Merge pull request #1339 from borglab/hybrid/new-elimination

release/4.3a0
Varun Agrawal 2022-12-10 02:17:11 -05:00 committed by GitHub
commit da5d3a242b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 69 additions and 293 deletions

View File

@ -105,7 +105,7 @@ bool GaussianMixture::equals(const HybridFactor &lf, double tol) const {
/* *******************************************************************************/
void GaussianMixture::print(const std::string &s,
const KeyFormatter &formatter) const {
std::cout << s;
std::cout << (s.empty() ? "" : s + "\n");
if (isContinuous()) std::cout << "Continuous ";
if (isDiscrete()) std::cout << "Discrete ";
if (isHybrid()) std::cout << "Hybrid ";

View File

@ -24,7 +24,7 @@
namespace gtsam {
/**
* Elimination Tree type for Hybrid
* Elimination Tree type for Hybrid Factor Graphs.
*
* @ingroup hybrid
*/

View File

@ -257,13 +257,14 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
// If there are no more continuous parents, then we should create here a
// DiscreteFactor, with the error for each discrete choice.
if (keysOfSeparator.empty()) {
// TODO(Varun) Use the math from the iMHS_Math-1-indexed document
VectorValues empty_values;
auto factorProb = [&](const GaussianFactor::shared_ptr &factor) {
if (!factor) {
return 0.0; // If nullptr, return 0.0 probability
} else {
return 1.0;
double error =
0.5 * std::abs(factor->augmentedInformation().determinant());
return std::exp(-error);
}
};
DecisionTree<Key, double> fdt(separatorFactors, factorProb);
@ -551,166 +552,4 @@ HybridGaussianFactorGraph::separateContinuousDiscreteOrdering(
return std::make_pair(continuous_ordering, discrete_ordering);
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
HybridGaussianFactorGraph::eliminateHybridSequential(
const boost::optional<Ordering> continuous,
const boost::optional<Ordering> discrete, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
const Ordering continuous_ordering =
continuous ? *continuous : Ordering(this->continuousKeys());
const Ordering discrete_ordering =
discrete ? *discrete : Ordering(this->discreteKeys());
// Eliminate continuous
HybridBayesNet::shared_ptr bayesNet;
HybridGaussianFactorGraph::shared_ptr discreteGraph;
std::tie(bayesNet, discreteGraph) =
BaseEliminateable::eliminatePartialSequential(continuous_ordering,
function, variableIndex);
// Get the last continuous conditional which will have all the discrete keys
HybridConditional::shared_ptr last_conditional =
bayesNet->at(bayesNet->size() - 1);
DiscreteKeys discrete_keys = last_conditional->discreteKeys();
// If not discrete variables, return the eliminated bayes net.
if (discrete_keys.size() == 0) {
return bayesNet;
}
// DecisionTree for P'(X|M, Z) for all mode sequences M
const AlgebraicDecisionTree<Key> probPrimeTree =
this->continuousProbPrimes(discrete_keys, bayesNet);
// Add the model selection factor P(M|Z)
discreteGraph->add(DecisionTreeFactor(discrete_keys, probPrimeTree));
// Perform discrete elimination
HybridBayesNet::shared_ptr discreteBayesNet =
discreteGraph->BaseEliminateable::eliminateSequential(
discrete_ordering, function, variableIndex);
bayesNet->add(*discreteBayesNet);
return bayesNet;
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
HybridGaussianFactorGraph::eliminateSequential(
OptionalOrderingType orderingType, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
return BaseEliminateable::eliminateSequential(orderingType, function,
variableIndex);
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
HybridGaussianFactorGraph::eliminateSequential(
const Ordering &ordering, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
