implemented efficient update of Hessian matrix via Schur complement
parent
d8fafce224
commit
dc7b5d58c0
|
@ -192,7 +192,7 @@ public:
|
|||
b[2 * i + 1] = e.y();
|
||||
} catch (CheiralityException& e) {
|
||||
std::cout << "Cheirality exception " << std::endl;
|
||||
exit (EXIT_FAILURE);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
|
@ -219,10 +219,10 @@ public:
|
|||
try {
|
||||
Point2 reprojectionError(camera.project(point) - zi);
|
||||
overallError += 0.5
|
||||
* this->noise_.at(i)->distance(reprojectionError.vector());
|
||||
* this->noise_.at(i)->distance(reprojectionError.vector());
|
||||
} catch (CheiralityException& e) {
|
||||
std::cout << "Cheirality exception " << std::endl;
|
||||
exit (EXIT_FAILURE);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
|
@ -244,7 +244,7 @@ public:
|
|||
cameras[i].project(point, boost::none, Ei);
|
||||
} catch (CheiralityException& e) {
|
||||
std::cout << "Cheirality exception " << std::endl;
|
||||
exit (EXIT_FAILURE);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
this->noise_.at(i)->WhitenSystem(Ei, b);
|
||||
E.block<2, 3>(2 * i, 0) = Ei;
|
||||
|
@ -274,7 +274,7 @@ public:
|
|||
-(cameras[i].project(point, Fi, Ei, Hcali) - this->measured_.at(i)).vector();
|
||||
} catch (CheiralityException& e) {
|
||||
std::cout << "Cheirality exception " << std::endl;
|
||||
exit (EXIT_FAILURE);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
this->noise_.at(i)->WhitenSystem(Fi, Ei, Hcali, bi);
|
||||
|
||||
|
@ -322,7 +322,7 @@ public:
|
|||
const double lambda = 0.0) const {
|
||||
|
||||
int numKeys = this->keys_.size();
|
||||
std::vector < KeyMatrix2D > Fblocks;
|
||||
std::vector<KeyMatrix2D> Fblocks;
|
||||
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point,
|
||||
lambda);
|
||||
F = zeros(2 * numKeys, D * numKeys);
|
||||
|
@ -345,7 +345,7 @@ public:
|
|||
diagonalDamping); // diagonalDamping should have no effect (only on PointCov)
|
||||
|
||||
// Do SVD on A
|
||||
Eigen::JacobiSVD < Matrix > svd(E, Eigen::ComputeFullU);
|
||||
Eigen::JacobiSVD<Matrix> svd(E, Eigen::ComputeFullU);
|
||||
Vector s = svd.singularValues();
|
||||
// Enull = zeros(2 * numKeys, 2 * numKeys - 3);
|
||||
int numKeys = this->keys_.size();
|
||||
|
@ -361,7 +361,7 @@ public:
|
|||
const Cameras& cameras, const Point3& point) const {
|
||||
|
||||
int numKeys = this->keys_.size();
|
||||
std::vector < KeyMatrix2D > Fblocks;
|
||||
std::vector<KeyMatrix2D> Fblocks;
|
||||
double f = computeJacobiansSVD(Fblocks, Enull, b, cameras, point);
|
||||
F.resize(2 * numKeys, D * numKeys);
|
||||
F.setZero();
|
||||
|
@ -380,14 +380,14 @@ public:
|
|||
|
||||
int numKeys = this->keys_.size();
|
||||
|
||||
std::vector < KeyMatrix2D > Fblocks;
|
||||
std::vector<KeyMatrix2D> Fblocks;
|
||||
Matrix E;
|
||||
Matrix3 PointCov;
|
||||
Vector b;
|
||||
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
|
||||
diagonalDamping);
|
||||
|
||||
//#define HESSIAN_BLOCKS
|
||||
//#define HESSIAN_BLOCKS // slower, as internally the Hessian factor will transform the blocks into SymmetricBlockMatrix
|
||||
#ifdef HESSIAN_BLOCKS
|
||||
// Create structures for Hessian Factors
|
||||
std::vector < Matrix > Gs(numKeys * (numKeys + 1) / 2);
|
||||
|
@ -400,46 +400,23 @@ public:
|
|||
//std::vector < Vector > gs2(gs.begin(), gs.end());
|
||||
|
||||
return boost::make_shared < RegularHessianFactor<D>
|
||||
> (this->keys_, Gs, gs, f);
|
||||
#else
|
||||
> (this->keys_, Gs, gs, f);
|
||||
#else // we create directly a SymmetricBlockMatrix
|
||||
size_t n1 = D * numKeys + 1;
|
||||
std::vector<DenseIndex> dims(numKeys + 1); // this also includes the b term
|
||||
std::fill(dims.begin(), dims.end() - 1, D);
|
||||
dims.back() = 1;
|
||||
|
||||
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(n1, n1)); // for 10 cameras, size should be (10*D+1 x 10*D+1)
|
||||
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(n1, n1)); // for 10 cameras, size should be (10*D+1 x 10*D+1)
|
||||
sparseSchurComplement(Fblocks, E, PointCov, b, augmentedHessian); // augmentedHessian.matrix().block<D,D> (i1,i2) = ...
