Removed old NonlinearOptimizer-inl.h

release/4.3a0
Richard Roberts 2012-03-01 16:07:16 +00:00
parent 9312b0a128
commit de2b9d6b31
1 changed files with 0 additions and 356 deletions

View File

@ -1,356 +0,0 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file NonlinearOptimizer-inl.h
* This is a template definition file, include it where needed (only!)
* so that the appropriate code is generated and link errors avoided.
* @brief: Encapsulates nonlinear optimization state
* @author Frank Dellaert
* @date Sep 7, 2009
*/
#pragma once
#include <iostream>
#include <boost/tuple/tuple.hpp>
#include <gtsam/base/cholesky.h>
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
template<class G, class L, class S, class W>
NonlinearOptimizer<G, L, S, W>::NonlinearOptimizer(shared_graph graph,
shared_values values, shared_ordering ordering, shared_parameters parameters) :
graph_(graph), values_(values), error_(graph->error(*values)), ordering_(ordering),
parameters_(parameters), iterations_(0),
dimensions_(new vector<size_t>(values->dims(*ordering))),
structure_(new VariableIndex(*graph->symbolic(*ordering))) {
if (!graph) throw std::invalid_argument(
"NonlinearOptimizer constructor: graph = NULL");
if (!values) throw std::invalid_argument(
"NonlinearOptimizer constructor: values = NULL");
if (!ordering) throw std::invalid_argument(
"NonlinearOptimizer constructor: ordering = NULL");
}
/* ************************************************************************* */
// FIXME: remove this constructor
template<class G, class L, class S, class W>
NonlinearOptimizer<G, L, S, W>::NonlinearOptimizer(shared_graph graph,
shared_values values, shared_ordering ordering,
shared_solver spcg_solver, shared_parameters parameters) :
graph_(graph), values_(values), error_(graph->error(*values)), ordering_(ordering),
parameters_(parameters), iterations_(0),
dimensions_(new vector<size_t>(values->dims(*ordering))),
spcg_solver_(spcg_solver) {
if (!graph) throw std::invalid_argument(
"NonlinearOptimizer constructor: graph = NULL");
if (!values) throw std::invalid_argument(
"NonlinearOptimizer constructor: values = NULL");
if (!spcg_solver) throw std::invalid_argument(
"NonlinearOptimizer constructor: spcg_solver = NULL");
}
/* ************************************************************************* */
// One iteration of Gauss Newton
/* ************************************************************************* */
template<class G, class L, class S, class W>
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::iterate() const {
Parameters::verbosityLevel verbosity = parameters_->verbosity_ ;
// FIXME: get rid of spcg solver
shared_solver solver;
if (spcg_solver_) { // special case for SPCG
spcg_solver_->replaceFactors(linearize());
solver = spcg_solver_;
} else { // normal case
solver = createSolver();
}
VectorValues delta = *solver->optimize();
// maybe show output
if (verbosity >= Parameters::DELTA) delta.print("delta");
// take old values and update it
shared_values newValues(new Values(values_->retract(delta, *ordering_)));
// maybe show output
if (verbosity >= Parameters::VALUES) newValues->print("newValues");
NonlinearOptimizer newOptimizer = newValues_(newValues);
++ newOptimizer.iterations_;
if (verbosity >= Parameters::ERROR) cout << "error: " << newOptimizer.error_ << endl;
return newOptimizer;
}
/* ************************************************************************* */
template<class G, class L, class S, class W>
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::gaussNewton() const {
static W writer(error_);
if (error_ < parameters_->sumError_ ) {
if ( parameters_->verbosity_ >= Parameters::ERROR)
cout << "Exiting, as error = " << error_
<< " < sumError (" << parameters_->sumError_ << ")" << endl;
return *this;
}
// linearize, solve, update
NonlinearOptimizer next = iterate();
writer.write(next.error_);
// check convergence
bool converged = gtsam::check_convergence(*parameters_, error_, next.error_);
// return converged state or iterate
if (converged) return next;
else return next.gaussNewton();
}
/* ************************************************************************* */
// Iteratively try to do tempered Gauss-Newton steps until we succeed.
// Form damped system with given lambda, and return a new, more optimistic
// optimizer if error decreased or iterate with a larger lambda if not.
