Refactor to slots

release/4.3a0
Frank Dellaert 2025-01-27 14:01:20 -05:00
parent 35e7acbf16
commit d8ed60aead
2 changed files with 77 additions and 45 deletions

View File

@ -20,6 +20,7 @@
namespace gtsam {
using Slot = DiscreteSearch::Slot;
using Solution = DiscreteSearch::Solution;
/**
@ -59,12 +60,12 @@ struct SearchNode {
/**
* @brief Expands the node by assigning the next variable.
*
* @param conditional The discrete conditional representing the next variable
* @param factor The discrete factor associated with the next variable
* to be assigned.
* @param fa The frontal assignment for the next variable.
* @return A new SearchNode representing the expanded state.
*/
SearchNode expand(const DiscreteConditional& conditional,
SearchNode expand(const DiscreteFactor& factor,
const DiscreteValues& fa) const {
// Combine the new frontal assignment with the current partial assignment
DiscreteValues newAssignment = assignment;
@ -72,7 +73,7 @@ struct SearchNode {
newAssignment[key] = value;
}
return {newAssignment, error + conditional.error(newAssignment), 0.0,
return {newAssignment, error + factor.error(newAssignment), 0.0,
nextConditional - 1};
}
@ -150,10 +151,20 @@ class Solutions {
}
};
DiscreteSearch::DiscreteSearch(const DiscreteFactorGraph& factorGraph) {
slots_.reserve(factorGraph.size());
for (auto& factor : factorGraph) {
slots_.emplace_back(factor, std::vector<DiscreteValues>{}, 0.0);
}
computeHeuristic();
}
DiscreteSearch::DiscreteSearch(const DiscreteBayesNet& bayesNet) {
std::vector<DiscreteConditional::shared_ptr> conditionals;
for (auto& factor : bayesNet) conditionals_.push_back(factor);
costToGo_ = computeCostToGo(conditionals_);
slots_.reserve(bayesNet.size());
for (auto& conditional : bayesNet) {
slots_.emplace_back(conditional, conditional->frontalAssignments(), 0.0);
}
computeHeuristic();
}
DiscreteSearch::DiscreteSearch(const DiscreteBayesTree& bayesTree) {
@ -161,22 +172,21 @@ DiscreteSearch::DiscreteSearch(const DiscreteBayesTree& bayesTree) {
collectConditionals = [&](const auto& clique) {
if (!clique) return;
for (const auto& child : clique->children) collectConditionals(child);
conditionals_.push_back(clique->conditional());
auto conditional = clique->conditional();
slots_.emplace_back(conditional, conditional->frontalAssignments(),
0.0);
};
slots_.reserve(bayesTree.size());
for (const auto& root : bayesTree.roots()) collectConditionals(root);
costToGo_ = computeCostToGo(conditionals_);
computeHeuristic();
}
struct SearchNodeQueue
: public std::priority_queue<SearchNode, std::vector<SearchNode>,
SearchNode::Compare> {
void expandNextNode(
const std::vector<DiscreteConditional::shared_ptr>& conditionals,
const std::vector<double>& costToGo, Solutions* solutions) {
// Pop the partial assignment with the smallest bound
SearchNode current = top();
pop();
void expandNextNode(const SearchNode& current, const Slot& slot,
Solutions* solutions) {
// If we already have K solutions, prune if we cannot beat the worst one.
if (solutions->prune(current.bound)) {
return;
@ -188,13 +198,11 @@ struct SearchNodeQueue
return;
}
// Expand on the next factor
const auto& conditional = conditionals[current.nextConditional];
for (auto& fa : conditional->frontalAssignments()) {
auto childNode = current.expand(*conditional, fa);
for (auto& fa : slot.assignments) {
auto childNode = current.expand(*slot.factor, fa);
if (childNode.nextConditional >= 0)
childNode.bound = childNode.error + costToGo[childNode.nextConditional];
// TODO(frank): this might be wrong !
childNode.bound = childNode.error + slot.heuristic;
// Again, prune if we cannot beat the worst solution
if (!solutions->prune(childNode.bound)) {
@ -207,8 +215,7 @@ struct SearchNodeQueue
std::vector<Solution> DiscreteSearch::run(size_t K) const {
Solutions solutions(K);
SearchNodeQueue expansions;
expansions.push(SearchNode::Root(conditionals_.size(),
costToGo_.empty() ? 0.0 : costToGo_.back()));
expansions.push(SearchNode::Root(slots_.size(), slots_.back().heuristic));
#ifdef DISCRETE_SEARCH_DEBUG
size_t numExpansions = 0;
@ -216,7 +223,13 @@ std::vector<Solution> DiscreteSearch::run(size_t K) const {
// Perform the search
while (!expansions.empty()) {
expansions.expandNextNode(conditionals_, costToGo_, &solutions);
// Pop the partial assignment with the smallest bound
SearchNode current = expansions.top();
expansions.pop();
// Get the next slot to expand
const auto& slot = slots_[current.nextConditional];
expansions.expandNextNode(current, slot, &solutions);
#ifdef DISCRETE_SEARCH_DEBUG
++numExpansions;
#endif
@ -230,17 +243,19 @@ std::vector<Solution> DiscreteSearch::run(size_t K) const {
return solutions.extractSolutions();
}
std::vector<double> DiscreteSearch::computeCostToGo(
const std::vector<DiscreteConditional::shared_ptr>& conditionals) {
std::vector<double> costToGo;
// We have a number of factors, each with a max value, and we want to compute
// the a lower-bound on the cost-to-go for each slot. For the first slot, this
// -log(max(factor[0])), as we only have one factor to resolve. For the second
// slot, we need to add -log(max(factor[1])) to it, etc...
void DiscreteSearch::computeHeuristic() {
double error = 0.0;
for (const auto& conditional : conditionals) {
Ordering ordering(conditional->begin(), conditional->end());
auto maxx = conditional->max(ordering);
for (size_t i = 0; i < slots_.size(); ++i) {
const auto& factor = slots_[i].factor;
Ordering ordering(factor->begin(), factor->end());
auto maxx = factor->max(ordering);
error -= std::log(maxx->evaluate({}));
costToGo.push_back(error);
slots_[i].heuristic = error;
}
return costToGo;
}
} // namespace gtsam

View File

@ -28,9 +28,25 @@ namespace gtsam {
*/
class GTSAM_EXPORT DiscreteSearch {
public:
/**
* @brief A solution to a discrete search problem.
*/
/// We structure the search as a set of slots, each with a factor and
/// a set of variable assignments that need to be chosen. In addition, each
/// slot has a heuristic associated with it.
struct Slot {
/// The factors in the search problem,
/// e.g., [P(B|A),P(A)]
DiscreteFactor::shared_ptr factor;
/// The assignments for each factor,
/// e.g., [[B0,B1] [A0,A1]]
std::vector<DiscreteValues> assignments;
/// A lower bound on the cost-to-go for each slot, e.g.,
/// [-log(max_B P(B|A)), -log(max_A P(A))]
double heuristic;
};
/// A solution is then a set of assignments, covering all the slots.
/// as well as an associated error = -log(probability)
struct Solution {
double error;
DiscreteValues assignment;
@ -42,13 +58,19 @@ class GTSAM_EXPORT DiscreteSearch {
}
};
public:
/**
* Construct from a DiscreteBayesNet and K.
* Construct from a DiscreteFactorGraph.
*/
DiscreteSearch(const DiscreteFactorGraph& bayesNet);
/**
* Construct from a DiscreteBayesNet.
*/
DiscreteSearch(const DiscreteBayesNet& bayesNet);
/**
* Construct from a DiscreteBayesTree and K.
* Construct from a DiscreteBayesTree.
*/
DiscreteSearch(const DiscreteBayesTree& bayesTree);
@ -65,14 +87,9 @@ class GTSAM_EXPORT DiscreteSearch {
std::vector<Solution> run(size_t K = 1) const;
private:
/// Compute the cumulative cost-to-go for each conditional slot.
static std::vector<double> computeCostToGo(
const std::vector<DiscreteConditional::shared_ptr>& conditionals);
/// Compute the cumulative lower-bound cost-to-go for each slot.
void computeHeuristic();
/// Expand the next node in the search tree.
void expandNextNode() const;
std::vector<DiscreteConditional::shared_ptr> conditionals_;
std::vector<double> costToGo_;
std::vector<Slot> slots_;
};
} // namespace gtsam