// Segregate the continuous and the discrete keys
Ordering continuous_ordering, discrete_ordering;
std::tie(continuous_ordering, discrete_ordering) =
this->separateContinuousDiscreteOrdering(ordering);
return this->eliminateHybridSequential(continuous_ordering, discrete_ordering,
function, variableIndex);
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesTreeType>
HybridGaussianFactorGraph::eliminateHybridMultifrontal(
const boost::optional<Ordering> continuous,
const boost::optional<Ordering> discrete, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
const Ordering continuous_ordering =
continuous ? *continuous : Ordering(this->continuousKeys());
const Ordering discrete_ordering =
discrete ? *discrete : Ordering(this->discreteKeys());
// Eliminate continuous
HybridBayesTree::shared_ptr bayesTree;
HybridGaussianFactorGraph::shared_ptr discreteGraph;
std::tie(bayesTree, discreteGraph) =
BaseEliminateable::eliminatePartialMultifrontal(continuous_ordering,
function, variableIndex);
// Get the last continuous conditional which will have all the discrete
const Key last_continuous_key = continuous_ordering.back();
HybridConditional::shared_ptr last_conditional =
(*bayesTree)[last_continuous_key]->conditional();
DiscreteKeys discrete_keys = last_conditional->discreteKeys();
// If not discrete variables, return the eliminated bayes net.
if (discrete_keys.size() == 0) {
return bayesTree;
}
// DecisionTree for P'(X|M, Z) for all mode sequences M
const AlgebraicDecisionTree<Key> probPrimeTree =
this->continuousProbPrimes(discrete_keys, bayesTree);
// Add the model selection factor P(M|Z)
discreteGraph->add(DecisionTreeFactor(discrete_keys, probPrimeTree));
// Eliminate discrete variables to get the discrete bayes tree.
// This bayes tree will be updated with the
// continuous variables as the child nodes.
HybridBayesTree::shared_ptr updatedBayesTree =
discreteGraph->BaseEliminateable::eliminateMultifrontal(discrete_ordering,
function);
// Get the clique with all the discrete keys.
// There should only be 1 clique.
const HybridBayesTree::sharedClique discrete_clique =
(*updatedBayesTree)[discrete_ordering.at(0)];
std::set<HybridBayesTreeClique::shared_ptr> clique_set;
for (auto node : bayesTree->nodes()) {
clique_set.insert(node.second);
}
// Set the root of the bayes tree as the discrete clique
for (auto clique : clique_set) {
if (clique->conditional()->parents() ==
discrete_clique->conditional()->frontals()) {
updatedBayesTree->addClique(clique, discrete_clique);
} else {
// Remove the clique from the children of the parents since it will get
// added again in addClique.
auto clique_it = std::find(clique->parent()->children.begin(),
clique->parent()->children.end(), clique);
clique->parent()->children.erase(clique_it);
updatedBayesTree->addClique(clique, clique->parent());
}
}
return updatedBayesTree;
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesTreeType>
HybridGaussianFactorGraph::eliminateMultifrontal(
OptionalOrderingType orderingType, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
return BaseEliminateable::eliminateMultifrontal(orderingType, function,
variableIndex);
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesTreeType>
HybridGaussianFactorGraph::eliminateMultifrontal(
const Ordering &ordering, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
// Segregate the continuous and the discrete keys
Ordering continuous_ordering, discrete_ordering;
std::tie(continuous_ordering, discrete_ordering) =
this->separateContinuousDiscreteOrdering(ordering);
return this->eliminateHybridMultifrontal(
continuous_ordering, discrete_ordering, function, variableIndex);
}
} // namespace gtsam

View File

@ -302,57 +302,7 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
std::pair<Ordering, Ordering> separateContinuousDiscreteOrdering(
const Ordering& ordering) const;
/**
* @brief Custom elimination function which computes the correct
* continuous probabilities. Returns a bayes net.
*
* @param continuous Optional ordering for all continuous variables.
* @param discrete Optional ordering for all discrete variables.
* @return boost::shared_ptr<BayesNetType>
*/
boost::shared_ptr<BayesNetType> eliminateHybridSequential(
const boost::optional<Ordering> continuous = boost::none,
const boost::optional<Ordering> discrete = boost::none,
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
OptionalVariableIndex variableIndex = boost::none) const;
/// Sequential elimination overload for hybrid
boost::shared_ptr<BayesNetType> eliminateSequential(
OptionalOrderingType orderingType = boost::none,
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
OptionalVariableIndex variableIndex = boost::none) const;
/// Sequential elimination overload for hybrid
boost::shared_ptr<BayesNetType> eliminateSequential(
const Ordering& ordering,
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
OptionalVariableIndex variableIndex = boost::none) const;
/**
* @brief Custom elimination function which computes the correct
* continuous probabilities. Returns a bayes tree.
*
* @param continuous Optional ordering for all continuous variables.
* @param discrete Optional ordering for all discrete variables.
* @return boost::shared_ptr<BayesTreeType>
*/
boost::shared_ptr<BayesTreeType> eliminateHybridMultifrontal(
const boost::optional<Ordering> continuous = boost::none,
const boost::optional<Ordering> discrete = boost::none,
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
OptionalVariableIndex variableIndex = boost::none) const;
/// Multifrontal elimination overload for hybrid
boost::shared_ptr<BayesTreeType> eliminateMultifrontal(
OptionalOrderingType orderingType = boost::none,
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
OptionalVariableIndex variableIndex = boost::none) const;
/// Multifrontal elimination overload for hybrid
boost::shared_ptr<BayesTreeType> eliminateMultifrontal(
const Ordering& ordering,
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
OptionalVariableIndex variableIndex = boost::none) const;
/**
* @brief Return a Colamd constrained ordering where the discrete keys are

View File

@ -51,10 +51,11 @@ class HybridEliminationTree;
*/
class GTSAM_EXPORT HybridJunctionTree
: public JunctionTree<HybridBayesTree, HybridGaussianFactorGraph> {
public:
typedef JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>
Base; ///< Base class
typedef HybridJunctionTree This; ///< This class
typedef HybridJunctionTree This; ///< This class
typedef boost::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
/**

View File

@ -32,7 +32,7 @@ void HybridSmoother::update(HybridGaussianFactorGraph graph,
addConditionals(graph, hybridBayesNet_, ordering);
// Eliminate.
auto bayesNetFragment = graph.eliminateHybridSequential();
auto bayesNetFragment = graph.eliminateSequential(ordering);
/// Prune
if (maxNrLeaves) {

View File

@ -164,25 +164,6 @@ TEST(HybridBayesNet, Optimize) {
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
}
/* ****************************************************************************/
// Test bayes net multifrontal optimize
TEST(HybridBayesNet, OptimizeMultifrontal) {
Switching s(4);
Ordering hybridOrdering = s.linearizedFactorGraph.getHybridOrdering();
HybridBayesTree::shared_ptr hybridBayesTree =
s.linearizedFactorGraph.eliminateMultifrontal(hybridOrdering);
HybridValues delta = hybridBayesTree->optimize();
VectorValues expectedValues;
expectedValues.insert(X(0), -0.999904 * Vector1::Ones());
expectedValues.insert(X(1), -0.99029 * Vector1::Ones());
expectedValues.insert(X(2), -1.00971 * Vector1::Ones());
expectedValues.insert(X(3), -1.0001 * Vector1::Ones());
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
}
/* ****************************************************************************/
// Test bayes net error
TEST(HybridBayesNet, Error) {

View File

@ -32,6 +32,25 @@ using noiseModel::Isotropic;
using symbol_shorthand::M;
using symbol_shorthand::X;
/* ****************************************************************************/
// Test multifrontal optimize
TEST(HybridBayesTree, OptimizeMultifrontal) {
Switching s(4);
Ordering hybridOrdering = s.linearizedFactorGraph.getHybridOrdering();
HybridBayesTree::shared_ptr hybridBayesTree =
s.linearizedFactorGraph.eliminateMultifrontal(hybridOrdering);
HybridValues delta = hybridBayesTree->optimize();
VectorValues expectedValues;
expectedValues.insert(X(0), -0.999904 * Vector1::Ones());
expectedValues.insert(X(1), -0.99029 * Vector1::Ones());
expectedValues.insert(X(2), -1.00971 * Vector1::Ones());
expectedValues.insert(X(3), -1.0001 * Vector1::Ones());
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
}
/* ****************************************************************************/
// Test for optimizing a HybridBayesTree with a given assignment.
TEST(HybridBayesTree, OptimizeAssignment) {

View File

@ -15,6 +15,7 @@
* @author Varun Agrawal
*/
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
@ -70,6 +71,28 @@ Ordering getOrdering(HybridGaussianFactorGraph& factors,
return ordering;
}
TEST(HybridEstimation, Full) {
size_t K = 3;
std::vector<double> measurements = {0, 1, 2};
// Ground truth discrete seq
std::vector<size_t> discrete_seq = {1, 1, 0};
// Switching example of robot moving in 1D
// with given measurements and equal mode priors.
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
HybridGaussianFactorGraph graph = switching.linearizedFactorGraph;
Ordering hybridOrdering;
hybridOrdering += X(0);
hybridOrdering += X(1);
hybridOrdering += X(2);
hybridOrdering += M(0);
hybridOrdering += M(1);
HybridBayesNet::shared_ptr bayesNet =
graph.eliminateSequential(hybridOrdering);
EXPECT_LONGS_EQUAL(5, bayesNet->size());
}
/****************************************************************************/
// Test approximate inference with an additional pruning step.
TEST(HybridEstimation, Incremental) {
@ -258,8 +281,10 @@ TEST(HybridEstimation, Probability) {
VectorValues values = bayes_net->optimize();
expected_errors.push_back(linear_graph->error(values));
expected_prob_primes.push_back(linear_graph->probPrime(values));
double error = linear_graph->error(values);
expected_errors.push_back(error);
double prob_prime = linear_graph->probPrime(values);
expected_prob_primes.push_back(prob_prime);
}
// Switching example of robot moving in 1D with given measurements and equal
@ -269,52 +294,21 @@ TEST(HybridEstimation, Probability) {
auto graph = switching.linearizedFactorGraph;
Ordering ordering = getOrdering(graph, HybridGaussianFactorGraph());
AlgebraicDecisionTree<Key> expected_probPrimeTree = probPrimeTree(graph);
// Eliminate continuous
Ordering continuous_ordering(graph.continuousKeys());
HybridBayesNet::shared_ptr bayesNet;
HybridGaussianFactorGraph::shared_ptr discreteGraph;
std::tie(bayesNet, discreteGraph) =
graph.eliminatePartialSequential(continuous_ordering);
// Get the last continuous conditional which will have all the discrete keys
auto last_conditional = bayesNet->at(bayesNet->size() - 1);
DiscreteKeys discrete_keys = last_conditional->discreteKeys();
const std::vector<DiscreteValues> assignments =
DiscreteValues::CartesianProduct(discrete_keys);
// Reverse discrete keys order for correct tree construction
std::reverse(discrete_keys.begin(), discrete_keys.end());
// Create a decision tree of all the different VectorValues
DecisionTree<Key, VectorValues::shared_ptr> delta_tree =
graph.continuousDelta(discrete_keys, bayesNet, assignments);
AlgebraicDecisionTree<Key> probPrimeTree =
graph.continuousProbPrimes(discrete_keys, bayesNet);
EXPECT(assert_equal(expected_probPrimeTree, probPrimeTree));
HybridBayesNet::shared_ptr bayesNet = graph.eliminateSequential(ordering);
auto discreteConditional = bayesNet->atDiscrete(bayesNet->size() - 3);
// Test if the probPrimeTree matches the probability of
// the individual factor graphs
for (size_t i = 0; i < pow(2, K - 1); i++) {
Assignment<Key> discrete_assignment;
DiscreteValues discrete_assignment;
for (size_t v = 0; v < discrete_seq_map[i].size(); v++) {
discrete_assignment[M(v)] = discrete_seq_map[i][v];
}
EXPECT_DOUBLES_EQUAL(expected_prob_primes.at(i),
probPrimeTree(discrete_assignment), 1e-8);
double discrete_transition_prob = 0.25;
EXPECT_DOUBLES_EQUAL(expected_prob_primes.at(i) * discrete_transition_prob,
(*discreteConditional)(discrete_assignment), 1e-8);
}
discreteGraph->add(DecisionTreeFactor(discrete_keys, probPrimeTree));
Ordering discrete(graph.discreteKeys());
auto discreteBayesNet =
discreteGraph->BaseEliminateable::eliminateSequential(discrete);
bayesNet->add(*discreteBayesNet);
HybridValues hybrid_values = bayesNet->optimize();
// This is the correct sequence as designed

