probability.
DiscreteConditional discreteProbs; DiscreteConditional discreteProbs;
@ -147,12 +146,11 @@ DecisionTreeFactor HybridBayesNet::pruneDiscreteConditionals(
discrete_factor_idxs.push_back(i); discrete_factor_idxs.push_back(i);
} }
} }
const DecisionTreeFactor prunedDiscreteProbs = const DecisionTreeFactor prunedDiscreteProbs =
discreteProbs.prune(maxNrLeaves); discreteProbs.prune(maxNrLeaves);
gttoc_(HybridBayesNet_PruneDiscreteConditionals);
// Eliminate joint probability back into conditionals // Eliminate joint probability back into conditionals
gttic_(HybridBayesNet_UpdateDiscreteConditionals);
DiscreteFactorGraph dfg{prunedDiscreteProbs}; DiscreteFactorGraph dfg{prunedDiscreteProbs};
DiscreteBayesNet::shared_ptr dbn = dfg.eliminateSequential(discrete_frontals); DiscreteBayesNet::shared_ptr dbn = dfg.eliminateSequential(discrete_frontals);
@ -161,7 +159,6 @@ DecisionTreeFactor HybridBayesNet::pruneDiscreteConditionals(
size_t idx = discrete_factor_idxs.at(i); size_t idx = discrete_factor_idxs.at(i);
this->at(idx) = std::make_shared<HybridConditional>(dbn->at(i)); this->at(idx) = std::make_shared<HybridConditional>(dbn->at(i));
} }
gttoc_(HybridBayesNet_UpdateDiscreteConditionals);
return prunedDiscreteProbs; return prunedDiscreteProbs;
} }
@ -180,7 +177,6 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
HybridBayesNet prunedBayesNetFragment; HybridBayesNet prunedBayesNetFragment;
gttic_(HybridBayesNet_PruneMixtures);
// Go through all the conditionals in the // Go through all the conditionals in the
// Bayes Net and prune them as per prunedDiscreteProbs. // Bayes Net and prune them as per prunedDiscreteProbs.
for (auto &&conditional : *this) { for (auto &&conditional : *this) {
@ -197,7 +193,6 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
prunedBayesNetFragment.push_back(conditional); prunedBayesNetFragment.push_back(conditional);
} }
} }
gttoc_(HybridBayesNet_PruneMixtures);
return prunedBayesNetFragment; return prunedBayesNetFragment;
} }

View File

@ -96,7 +96,6 @@ static GaussianFactorGraphTree addGaussian(
// TODO(dellaert): it's probably more efficient to first collect the discrete // TODO(dellaert): it's probably more efficient to first collect the discrete
// keys, and then loop over all assignments to populate a vector. // keys, and then loop over all assignments to populate a vector.
GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const { GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
gttic_(assembleGraphTree);
GaussianFactorGraphTree result; GaussianFactorGraphTree result;
@ -129,8 +128,6 @@ GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
} }
} }
gttoc_(assembleGraphTree);
return result; return result;
} }