// TODO: in theory we can't infinitely recurse, but maybe we should put a max.
// Reminder: the parameters are Graph type $G$, Values class type $T$,
// linear system class $L$, the non linear solver type $S$, and the writer type $W$
template<class G, class L, class S, class W>
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::try_lambda(const L& linearSystem) {
const Parameters::verbosityLevel verbosity = parameters_->verbosity_ ;
const Parameters::LambdaMode lambdaMode = parameters_->lambdaMode_ ;
const double factor = parameters_->lambdaFactor_ ;
double lambda = parameters_->lambda_ ;
if( lambdaMode >= Parameters::CAUTIOUS) throw runtime_error("CAUTIOUS mode not working yet, please use BOUNDED.");
double next_error = error_;
shared_values next_values = values_;
// Keep increasing lambda until we make make progress
while(true) {
if (verbosity >= Parameters::TRYLAMBDA) cout << "trying lambda = " << lambda << endl;
// add prior-factors
// TODO: replace this dampening with a backsubstitution approach
typename L::shared_ptr dampedSystem(new L(linearSystem));
{
double sigma = 1.0 / sqrt(lambda);
dampedSystem->reserve(dampedSystem->size() + dimensions_->size());
// for each of the variables, add a prior
for(Index j=0; j<dimensions_->size(); ++j) {
size_t dim = (*dimensions_)[j];
Matrix A = eye(dim);
Vector b = zero(dim);
SharedDiagonal model = noiseModel::Isotropic::Sigma(dim,sigma);
typename L::sharedFactor prior(new JacobianFactor(j, A, b, model));
dampedSystem->push_back(prior);
}
}
if (verbosity >= Parameters::DAMPED) dampedSystem->print("damped");
// Create a new solver using the damped linear system
// FIXME: remove spcg specific code
if (spcg_solver_) spcg_solver_->replaceFactors(dampedSystem);
shared_solver solver = (spcg_solver_) ? spcg_solver_ : shared_solver(
new S(dampedSystem, structure_, parameters_->useQR_));
// Try solving
try {
VectorValues delta = *solver->optimize();
if (verbosity >= Parameters::TRYLAMBDA) cout << "linear delta norm = " << delta.vector().norm() << endl;
if (verbosity >= Parameters::TRYDELTA) delta.print("delta");
// update values
shared_values newValues(new Values(values_->retract(delta, *ordering_)));
// create new optimization state with more adventurous lambda
double error = graph_->error(*newValues);
if (verbosity >= Parameters::TRYLAMBDA) cout << "next error = " << error << endl;
if( error <= error_ ) {
next_values = newValues;
next_error = error;
lambda /= factor;
break;
}
else {
// Either we're not cautious, or the same lambda was worse than the current error.
// The more adventurous lambda was worse too, so make lambda more conservative
// and keep the same values.
if(lambdaMode >= Parameters::BOUNDED && lambda >= 1.0e5) {
if(verbosity >= Parameters::ERROR)
cout << "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << endl;
break;
} else {
lambda *= factor;
}
}
} catch(const NegativeMatrixException& e) {
if(verbosity >= Parameters::LAMBDA)
cout << "Negative matrix, increasing lambda" << endl;
// Either we're not cautious, or the same lambda was worse than the current error.
// The more adventurous lambda was worse too, so make lambda more conservative
// and keep the same values.
