Removed old NonlinearOptimizer-inl.h
parent
9312b0a128
commit
de2b9d6b31
|
@ -1,356 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file NonlinearOptimizer-inl.h
|
||||
* This is a template definition file, include it where needed (only!)
|
||||
* so that the appropriate code is generated and link errors avoided.
|
||||
* @brief: Encapsulates nonlinear optimization state
|
||||
* @author Frank Dellaert
|
||||
* @date Sep 7, 2009
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <boost/tuple/tuple.hpp>
|
||||
#include <gtsam/base/cholesky.h>
|
||||
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W>::NonlinearOptimizer(shared_graph graph,
|
||||
shared_values values, shared_ordering ordering, shared_parameters parameters) :
|
||||
graph_(graph), values_(values), error_(graph->error(*values)), ordering_(ordering),
|
||||
parameters_(parameters), iterations_(0),
|
||||
dimensions_(new vector<size_t>(values->dims(*ordering))),
|
||||
structure_(new VariableIndex(*graph->symbolic(*ordering))) {
|
||||
if (!graph) throw std::invalid_argument(
|
||||
"NonlinearOptimizer constructor: graph = NULL");
|
||||
if (!values) throw std::invalid_argument(
|
||||
"NonlinearOptimizer constructor: values = NULL");
|
||||
if (!ordering) throw std::invalid_argument(
|
||||
"NonlinearOptimizer constructor: ordering = NULL");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// FIXME: remove this constructor
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W>::NonlinearOptimizer(shared_graph graph,
|
||||
shared_values values, shared_ordering ordering,
|
||||
shared_solver spcg_solver, shared_parameters parameters) :
|
||||
graph_(graph), values_(values), error_(graph->error(*values)), ordering_(ordering),
|
||||
parameters_(parameters), iterations_(0),
|
||||
dimensions_(new vector<size_t>(values->dims(*ordering))),
|
||||
spcg_solver_(spcg_solver) {
|
||||
if (!graph) throw std::invalid_argument(
|
||||
"NonlinearOptimizer constructor: graph = NULL");
|
||||
if (!values) throw std::invalid_argument(
|
||||
"NonlinearOptimizer constructor: values = NULL");
|
||||
if (!spcg_solver) throw std::invalid_argument(
|
||||
"NonlinearOptimizer constructor: spcg_solver = NULL");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// One iteration of Gauss Newton
|
||||
/* ************************************************************************* */
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::iterate() const {
|
||||
|
||||
Parameters::verbosityLevel verbosity = parameters_->verbosity_ ;
|
||||
|
||||
// FIXME: get rid of spcg solver
|
||||
shared_solver solver;
|
||||
if (spcg_solver_) { // special case for SPCG
|
||||
spcg_solver_->replaceFactors(linearize());
|
||||
solver = spcg_solver_;
|
||||
} else { // normal case
|
||||
solver = createSolver();
|
||||
}
|
||||
|
||||
VectorValues delta = *solver->optimize();
|
||||
|
||||
// maybe show output
|
||||
if (verbosity >= Parameters::DELTA) delta.print("delta");
|
||||
|
||||
// take old values and update it
|
||||
shared_values newValues(new Values(values_->retract(delta, *ordering_)));
|
||||
|
||||
// maybe show output
|
||||
if (verbosity >= Parameters::VALUES) newValues->print("newValues");
|
||||
|
||||
NonlinearOptimizer newOptimizer = newValues_(newValues);
|
||||
++ newOptimizer.iterations_;
|
||||
|
||||
if (verbosity >= Parameters::ERROR) cout << "error: " << newOptimizer.error_ << endl;
|
||||
return newOptimizer;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::gaussNewton() const {
|
||||
static W writer(error_);
|
||||
|
||||
if (error_ < parameters_->sumError_ ) {
|
||||
if ( parameters_->verbosity_ >= Parameters::ERROR)
|
||||
cout << "Exiting, as error = " << error_
|
||||
<< " < sumError (" << parameters_->sumError_ << ")" << endl;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// linearize, solve, update
|
||||
NonlinearOptimizer next = iterate();
|
||||
|
||||
writer.write(next.error_);
|
||||
|
||||
// check convergence
|
||||
bool converged = gtsam::check_convergence(*parameters_, error_, next.error_);
|
||||
|
||||
// return converged state or iterate
|
||||
if (converged) return next;
|
||||
else return next.gaussNewton();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Iteratively try to do tempered Gauss-Newton steps until we succeed.
|
||||
// Form damped system with given lambda, and return a new, more optimistic
|
||||
// optimizer if error decreased or iterate with a larger lambda if not.
|
||||
// TODO: in theory we can't infinitely recurse, but maybe we should put a max.
