found there are two implementations of bearing and range in gtsam. removed the redundant one.
parent
c1baca1b29
commit
db533c565b
|
|
@ -13,37 +13,11 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Calculate bearing to a landmark
|
||||
* @param pose 2D pose of robot
|
||||
* @param point 2D location of landmark
|
||||
* @return 2D rotation \in SO(2)
|
||||
*/
|
||||
Rot2 bearing(const Pose2& pose, const Point2& point) {
|
||||
Point2 d = transform_to(pose, point);
|
||||
return relativeBearing(d);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate bearing and optional derivative(s)
|
||||
*/
|
||||
Rot2 bearing(const Pose2& pose, const Point2& point,
|
||||
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) {
|
||||
if (!H1 && !H2) return bearing(pose, point);
|
||||
Point2 d = transform_to(pose, point);
|
||||
Matrix D_result_d;
|
||||
Rot2 result = relativeBearing(d, D_result_d);
|
||||
if (H1) *H1 = D_result_d * Dtransform_to1(pose, point);
|
||||
if (H2) *H2 = D_result_d * Dtransform_to2(pose, point);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Non-linear factor for a constraint derived from a 2D measurement,
|
||||
* i.e. the main building block for visual SLAM.
|
||||
* Binary factor for a bearing measurement
|
||||
*/
|
||||
template<class Config, class PoseKey, class PointKey>
|
||||
class BearingFactor: public NonlinearFactor2<Config, PoseKey, Pose2,
|
||||
PointKey, Point2> {
|
||||
PointKey, Point2> {
|
||||
private:
|
||||
|
||||
Rot2 z_; /** measurement */
|
||||
|
|
@ -53,9 +27,9 @@ namespace gtsam {
|
|||
public:
|
||||
|
||||
BearingFactor(); /* Default constructor */
|
||||
BearingFactor(const Rot2& z, double sigma, const PoseKey& i,
|
||||
const PointKey& j) :
|
||||
Base(sigma, i, j), z_(z) {
|
||||
BearingFactor(const PoseKey& i, const PointKey& j, const Rot2& z,
|
||||
const SharedGaussian& model) :
|
||||
Base(model, i, j), z_(z) {
|
||||
}
|
||||
|
||||
/** h(x)-z -> between(z,h(x)) for Rot2 manifold */
|
||||
|
|
@ -64,6 +38,11 @@ namespace gtsam {
|
|||
Rot2 hx = bearing(pose, point, H1, H2);
|
||||
return logmap(between(z_, hx));
|
||||
}
|
||||
|
||||
/** return the measured */
|
||||
inline const Rot2 measured() const {
|
||||
return z_;
|
||||
}
|
||||
}; // BearingFactor
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -212,7 +212,7 @@ testPose2SLAM_SOURCES = testPose2SLAM.cpp
|
|||
testPose2SLAM_LDADD = libgtsam.la
|
||||
|
||||
# 2D SLAM using Bearing and Range
|
||||
headers +=
|
||||
headers += BearingFactor.h RangeFactor.h
|
||||
sources += planarSLAM.cpp
|
||||
check_PROGRAMS += testPlanarSLAM
|
||||
testPlanarSLAM_SOURCES = testPlanarSLAM.cpp
|
||||
|
|
|
|||
|
|
@ -12,37 +12,11 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Calculate range to a landmark
|
||||
* @param pose 2D pose of robot
|
||||
* @param point 2D location of landmark
|
||||
* @return range (double)
|
||||
*/
|
||||
double range(const Pose2& pose, const Point2& point) {
|
||||
Point2 d = transform_to(pose, point);
|
||||
return d.norm();
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate range and optional derivative(s)
|
||||
*/
|
||||
double range(const Pose2& pose, const Point2& point,
|
||||
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) {
|
||||
if (!H1 && !H2) return range(pose, point);
|
||||
Point2 d = transform_to(pose, point);
|
||||
double x = d.x(), y = d.y(), d2 = x * x + y * y, n = sqrt(d2);
|
||||
Matrix D_result_d = Matrix_(1, 2, x / n, y / n);
|
||||
if (H1) *H1 = D_result_d * Dtransform_to1(pose, point);
|
||||
if (H2) *H2 = D_result_d * Dtransform_to2(pose, point);
|
||||
return n;
|
||||
}
|
||||
|
||||
/**
|
||||
* Non-linear factor for a constraint derived from a 2D measurement,
|
||||
* i.e. the main building block for visual SLAM.
|
||||
* Binary factor for a range measurement
|
||||
*/
|
||||
template<class Config, class PoseKey, class PointKey>
|
||||
class RangeFactor: public NonlinearFactor2<Config, PoseKey, Pose2, PointKey,
|
||||
Point2> {
|
||||
Point2> {
|
||||
private:
|
||||
|
||||
double z_; /** measurement */
|
||||
|
|
@ -53,8 +27,9 @@ namespace gtsam {
|
|||
|
||||
RangeFactor(); /* Default constructor */
|
||||
|
||||
RangeFactor(double z, double sigma, const PoseKey& i, const PointKey& j) :
|
||||
Base(sigma, i, j), z_(z) {
|
||||
RangeFactor(const PoseKey& i, const PointKey& j, double z,
|
||||
const SharedGaussian& model) :
|
||||
Base(model, i, j), z_(z) {
|
||||
}
|
||||
|
||||
/** h(x)-z */
|
||||
|
|
@ -63,6 +38,11 @@ namespace gtsam {
|
|||
double hx = gtsam::range(pose, point, H1, H2);
|
||||
return Vector_(1, hx - z_);
|
||||
}
|
||||
|
||||
/** return the measured */
|
||||
inline const double measured() const {
|
||||
return z_;
|
||||
}
|
||||
}; // RangeFactor
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -6,10 +6,8 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "Key.h"
|
||||
#include "Pose2.h"
|
||||
#include "Point2.h"
|
||||
#include "NonlinearFactor.h"
|
||||
#include "BearingFactor.h"
|
||||
#include "RangeFactor.h"
|
||||
#include "TupleConfig.h"
|
||||
#include "NonlinearEquality.h"
|
||||
#include "PriorFactor.h"
|
||||
|
|
@ -20,73 +18,6 @@
|
|||
// We use gtsam namespace for generally useful factors
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Binary factor for a bearing measurement
|
||||
*/
|
||||
template<class Config, class PoseKey, class PointKey>
|
||||
class BearingFactor: public NonlinearFactor2<Config, PoseKey, Pose2,
|
||||
PointKey, Point2> {
|
||||
private:
|
||||
|
||||
Rot2 z_; /** measurement */
|
||||
|
||||
typedef NonlinearFactor2<Config, PoseKey, Pose2, PointKey, Point2> Base;
|
||||
|
||||
public:
|
||||
|
||||
BearingFactor(); /* Default constructor */
|
||||
BearingFactor(const PoseKey& i, const PointKey& j, const Rot2& z,
|
||||
const SharedGaussian& model) :
|
||||
Base(model, i, j), z_(z) {
|
||||
}
|
||||
|
||||
/** h(x)-z -> between(z,h(x)) for Rot2 manifold */
|
||||
Vector evaluateError(const Pose2& pose, const Point2& point,
|
||||
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) const {
|
||||
Rot2 hx = bearing(pose, point, H1, H2);
|
||||
return logmap(between(z_, hx));
|
||||
}
|
||||
|
||||
/** return the measured */
|
||||
inline const Rot2 measured() const {
|
||||
return z_;
|
||||
}
|
||||
}; // BearingFactor
|
||||
|
||||
/**
|
||||
* Binary factor for a range measurement
|
||||
*/
|
||||
template<class Config, class PoseKey, class PointKey>
|
||||
class RangeFactor: public NonlinearFactor2<Config, PoseKey, Pose2, PointKey,
|
||||
Point2> {
|
||||
private:
|
||||
|
||||
double z_; /** measurement */
|
||||
|
||||
typedef NonlinearFactor2<Config, PoseKey, Pose2, PointKey, Point2> Base;
|
||||
|
||||
public:
|
||||
|
||||
RangeFactor(); /* Default constructor */
|
||||
|
||||
RangeFactor(const PoseKey& i, const PointKey& j, double z,
|
||||
const SharedGaussian& model) :
|
||||
Base(model, i, j), z_(z) {
|
||||
}
|
||||
|
||||
/** h(x)-z */
|
||||
Vector evaluateError(const Pose2& pose, const Point2& point,
|
||||
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) const {
|
||||
double hx = gtsam::range(pose, point, H1, H2);
|
||||
return Vector_(1, hx - z_);
|
||||
}
|
||||
|
||||
/** return the measured */
|
||||
inline const double measured() const {
|
||||
return z_;
|
||||
}
|
||||
}; // RangeFactor
|
||||
|
||||
// Use planarSLAM namespace for specific SLAM instance
|
||||
namespace planarSLAM {
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue