templated calibration object in triangulateDLT
parent
aa1f1582f5
commit
de5f8ee354
|
|
@ -108,75 +108,6 @@ Point3 triangulateDLT(const std::vector<Pose3>& poses, const vector<Matrix>& pro
|
|||
return point;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// See Hartley and Zisserman, 2nd Ed., page 312
|
||||
Point3 triangulateDLT(const std::vector<Pose3>& poses, const vector<Matrix>& projection_matrices,
|
||||
const vector<Point2>& measurements, const vector<Cal3_S2::shared_ptr> &Ks, double rank_tol, bool optimize) {
|
||||
|
||||
Matrix A = zeros(projection_matrices.size() *2, 4);
|
||||
|
||||
for(size_t i=0; i< projection_matrices.size(); i++) {
|
||||
size_t row = i*2;
|
||||
const Matrix& projection = projection_matrices.at(i);
|
||||
const Point2& p = measurements.at(i);
|
||||
|
||||
// build system of equations
|
||||
A.row(row) = p.x() * projection.row(2) - projection.row(0);
|
||||
A.row(row+1) = p.y() * projection.row(2) - projection.row(1);
|
||||
}
|
||||
int rank;
|
||||
double error;
|
||||
Vector v;
|
||||
boost::tie(rank, error, v) = DLT(A, rank_tol);
|
||||
// std::cout << "s " << s.transpose() << std:endl;
|
||||
|
||||
if(rank < 3)
|
||||
throw(TriangulationUnderconstrainedException());
|
||||
|
||||
Point3 point = Point3(sub( (v / v(3)),0,3));
|
||||
if (optimize) {
|
||||
NonlinearFactorGraph graph;
|
||||
gtsam::Values::shared_ptr values(new gtsam::Values());
|
||||
static SharedNoiseModel noise(noiseModel::Unit::Create(2));
|
||||
static SharedNoiseModel prior_model(noiseModel::Diagonal::Sigmas(Vector_(6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6)));
|
||||
int ij = 0;
|
||||
BOOST_FOREACH(const Point2 &measurement, measurements) {
|
||||
// Factor for pose i
|
||||
ProjectionFactor *projectionFactor = new ProjectionFactor(measurement, noise, X(ij), L(0), Ks[ij]);
|
||||
graph.push_back( boost::make_shared<ProjectionFactor>(*projectionFactor) );
|
||||
|
||||
// Prior on pose
|
||||
graph.push_back(Pose3Prior(X(ij), poses[ij], prior_model));
|
||||
|
||||
// Initial pose values
|
||||
values->insert( X(ij), poses[ij]);
|
||||
|
||||
ij++;
|
||||
}
|
||||
|
||||
// Initial landmark value
|
||||
values->insert(L(0), point);
|
||||
|
||||
// Optimize
|
||||
LevenbergMarquardtParams params;
|
||||
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
params.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
params.lambdaInitial = 1;
|
||||
params.lambdaFactor = 10;
|
||||
params.maxIterations = 100;
|
||||
params.absoluteErrorTol = 1.0;
|
||||
params.verbosityLM = LevenbergMarquardtParams::SILENT;
|
||||
params.verbosity = NonlinearOptimizerParams::SILENT;
|
||||
params.linearSolverType = SuccessiveLinearizationParams::MULTIFRONTAL_CHOLESKY;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, *values, params);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
point = result.at<Point3>(L(0));
|
||||
}
|
||||
|
||||
return point;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -27,6 +27,13 @@
|
|||
#include <boost/assign/std/vector.hpp>
|
||||
#include <gtsam_unstable/base/dllexport.h>
|
||||
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
|
||||
#include <gtsam/slam/ProjectionFactor.h>
|
||||
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
|
@ -34,7 +41,7 @@ namespace gtsam {
|
|||
class GTSAM_UNSTABLE_EXPORT TriangulationUnderconstrainedException: public std::runtime_error {
|
||||
public:
|
||||
TriangulationUnderconstrainedException() :
|
||||
std::runtime_error("Triangulation Underconstrained Exception.") {
|
||||
std::runtime_error("Triangulation Underconstrained Exception.") {
|
||||
}
|
||||
};
|
||||
|
||||
|
|
@ -42,16 +49,90 @@ public:
|
|||
class GTSAM_UNSTABLE_EXPORT TriangulationCheiralityException: public std::runtime_error {
|
||||
public:
|
||||
TriangulationCheiralityException() :
|
||||
std::runtime_error(
|
||||
"Triangulation Cheirality Exception: The resulting landmark is behind one or more cameras.") {
|
||||
std::runtime_error(
|
||||
"Triangulation Cheirality Exception: The resulting landmark is behind one or more cameras.") {
|
||||
}
|
||||
};
|
||||
|
||||
Point3 triangulateDLT(const std::vector<Pose3>& poses, const std::vector<Matrix>& projection_matrices,
|
||||
const std::vector<Point2>& measurements, const Cal3_S2 &K, double rank_tol, bool optimize);
|
||||
|
||||
/* ************************************************************************* */
|
||||
// See Hartley and Zisserman, 2nd Ed., page 312
|
||||
template<class CALIBRATION>
|
||||
Point3 triangulateDLT(const std::vector<Pose3>& poses, const std::vector<Matrix>& projection_matrices,
|
||||
const std::vector<Point2>& measurements, const std::vector<Cal3_S2::shared_ptr> &Ks, double rank_tol, bool optimize);
|
||||
const std::vector<Point2>& measurements, const std::vector<boost::shared_ptr<CALIBRATION> >& Ks, double rank_tol, bool optimize) {
|
||||
|
||||
Matrix A = zeros(projection_matrices.size() *2, 4);
|
||||
|
||||
for(size_t i=0; i< projection_matrices.size(); i++) {
|
||||
size_t row = i*2;
|
||||
const Matrix& projection = projection_matrices.at(i);
|
||||
const Point2& p = measurements.at(i);
|
||||
|
||||
// build system of equations
|
||||
A.row(row) = p.x() * projection.row(2) - projection.row(0);
|
||||
A.row(row+1) = p.y() * projection.row(2) - projection.row(1);
|
||||
}
|
||||
int rank;
|
||||
double error;
|
||||
Vector v;
|
||||
boost::tie(rank, error, v) = DLT(A, rank_tol);
|
||||
// std::cout << "s " << s.transpose() << std:endl;
|
||||
|
||||
if(rank < 3)
|
||||
throw(TriangulationUnderconstrainedException());
|
||||
|
||||
Point3 point = Point3(sub( (v / v(3)),0,3));
|
||||
if (optimize) {
|
||||
NonlinearFactorGraph graph;
|
||||
gtsam::Values::shared_ptr values(new gtsam::Values());
|
||||
static SharedNoiseModel noise(noiseModel::Unit::Create(2));
|
||||
static SharedNoiseModel prior_model(noiseModel::Diagonal::Sigmas(Vector_(6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6)));
|
||||
int ij = 0;
|
||||
Key landmarkKey = Symbol('l',0);
|
||||
|
||||
BOOST_FOREACH(const Point2 &measurement, measurements) {
|
||||
// Factor for pose i
|
||||
typedef GenericProjectionFactor<Pose3,Point3,CALIBRATION> ProjectionFactor;
|
||||
typedef PriorFactor<Pose3> Pose3Prior;
|
||||
Key poseKey = Symbol('x',ij);
|
||||
boost::shared_ptr<ProjectionFactor> projectionFactor(new ProjectionFactor(measurement, noise, poseKey, landmarkKey, Ks[ij]));
|
||||
graph.push_back(projectionFactor);
|
||||
//ProjectionFactor *projectionFactor = new ProjectionFactor(measurement, noise, X(ij), L(0), Ks[ij]);
|
||||
//graph.push_back( boost::make_shared<ProjectionFactor>(*projectionFactor) );
|
||||
|
||||
// Prior on pose
|
||||
graph.push_back(Pose3Prior(poseKey, poses[ij], prior_model));
|
||||
|
||||
// Initial pose values
|
||||
values->insert( poseKey, poses[ij]);
|
||||
|
||||
ij++;
|
||||
}
|
||||
|
||||
// Initial landmark value
|
||||
values->insert(landmarkKey, point);
|
||||
|
||||
// Optimize
|
||||
LevenbergMarquardtParams params;
|
||||
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
params.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
params.lambdaInitial = 1;
|
||||
params.lambdaFactor = 10;
|
||||
params.maxIterations = 100;
|
||||
params.absoluteErrorTol = 1.0;
|
||||
params.verbosityLM = LevenbergMarquardtParams::SILENT;
|
||||
params.verbosity = NonlinearOptimizerParams::SILENT;
|
||||
params.linearSolverType = SuccessiveLinearizationParams::MULTIFRONTAL_CHOLESKY;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, *values, params);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
point = result.at<Point3>(landmarkKey);
|
||||
}
|
||||
|
||||
return point;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
|
|
@ -78,9 +159,9 @@ GTSAM_UNSTABLE_EXPORT Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
|||
|
||||
// construct projection matrices from poses & calibration
|
||||
BOOST_FOREACH(const Pose3& pose, poses){
|
||||
projection_matrices.push_back( K.K() * sub(pose.inverse().matrix(),0,3,0,4) );
|
||||
// std::cout << "Calibration i \n" << K.K() << std::endl;
|
||||
// std::cout << "rank_tol i \n" << rank_tol << std::endl;
|
||||
projection_matrices.push_back( K.K() * sub(pose.inverse().matrix(),0,3,0,4) );
|
||||
// std::cout << "Calibration i \n" << K.K() << std::endl;
|
||||
// std::cout << "rank_tol i \n" << rank_tol << std::endl;
|
||||
}
|
||||
|
||||
Point3 triangulated_point = triangulateDLT(poses, projection_matrices, measurements, K, rank_tol, optimize);
|
||||
|
|
|
|||
Loading…
Reference in New Issue