|
||||
augmentedHessian(numKeys,numKeys)(0,0) = f;
|
||||
return boost::make_shared<RegularHessianFactor<D> >(
|
||||
this->keys_, augmentedHessian);
|
||||
|
||||
augmentedHessian(numKeys, numKeys)(0, 0) = f;
|
||||
return boost::make_shared<RegularHessianFactor<D> >(this->keys_,
|
||||
augmentedHessian);
|
||||
#endif
|
||||
}
|
||||
|
||||
// ****************************************************************************************************
|
||||
void updateAugmentedHessian(
|
||||
const Cameras& cameras, const Point3& point, const double lambda,
|
||||
bool diagonalDamping, SymmetricBlockMatrix& augmentedHessian) const {
|
||||
|
||||
int numKeys = this->keys_.size();
|
||||
|
||||
std::vector < KeyMatrix2D > Fblocks;
|
||||
Matrix E;
|
||||
Matrix3 PointCov;
|
||||
Vector b;
|
||||
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
|
||||
diagonalDamping);
|
||||
|
||||
std::vector<DenseIndex> dims(numKeys + 1); // this also includes the b term
|
||||
std::fill(dims.begin(), dims.end() - 1, D);
|
||||
dims.back() = 1;
|
||||
|
||||
updateSparseSchurComplement(Fblocks, E, PointCov, b, augmentedHessian); // augmentedHessian.matrix().block<D,D> (i1,i2) = ...
|
||||
// std::cout << "f "<< f <<std::endl;
|
||||
//augmentedHessian(numKeys,numKeys)(0,0) += f;
|
||||
}
|
||||
|
||||
// ****************************************************************************************************
|
||||
// slow version - works on full (sparse) matrices
|
||||
void schurComplement(const std::vector<KeyMatrix2D>& Fblocks, const Matrix& E,
|
||||
const Matrix& PointCov, const Vector& b,
|
||||
/*output ->*/std::vector<Matrix>& Gs, std::vector<Vector>& gs) const {
|
||||
|
@ -466,7 +443,7 @@ public:
|
|||
int GsCount2 = 0;
|
||||
for (DenseIndex i1 = 0; i1 < numKeys; i1++) { // for each camera
|
||||
DenseIndex i1D = i1 * D;
|
||||
gs.at(i1) = gs_vector.segment < D > (i1D);
|
||||
gs.at(i1) = gs_vector.segment<D>(i1D);
|
||||
for (DenseIndex i2 = 0; i2 < numKeys; i2++) {
|
||||
if (i2 >= i1) {
|
||||
Gs.at(GsCount2) = H.block<D, D>(i1D, i2 * D);
|
||||
|
@ -476,69 +453,6 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
// ****************************************************************************************************
|
||||
void updateSparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
|
||||
const Matrix& E, const Matrix& P /*Point Covariance*/, const Vector& b,
|
||||
/*output ->*/SymmetricBlockMatrix& augmentedHessian) const {
|
||||
// Schur complement trick
|
||||
// Gs = F' * F - F' * E * P * E' * F
|
||||
// gs = F' * (b - E * P * E' * b)
|
||||
|
||||
// a single point is observed in numKeys cameras
|
||||
size_t numKeys = this->keys_.size(); // cameras observing current point
|
||||
size_t aug_numKeys = (augmentedHessian.rows() - 1)/D; // all cameras in the group
|
||||
|
||||
// MatrixDD delta = eye(D);
|
||||
// size_t n1 = numKeys+1;
|
||||
// for (size_t i1=0; i1 < n1-1; i1++){
|
||||
// MatrixDD Z1 = augmentedHessian(i1,i1).selfadjointView();
|
||||
// std::cout << i1 << " " << "\n" << Z1 << std::endl;
|
||||
// augmentedHessian(i1,i1) = Z1 + delta;
|
||||
// MatrixDD Z2 = augmentedHessian(i1,i1).selfadjointView();
|
||||
// std::cout << i1 << " " << "\n" << Z2 << std::endl;
|
||||
//// for (size_t i2=i1+1; i2 < n1-1; i2++){
|
||||
//// Z = augmentedHessian(i1,i2).knownOffDiagonal(); // + delta;
|
||||
//// std::cout << i1 << " " << i2 << "\n" << Z << std::endl;
|
||||
//// }
|
||||
// }
|
||||
|
||||
MatrixDD matrixBlock;
|
||||
VectorD vectorBlock;
|
||||
|
||||
// Blockwise Schur complement