View File

@ -182,8 +182,9 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
hfg.add(DecisionTreeFactor(m1, {2, 8}));
//TODO(Varun) Adding extra discrete variable not connected to continuous variable throws segfault
// hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
// TODO(Varun) Adding extra discrete variable not connected to continuous
// variable throws segfault
// hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
HybridBayesTree::shared_ptr result =
hfg.eliminateMultifrontal(hfg.getHybridOrdering());

View File

@ -178,7 +178,7 @@ TEST(HybridGaussianElimination, IncrementalInference) {
// Test the probability values with regression tests.
DiscreteValues assignment;
EXPECT(assert_equal(0.166667, m00_prob, 1e-5));
EXPECT(assert_equal(0.0619233, m00_prob, 1e-5));
assignment[M(0)] = 0;
assignment[M(1)] = 0;
EXPECT(assert_equal(0.0619233, (*discreteConditional)(assignment), 1e-5));

View File

@ -372,8 +372,7 @@ TEST(HybridGaussianElimination, EliminateHybrid_2_Variable) {
dynamic_pointer_cast<DecisionTreeFactor>(hybridDiscreteFactor->inner());
CHECK(discreteFactor);
EXPECT_LONGS_EQUAL(1, discreteFactor->discreteKeys().size());
// All leaves should be probability 1 since this is not P*(X|M,Z)
EXPECT(discreteFactor->root_->isLeaf());
EXPECT(discreteFactor->root_->isLeaf() == false);
// TODO(Varun) Test emplace_discrete
}
@ -386,11 +385,11 @@ TEST(HybridFactorGraph, Partial_Elimination) {
auto linearizedFactorGraph = self.linearizedFactorGraph;
// Create ordering.
// Create ordering of only continuous variables.
Ordering ordering;
for (size_t k = 0; k < self.K; k++) ordering += X(k);
// Eliminate partially.
// Eliminate partially i.e. only continuous part.
HybridBayesNet::shared_ptr hybridBayesNet;
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
std::tie(hybridBayesNet, remainingFactorGraph) =
@ -441,14 +440,6 @@ TEST(HybridFactorGraph, Full_Elimination) {
discrete_fg.push_back(df->inner());
}
// Get the probabilit P*(X | M, Z)
DiscreteKeys discrete_keys =
remainingFactorGraph_partial->at(2)->discreteKeys();
AlgebraicDecisionTree<Key> probPrimeTree =
linearizedFactorGraph.continuousProbPrimes(discrete_keys,
hybridBayesNet_partial);
discrete_fg.add(DecisionTreeFactor(discrete_keys, probPrimeTree));
ordering.clear();
for (size_t k = 0; k < self.K - 1; k++) ordering += M(k);
discreteBayesNet =

View File

@ -197,7 +197,7 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
// Test the probability values with regression tests.
DiscreteValues assignment;
EXPECT(assert_equal(0.166667, m00_prob, 1e-5));
EXPECT(assert_equal(0.0619233, m00_prob, 1e-5));
assignment[M(0)] = 0;
assignment[M(1)] = 0;
EXPECT(assert_equal(0.0619233, (*discreteConditional)(assignment), 1e-5));