|
||||
// Reminder: the parameters are Graph type $G$, Values class type $T$,
|
||||
// linear system class $L$, the non linear solver type $S$, and the writer type $W$
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::try_lambda(const L& linearSystem) {
|
||||
|
||||
const Parameters::verbosityLevel verbosity = parameters_->verbosity_ ;
|
||||
const Parameters::LambdaMode lambdaMode = parameters_->lambdaMode_ ;
|
||||
const double factor = parameters_->lambdaFactor_ ;
|
||||
double lambda = parameters_->lambda_ ;
|
||||
|
||||
if( lambdaMode >= Parameters::CAUTIOUS) throw runtime_error("CAUTIOUS mode not working yet, please use BOUNDED.");
|
||||
|
||||
double next_error = error_;
|
||||
shared_values next_values = values_;
|
||||
|
||||
// Keep increasing lambda until we make make progress
|
||||
while(true) {
|
||||
if (verbosity >= Parameters::TRYLAMBDA) cout << "trying lambda = " << lambda << endl;
|
||||
|
||||
// add prior-factors
|
||||
// TODO: replace this dampening with a backsubstitution approach
|
||||
typename L::shared_ptr dampedSystem(new L(linearSystem));
|
||||
{
|
||||
double sigma = 1.0 / sqrt(lambda);
|
||||
dampedSystem->reserve(dampedSystem->size() + dimensions_->size());
|
||||
// for each of the variables, add a prior
|
||||
for(Index j=0; j<dimensions_->size(); ++j) {
|
||||
size_t dim = (*dimensions_)[j];
|
||||
Matrix A = eye(dim);
|
||||
Vector b = zero(dim);
|
||||
SharedDiagonal model = noiseModel::Isotropic::Sigma(dim,sigma);
|
||||
typename L::sharedFactor prior(new JacobianFactor(j, A, b, model));
|
||||
dampedSystem->push_back(prior);
|
||||
}
|
||||
}
|
||||
if (verbosity >= Parameters::DAMPED) dampedSystem->print("damped");
|
||||
|
||||
// Create a new solver using the damped linear system
|
||||
// FIXME: remove spcg specific code
|
||||
if (spcg_solver_) spcg_solver_->replaceFactors(dampedSystem);
|
||||
shared_solver solver = (spcg_solver_) ? spcg_solver_ : shared_solver(
|
||||
new S(dampedSystem, structure_, parameters_->useQR_));
|
||||
|
||||
// Try solving
|
||||
try {
|
||||
VectorValues delta = *solver->optimize();
|
||||
if (verbosity >= Parameters::TRYLAMBDA) cout << "linear delta norm = " << delta.vector().norm() << endl;
|
||||
if (verbosity >= Parameters::TRYDELTA) delta.print("delta");
|
||||
|
||||
// update values
|
||||
shared_values newValues(new Values(values_->retract(delta, *ordering_)));
|
||||
|
||||
// create new optimization state with more adventurous lambda
|
||||
double error = graph_->error(*newValues);
|
||||
|
||||
if (verbosity >= Parameters::TRYLAMBDA) cout << "next error = " << error << endl;
|
||||
|
||||
if( error <= error_ ) {
|
||||
next_values = newValues;
|
||||
next_error = error;
|
||||
lambda /= factor;
|
||||
break;
|
||||
}
|
||||
else {
|
||||
// Either we're not cautious, or the same lambda was worse than the current error.
|
||||
// The more adventurous lambda was worse too, so make lambda more conservative
|
||||
// and keep the same values.
|
||||
if(lambdaMode >= Parameters::BOUNDED && lambda >= 1.0e5) {
|
||||
if(verbosity >= Parameters::ERROR)
|
||||
cout << "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << endl;
|
||||
break;
|
||||
} else {
|
||||
lambda *= factor;
|
||||
}
|
||||
}
|
||||
} catch(const NegativeMatrixException& e) {
|
||||
if(verbosity >= Parameters::LAMBDA)
|
||||
cout << "Negative matrix, increasing lambda" << endl;
|
||||
// Either we're not cautious, or the same lambda was worse than the current error.
|
||||
// The more adventurous lambda was worse too, so make lambda more conservative
|
||||
// and keep the same values.