|
||||
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera
|
||||
|
||||
const Matrix2D& Fi1 = Fblocks.at(i1).second;
|
||||
const Matrix23 Ei1_P = E.block<2, 3>(2 * i1, 0) * P;
|
||||
|
||||
// D = (Dx2) * (2)
|
||||
// (augmentedHessian.matrix()).block<D,1> (i1,numKeys+1) = Fi1.transpose() * b.segment < 2 > (2 * i1); // F' * b
|
||||
size_t aug_i1 = this->keys_[i1];
|
||||
|
||||
// augmentedHessian(aug_i1,aug_numKeys)
|
||||
vectorBlock = augmentedHessian(aug_i1,aug_numKeys).knownOffDiagonal();
|
||||
augmentedHessian(aug_i1,aug_numKeys) = vectorBlock +
|
||||
Fi1.transpose() * b.segment < 2 > (2 * i1) // F' * b
|
||||
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
|
||||
|
||||
// (DxD) = (Dx2) * ( (2xD) - (2x3) * (3x2) * (2xD) )
|
||||
matrixBlock = augmentedHessian(aug_i1,aug_i1).selfadjointView();
|
||||
augmentedHessian(aug_i1,aug_i1) = matrixBlock+
|
||||
Fi1.transpose() * (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1);
|
||||
|
||||
// upper triangular part of the hessian
|
||||
for (size_t i2 = i1+1; i2 < numKeys; i2++) { // for each camera
|
||||
const Matrix2D& Fi2 = Fblocks.at(i2).second;
|
||||
size_t aug_i2 = this->keys_[i2];
|
||||
|
||||
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
||||
matrixBlock = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal();
|
||||
augmentedHessian(aug_i1, aug_i2) = matrixBlock
|
||||
- Fi1.transpose() * (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
|
||||
}
|
||||
} // end of for over cameras
|
||||
}
|
||||
|
||||
// ****************************************************************************************************
|
||||
void sparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
|
||||
const Matrix& E, const Matrix& P /*Point Covariance*/, const Vector& b,
|
||||
|
@ -558,20 +472,20 @@ public:
|
|||
|
||||
// D = (Dx2) * (2)
|
||||
// (augmentedHessian.matrix()).block<D,1> (i1,numKeys+1) = Fi1.transpose() * b.segment < 2 > (2 * i1); // F' * b
|
||||
augmentedHessian(i1,numKeys) = Fi1.transpose() * b.segment < 2 > (2 * i1) // F' * b
|
||||
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
|
||||
augmentedHessian(i1, numKeys) = Fi1.transpose() * b.segment<2>(2 * i1) // F' * b
|
||||
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
|
||||
|
||||
// (DxD) = (Dx2) * ( (2xD) - (2x3) * (3x2) * (2xD) )
|
||||
augmentedHessian(i1,i1) =
|
||||
Fi1.transpose() * (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1);
|
||||
augmentedHessian(i1, i1) = Fi1.transpose()
|
||||
* (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1);
|
||||
|
||||
// upper triangular part of the hessian
|
||||
for (size_t i2 = i1+1; i2 < numKeys; i2++) { // for each camera
|
||||
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
|
||||
const Matrix2D& Fi2 = Fblocks.at(i2).second;
|
||||
|
||||
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
||||
augmentedHessian(i1,i2) =
|
||||
-Fi1.transpose() * (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
|
||||
augmentedHessian(i1, i2) = -Fi1.transpose()
|
||||
* (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
|
||||
}
|
||||
} // end of for over cameras
|
||||
}
|
||||
|
@ -602,24 +516,138 @@ public:
|
|||
|
||||
{ // for i1 = i2
|
||||
// D = (Dx2) * (2)
|
||||
gs.at(i1) = Fi1.transpose() * b.segment < 2 > (2 * i1); // F' * b
|
||||
// D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
|
||||
gs.at(i1) -= Fi1.transpose() * (Ei1_P * (E.transpose() * b));
|
||||
gs.at(i1) = Fi1.transpose() * b.segment<2>(2 * i1) // F' * b
|
||||
-Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
|
||||
|
||||
// (DxD) = (Dx2) * ( (2xD) - (2x3) * (3x2) * (2xD) )
|
||||
Gs.at(GsIndex) = Fi1.transpose() * (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1);
|
||||
Gs.at(GsIndex) = Fi1.transpose()
|
||||
* (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1);
|
||||
GsIndex++;
|
||||
}
|
||||
// upper triangular part of the hessian
|
||||
for (size_t i2 = i1+1; i2 < numKeys; i2++) { // for each camera
|
||||
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
|
||||
const Matrix2D& Fi2 = Fblocks.at(i2).second;
|
||||
|
||||
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
||||
Gs.at(GsIndex) = -Fi1.transpose() * (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
|
||||
Gs.at(GsIndex) = -Fi1.transpose()
|
||||
* (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
|
||||
GsIndex++;
|
||||
}
|
||||
} // end of for over cameras
|
||||
}
|
||||
|
||||
// ****************************************************************************************************
|
||||
void updateAugmentedHessian(const Cameras& cameras, const Point3& point,
|
||||
const double lambda, bool diagonalDamping,
|
||||
SymmetricBlockMatrix& augmentedHessian,
|
||||
const FastVector<Key> allKeys) const {
|
||||
|
||||
// int numKeys = this->keys_.size();
|
||||
|
||||
std::vector<KeyMatrix2D> Fblocks;
|
||||
Matrix E;
|
||||
Matrix3 PointCov;
|
||||
Vector b;
|
||||
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
|
||||
diagonalDamping);
|
||||
|
||||
updateSparseSchurComplement(Fblocks, E, PointCov, b, f, allKeys, augmentedHessian); // augmentedHessian.matrix().block<D,D> (i1,i2) = ...
|
||||
}
|
||||
|
||||
// ****************************************************************************************************
|
||||
void updateSparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
|
||||
const Matrix& E, const Matrix& P /*Point Covariance*/, const Vector& b,
|
||||
const double f, const FastVector<Key> allKeys,
|
||||
/*output ->*/SymmetricBlockMatrix& augmentedHessian) const {
|
||||
// Schur complement trick
|
||||
// Gs = F' * F - F' * E * P * E' * F
|
||||
// gs = F' * (b - E * P * E' * b)
|
||||
MatrixDD matrixBlock;
|
||||
VectorD vectorBlock;
|
||||
|
||||
FastMap<Key,size_t> KeySlotMap;
|
||||
for (size_t slot=0; slot < allKeys.size(); slot++)
|
||||
KeySlotMap.insert(std::make_pair<Key,size_t>(allKeys[slot],slot));
|
||||
|
||||
bool debug= false;
|
||||
|
||||
// a single point is observed in numKeys cameras
|
||||
size_t numKeys = this->keys_.size(); // cameras observing current point
|
||||
size_t aug_numKeys = (augmentedHessian.rows() - 1) / D; // all cameras in the group
|
||||
|
||||
// Blockwise Schur complement
|
||||
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera in the current factor
|
||||
|
||||
const Matrix2D& Fi1 = Fblocks.at(i1).second;
|
||||
const Matrix23 Ei1_P = E.block<2, 3>(2 * i1, 0) * P;
|
||||
|
||||
// D = (Dx2) * (2)
|
||||
// allKeys are the list of all camera keys in the group, e.g, (1,3,4,5,7)
|
||||
// we should map those to a slot in the local (grouped) hessian (0,1,2,3,4)
|
||||
Key cameraKey_i1 = this->keys_[i1];
|
||||
size_t aug_i1 = KeySlotMap[cameraKey_i1];
|
||||
|
||||
// information vector - store previous vector
|
||||
vectorBlock = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal();
|
||||
if(debug) std::cout << "(before) augmentedHessian(" << aug_i1 << "," << aug_numKeys << ")= \n" <<
|
||||
vectorBlock << std::endl;
|
||||
|
||||
// add contribution of current factor
|
||||
augmentedHessian(aug_i1, aug_numKeys) = vectorBlock
|
||||
+ Fi1.transpose() * b.segment<2>(2 * i1) // F' * b
|
||||
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1)
|
||||
|
||||
vectorBlock = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal();
|
||||
if(debug) std::cout << "(after) augmentedHessian(" << aug_i1 << "," << aug_numKeys << ")= \n" <<
|
||||
vectorBlock << std::endl;
|
||||
|
||||
// (DxD) = (Dx2) * ( (2xD) - (2x3) * (3x2) * (2xD) )
|
||||
// main block diagonal - store previous block
|
||||
matrixBlock = augmentedHessian(aug_i1, aug_i1);
|
||||
if(debug) std::cout << "(before) augmentedHessian(" << aug_i1 << "," << aug_i1 << ")= \n" <<
|
||||
matrixBlock << std::endl;
|
||||
|
||||
// add contribution of current factor
|
||||
augmentedHessian(aug_i1, aug_i1) = matrixBlock
|
||||
+ Fi1.transpose()
|
||||
* (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1);
|
||||
|
||||
matrixBlock = augmentedHessian(aug_i1, aug_i1);
|
||||
if(debug) std::cout << "(after) augmentedHessian(" << aug_i1 << "," << aug_i1 << ")= \n" <<
|
||||
matrixBlock << std::endl;
|
||||
|
||||
// upper triangular part of the hessian
|
||||
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
|
||||
const Matrix2D& Fi2 = Fblocks.at(i2).second;
|
||||
|
||||
Key cameraKey_i2 = this->keys_[i2];
|
||||
size_t aug_i2 = KeySlotMap[cameraKey_i2];
|
||||
|
||||
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
||||
// off diagonal block - store previous block
|
||||
matrixBlock = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal();
|
||||
|
||||
if(debug) std::cout << "(aug_i1= " << aug_i1 << ", aug_i2= " << aug_i2 << ") (i2= " <<i2 << ", aug_i2=" << aug_i2 << ")" << std::endl;
|
||||
if(debug) std::cout << "(before) augmentedHessian(" << aug_i1 << "," << aug_i2 << ")= \n" <<
|
||||
augmentedHessian(aug_i1, aug_i2).knownOffDiagonal() << std::endl;
|
||||
|
||||
// add contribution of current factor
|
||||
augmentedHessian(aug_i1, aug_i2) = matrixBlock
|
||||
- Fi1.transpose()
|
||||
* (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2);
|
||||
|
||||
if(debug) std::cout << "(after) augmentedHessian(" << aug_i1 << "," << aug_i2 << ")= \n" <<
|
||||
augmentedHessian(aug_i1, aug_i2).knownOffDiagonal() << std::endl;
|
||||
|
||||
matrixBlock = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal();
|
||||
if(debug) std::cout << "(after, after) augmentedHessian(" << aug_i1 << "," << aug_i2 << ")= \n" <<
|
||||
matrixBlock<< std::endl;
|
||||
}
|
||||
} // end of for over cameras
|
||||
|
||||
augmentedHessian(aug_numKeys, aug_numKeys)(0, 0) += f;
|
||||
}
|
||||
|
||||
// ****************************************************************************************************
|
||||
boost::shared_ptr<ImplicitSchurFactor<D> > createImplicitSchurFactor(
|
||||
const Cameras& cameras, const Point3& point, double lambda = 0.0,
|
||||
|
@ -636,13 +664,13 @@ public:
|
|||
boost::shared_ptr<JacobianFactorQ<D> > createJacobianQFactor(
|
||||
const Cameras& cameras, const Point3& point, double lambda = 0.0,
|
||||
bool diagonalDamping = false) const {
|
||||
std::vector < KeyMatrix2D > Fblocks;
|
||||
std::vector<KeyMatrix2D> Fblocks;
|
||||
Matrix E;
|
||||
Matrix3 PointCov;
|
||||
Vector b;
|
||||
computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
|
||||
diagonalDamping);
|
||||
return boost::make_shared < JacobianFactorQ<D> > (Fblocks, E, PointCov, b);
|
||||
return boost::make_shared<JacobianFactorQ<D> >(Fblocks, E, PointCov, b);
|
||||
}
|
||||
|
||||
private:
|
||||
|
|
Loading…
Reference in New Issue