if(lambdaMode >= Parameters::BOUNDED && lambda >= 1.0e5) {
if(verbosity >= Parameters::ERROR)
cout << "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << endl;
break;
} else {
lambda *= factor;
}
} catch(...) {
throw;
}
} // end while
return newValuesErrorLambda_(next_values, next_error, lambda);
}
/* ************************************************************************* */
// One iteration of Levenberg Marquardt
// Reminder: the parameters are Graph type $G$, Values class type $T$,
// linear system class $L$, the non linear solver type $S$, and the writer type $W$
template<class G, class L, class S, class W>
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::iterateLM() {
const Parameters::verbosityLevel verbosity = parameters_->verbosity_ ;
const double lambda = parameters_->lambda_ ;
// show output
if (verbosity >= Parameters::VALUES) values_->print("values");
if (verbosity >= Parameters::ERROR) cout << "error: " << error_ << endl;
if (verbosity >= Parameters::LAMBDA) cout << "lambda = " << lambda << endl;
// linearize all factors once
boost::shared_ptr<L> linear(new L(*graph_->linearize(*values_, *ordering_)));
if (verbosity >= Parameters::LINEAR) linear->print("linear");
// try lambda steps with successively larger lambda until we achieve descent
if (verbosity >= Parameters::LAMBDA) cout << "Trying Lambda for the first time" << endl;
return try_lambda(*linear);
}
/* ************************************************************************* */
// Reminder: the parameters are Graph type $G$, Values class type $T$,
// linear system class $L$, the non linear solver type $S$, and the writer type $W$
template<class G, class L, class S, class W>
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::levenbergMarquardt() {
// Initialize
bool converged = false;
const Parameters::verbosityLevel verbosity = parameters_->verbosity_ ;
// check if we're already close enough
if (error_ < parameters_->sumError_) {
if ( verbosity >= Parameters::ERROR )
cout << "Exiting, as sumError = " << error_ << " < " << parameters_->sumError_ << endl;
return *this;
}
// for the case that maxIterations_ = 0
iterations_ = 1;
if (iterations_ >= parameters_->maxIterations_)
return *this;
// Iterative loop that implements Levenberg-Marquardt
while (true) {
double previous_error = error_;
// do one iteration of LM
NonlinearOptimizer next = iterateLM();
error_ = next.error_;
values_ = next.values_;
parameters_ = next.parameters_;
iterations_ = next.iterations_;
// check convergence
// TODO: move convergence checks here and incorporate in verbosity levels
// TODO: build into iterations somehow as an instance variable
converged = gtsam::check_convergence(*parameters_, previous_error, error_);
if(iterations_ >= parameters_->maxIterations_ || converged == true) {
if (verbosity >= Parameters::VALUES) values_->print("final values");
if (verbosity >= Parameters::ERROR && iterations_ >= parameters_->maxIterations_) cout << "Terminating because reached maximum iterations" << endl;
if (verbosity >= Parameters::ERROR) cout << "final error: " << error_ << endl;
if (verbosity >= Parameters::LAMBDA) cout << "final lambda = " << lambda() << endl;
return *this;
}
iterations_++;
}
}
/* ************************************************************************* */
template<class G, class L, class S, class W>
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::iterateDogLeg() {
S solver(*graph_->linearize(*values_, *ordering_), parameters_->useQR_);
DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(
parameters_->lambda_, DoglegOptimizerImpl::ONE_STEP_PER_ITERATION, *solver.eliminate(),
*graph_, *values_, *ordering_, error_, parameters_->verbosity_ > Parameters::ERROR);
shared_values newValues(new Values(values_->retract(result.dx_d, *ordering_)));
return newValuesErrorLambda_(newValues, result.f_error, result.Delta);
}
/* ************************************************************************* */
template<class G, class L, class S, class W>
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::dogLeg() {
static W writer(error_);
// check if we're already close enough
if (error_ < parameters_->sumError_) {
if ( parameters_->verbosity_ >= Parameters::ERROR )
cout << "Exiting, as sumError = " << error_ << " < " << parameters_->sumError_ << endl;
return *this;
}
// for the case that maxIterations_ = 0
iterations_ = 1;
if (iterations_ >= parameters_->maxIterations_)
return *this;
// Iterative loop that runs Dog Leg
while (true) {
double previous_error = error_;
// do one iteration of LM
NonlinearOptimizer next = iterateDogLeg();
writer.write(next.error_);
error_ = next.error_;
values_ = next.values_;
parameters_ = next.parameters_;
// check convergence
// TODO: move convergence checks here and incorporate in verbosity levels
// TODO: build into iterations somehow as an instance variable
bool converged = gtsam::check_convergence(*parameters_, previous_error, error_);
if(iterations_ >= parameters_->maxIterations_ || converged == true) {
if (parameters_->verbosity_ >= Parameters::VALUES) values_->print("final values");
if (parameters_->verbosity_ >= Parameters::ERROR) cout << "final error: " << error_ << endl;
if (parameters_->verbosity_ >= Parameters::LAMBDA) cout << "final Delta (called lambda) = " << lambda() << endl;
return *this;
}
iterations_++;
}
}
}