|
||||
if(lambdaMode >= Parameters::BOUNDED && lambda >= 1.0e5) {
|
||||
if(verbosity >= Parameters::ERROR)
|
||||
cout << "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << endl;
|
||||
break;
|
||||
} else {
|
||||
lambda *= factor;
|
||||
}
|
||||
} catch(...) {
|
||||
throw;
|
||||
}
|
||||
} // end while
|
||||
|
||||
return newValuesErrorLambda_(next_values, next_error, lambda);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// One iteration of Levenberg Marquardt
|
||||
// Reminder: the parameters are Graph type $G$, Values class type $T$,
|
||||
// linear system class $L$, the non linear solver type $S$, and the writer type $W$
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::iterateLM() {
|
||||
|
||||
const Parameters::verbosityLevel verbosity = parameters_->verbosity_ ;
|
||||
const double lambda = parameters_->lambda_ ;
|
||||
|
||||
// show output
|
||||
if (verbosity >= Parameters::VALUES) values_->print("values");
|
||||
if (verbosity >= Parameters::ERROR) cout << "error: " << error_ << endl;
|
||||
if (verbosity >= Parameters::LAMBDA) cout << "lambda = " << lambda << endl;
|
||||
|
||||
// linearize all factors once
|
||||
boost::shared_ptr<L> linear(new L(*graph_->linearize(*values_, *ordering_)));
|
||||
|
||||
if (verbosity >= Parameters::LINEAR) linear->print("linear");
|
||||
|
||||
// try lambda steps with successively larger lambda until we achieve descent
|
||||
if (verbosity >= Parameters::LAMBDA) cout << "Trying Lambda for the first time" << endl;
|
||||
|
||||
return try_lambda(*linear);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Reminder: the parameters are Graph type $G$, Values class type $T$,
|
||||
// linear system class $L$, the non linear solver type $S$, and the writer type $W$
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::levenbergMarquardt() {
|
||||
|
||||
// Initialize
|
||||
bool converged = false;
|
||||
const Parameters::verbosityLevel verbosity = parameters_->verbosity_ ;
|
||||
|
||||
// check if we're already close enough
|
||||
if (error_ < parameters_->sumError_) {
|
||||
if ( verbosity >= Parameters::ERROR )
|
||||
cout << "Exiting, as sumError = " << error_ << " < " << parameters_->sumError_ << endl;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// for the case that maxIterations_ = 0
|
||||
iterations_ = 1;
|
||||
if (iterations_ >= parameters_->maxIterations_)
|
||||
return *this;
|
||||
|
||||
// Iterative loop that implements Levenberg-Marquardt
|
||||
while (true) {
|
||||
double previous_error = error_;
|
||||
// do one iteration of LM
|
||||
NonlinearOptimizer next = iterateLM();
|
||||
error_ = next.error_;
|
||||
values_ = next.values_;
|
||||
parameters_ = next.parameters_;
|
||||
iterations_ = next.iterations_;
|
||||
|
||||
// check convergence
|
||||
// TODO: move convergence checks here and incorporate in verbosity levels
|
||||
// TODO: build into iterations somehow as an instance variable
|
||||
converged = gtsam::check_convergence(*parameters_, previous_error, error_);
|
||||
|
||||
if(iterations_ >= parameters_->maxIterations_ || converged == true) {
|
||||
if (verbosity >= Parameters::VALUES) values_->print("final values");
|
||||
if (verbosity >= Parameters::ERROR && iterations_ >= parameters_->maxIterations_) cout << "Terminating because reached maximum iterations" << endl;
|
||||
if (verbosity >= Parameters::ERROR) cout << "final error: " << error_ << endl;
|
||||
if (verbosity >= Parameters::LAMBDA) cout << "final lambda = " << lambda() << endl;
|
||||
return *this;
|
||||
}
|
||||
iterations_++;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::iterateDogLeg() {
|
||||
|
||||
S solver(*graph_->linearize(*values_, *ordering_), parameters_->useQR_);
|
||||
DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(
|
||||
parameters_->lambda_, DoglegOptimizerImpl::ONE_STEP_PER_ITERATION, *solver.eliminate(),
|
||||
*graph_, *values_, *ordering_, error_, parameters_->verbosity_ > Parameters::ERROR);
|
||||
shared_values newValues(new Values(values_->retract(result.dx_d, *ordering_)));
|
||||
return newValuesErrorLambda_(newValues, result.f_error, result.Delta);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class G, class L, class S, class W>
|
||||
NonlinearOptimizer<G, L, S, W> NonlinearOptimizer<G, L, S, W>::dogLeg() {
|
||||
static W writer(error_);
|
||||
|
||||
// check if we're already close enough
|
||||
if (error_ < parameters_->sumError_) {
|
||||
if ( parameters_->verbosity_ >= Parameters::ERROR )
|
||||
cout << "Exiting, as sumError = " << error_ << " < " << parameters_->sumError_ << endl;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// for the case that maxIterations_ = 0
|
||||
iterations_ = 1;
|
||||
if (iterations_ >= parameters_->maxIterations_)
|
||||
return *this;
|
||||
|
||||
// Iterative loop that runs Dog Leg
|
||||
while (true) {
|
||||
double previous_error = error_;
|
||||
// do one iteration of LM
|
||||
NonlinearOptimizer next = iterateDogLeg();
|
||||
writer.write(next.error_);
|
||||
error_ = next.error_;
|
||||
values_ = next.values_;
|
||||
parameters_ = next.parameters_;
|
||||
|
||||
// check convergence
|
||||
// TODO: move convergence checks here and incorporate in verbosity levels
|
||||
// TODO: build into iterations somehow as an instance variable
|
||||
bool converged = gtsam::check_convergence(*parameters_, previous_error, error_);
|
||||
|
||||
if(iterations_ >= parameters_->maxIterations_ || converged == true) {
|
||||
if (parameters_->verbosity_ >= Parameters::VALUES) values_->print("final values");
|
||||
if (parameters_->verbosity_ >= Parameters::ERROR) cout << "final error: " << error_ << endl;
|
||||
if (parameters_->verbosity_ >= Parameters::LAMBDA) cout << "final Delta (called lambda) = " << lambda() << endl;
|
||||
return *this;
|
||||
}
|
||||
iterations_++;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue