Asia example
parent
1f4d9bbd7e
commit
d879b156f8
|
@ -0,0 +1,61 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
* See LICENSE for the license information
|
||||||
|
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/*
|
||||||
|
* AsiaExample.h
|
||||||
|
*
|
||||||
|
* @date Jan, 2025
|
||||||
|
* @author Frank Dellaert
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||||
|
#include <gtsam/inference/Symbol.h>
|
||||||
|
|
||||||
|
namespace gtsam {
|
||||||
|
namespace asia_example {
|
||||||
|
|
||||||
|
static const Key D = Symbol('D', 1), X = Symbol('X', 2), E = Symbol('E', 3),
|
||||||
|
B = Symbol('B', 4), L = Symbol('L', 5), T = Symbol('T', 6),
|
||||||
|
S = Symbol('S', 7), A = Symbol('A', 8);
|
||||||
|
|
||||||
|
static const DiscreteKey Dyspnea(D, 2), XRay(X, 2), Either(E, 2),
|
||||||
|
Bronchitis(B, 2), LungCancer(L, 2), Tuberculosis(T, 2), Smoking(S, 2),
|
||||||
|
Asia(A, 2);
|
||||||
|
|
||||||
|
// Function to construct the incomplete Asia example
|
||||||
|
DiscreteBayesNet createPriors() {
|
||||||
|
DiscreteBayesNet priors;
|
||||||
|
priors.add(Smoking % "50/50");
|
||||||
|
priors.add(Asia, "99/1");
|
||||||
|
return priors;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Function to construct the incomplete Asia example
|
||||||
|
DiscreteBayesNet createFragment() {
|
||||||
|
DiscreteBayesNet fragment;
|
||||||
|
fragment.add((Either | Tuberculosis, LungCancer) = "F T T T");
|
||||||
|
fragment.add(LungCancer | Smoking = "99/1 90/10");
|
||||||
|
fragment.add(Tuberculosis | Asia = "99/1 95/5");
|
||||||
|
for (const auto& factor : createPriors()) fragment.push_back(factor);
|
||||||
|
return fragment;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Function to construct the Asia example
|
||||||
|
DiscreteBayesNet createAsiaExample() {
|
||||||
|
DiscreteBayesNet asia;
|
||||||
|
asia.add((Dyspnea | Either, Bronchitis) = "9/1 2/8 3/7 1/9");
|
||||||
|
asia.add(XRay | Either = "95/5 2/98");
|
||||||
|
asia.add(Bronchitis | Smoking = "70/30 40/60");
|
||||||
|
for (const auto& factor : createFragment()) asia.push_back(factor);
|
||||||
|
return asia;
|
||||||
|
}
|
||||||
|
} // namespace asia_example
|
||||||
|
} // namespace gtsam
|
|
@ -29,40 +29,13 @@
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
using namespace std;
|
#include "AsiaExample.h"
|
||||||
|
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
|
||||||
namespace keys {
|
|
||||||
static const Key D = Symbol('D', 1), X = Symbol('X', 2), E = Symbol('E', 3),
|
|
||||||
B = Symbol('B', 4), L = Symbol('L', 5), T = Symbol('T', 6),
|
|
||||||
S = Symbol('S', 7), A = Symbol('A', 8);
|
|
||||||
}
|
|
||||||
|
|
||||||
static const DiscreteKey Dyspnea(keys::D, 2), XRay(keys::X, 2),
|
|
||||||
Either(keys::E, 2), Bronchitis(keys::B, 2), LungCancer(keys::L, 2),
|
|
||||||
Tuberculosis(keys::T, 2), Smoking(keys::S, 2), Asia(keys::A, 2);
|
|
||||||
|
|
||||||
using ADT = AlgebraicDecisionTree<Key>;
|
|
||||||
|
|
||||||
// Function to construct the Asia example
|
|
||||||
DiscreteBayesNet constructAsiaExample() {
|
|
||||||
DiscreteBayesNet asia;
|
|
||||||
|
|
||||||
// Add in topological sort order, parents last:
|
|
||||||
asia.add((Dyspnea | Either, Bronchitis) = "9/1 2/8 3/7 1/9");
|
|
||||||
asia.add(XRay | Either = "95/5 2/98");
|
|
||||||
asia.add((Either | Tuberculosis, LungCancer) = "F T T T");
|
|
||||||
asia.add(Bronchitis | Smoking = "70/30 40/60");
|
|
||||||
asia.add(LungCancer | Smoking = "99/1 90/10");
|
|
||||||
asia.add(Tuberculosis | Asia = "99/1 95/5");
|
|
||||||
asia.add(Smoking % "50/50"); // Signature version
|
|
||||||
asia.add(Asia, "99/1");
|
|
||||||
|
|
||||||
return asia;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(DiscreteBayesNet, bayesNet) {
|
TEST(DiscreteBayesNet, bayesNet) {
|
||||||
|
using ADT = AlgebraicDecisionTree<Key>;
|
||||||
DiscreteBayesNet bayesNet;
|
DiscreteBayesNet bayesNet;
|
||||||
DiscreteKey Parent(0, 2), Child(1, 2);
|
DiscreteKey Parent(0, 2), Child(1, 2);
|
||||||
|
|
||||||
|
@ -92,7 +65,8 @@ TEST(DiscreteBayesNet, bayesNet) {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(DiscreteBayesNet, Asia) {
|
TEST(DiscreteBayesNet, Asia) {
|
||||||
DiscreteBayesNet asia = constructAsiaExample();
|
using namespace asia_example;
|
||||||
|
const DiscreteBayesNet asia = createAsiaExample();
|
||||||
|
|
||||||
// Convert to factor graph
|
// Convert to factor graph
|
||||||
DiscreteFactorGraph fg(asia);
|
DiscreteFactorGraph fg(asia);
|
||||||
|
@ -105,8 +79,7 @@ TEST(DiscreteBayesNet, Asia) {
|
||||||
EXPECT(assert_equal(vs, marginals.marginalProbabilities(Smoking)));
|
EXPECT(assert_equal(vs, marginals.marginalProbabilities(Smoking)));
|
||||||
|
|
||||||
// Create solver and eliminate
|
// Create solver and eliminate
|
||||||
const Ordering ordering{keys::A, keys::D, keys::T, keys::X,
|
const Ordering ordering{A, D, T, X, S, E, L, B};
|
||||||
keys::S, keys::E, keys::L, keys::B};
|
|
||||||
DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
|
DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
|
||||||
DiscreteConditional expected2(Bronchitis % "11/9");
|
DiscreteConditional expected2(Bronchitis % "11/9");
|
||||||
EXPECT(assert_equal(expected2, *chordal->back()));
|
EXPECT(assert_equal(expected2, *chordal->back()));
|
||||||
|
@ -151,319 +124,53 @@ TEST(DiscreteBayesNet, Sugar) {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(DiscreteBayesNet, Dot) {
|
TEST(DiscreteBayesNet, Dot) {
|
||||||
DiscreteBayesNet fragment;
|
using namespace asia_example;
|
||||||
fragment.add(Asia % "99/1");
|
const DiscreteBayesNet fragment = createFragment();
|
||||||
fragment.add(Smoking % "50/50");
|
|
||||||
|
|
||||||
fragment.add(Tuberculosis | Asia = "99/1 95/5");
|
std::string expected =
|
||||||
fragment.add(LungCancer | Smoking = "99/1 90/10");
|
"digraph {\n"
|
||||||
fragment.add((Either | Tuberculosis, LungCancer) = "F T T T");
|
" size=\"5,5\";\n"
|
||||||
|
"\n"
|
||||||
string actual = fragment.dot();
|
" var4683743612465315848[label=\"A8\"];\n"
|
||||||
EXPECT(actual ==
|
" var4971973988617027587[label=\"E3\"];\n"
|
||||||
"digraph {\n"
|
" var5476377146882523141[label=\"L5\"];\n"
|
||||||
" size=\"5,5\";\n"
|
" var5980780305148018695[label=\"S7\"];\n"
|
||||||
"\n"
|
" var6052837899185946630[label=\"T6\"];\n"
|
||||||
" var4683743612465315848[label=\"A8\"];\n"
|
"\n"
|
||||||
" var4971973988617027587[label=\"E3\"];\n"
|
" var4683743612465315848->var6052837899185946630\n"
|
||||||
" var5476377146882523141[label=\"L5\"];\n"
|
" var5980780305148018695->var5476377146882523141\n"
|
||||||
" var5980780305148018695[label=\"S7\"];\n"
|
" var6052837899185946630->var4971973988617027587\n"
|
||||||
" var6052837899185946630[label=\"T6\"];\n"
|
" var5476377146882523141->var4971973988617027587\n"
|
||||||
"\n"
|
"}";
|
||||||
" var6052837899185946630->var4971973988617027587\n"
|
std::string actual = fragment.dot();
|
||||||
" var5476377146882523141->var4971973988617027587\n"
|
EXPECT(actual.compare(expected) == 0);
|
||||||
" var5980780305148018695->var5476377146882523141\n"
|
|
||||||
" var4683743612465315848->var6052837899185946630\n"
|
|
||||||
"}");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
// Check markdown representation looks as expected.
|
// Check markdown representation looks as expected.
|
||||||
TEST(DiscreteBayesNet, markdown) {
|
TEST(DiscreteBayesNet, markdown) {
|
||||||
DiscreteBayesNet fragment;
|
using namespace asia_example;
|
||||||
fragment.add(Asia % "99/1");
|
DiscreteBayesNet priors = createPriors();
|
||||||
fragment.add(Smoking | Asia = "8/2 7/3");
|
|
||||||
|
|
||||||
string expected =
|
std::string expected =
|
||||||
"`DiscreteBayesNet` of size 2\n"
|
"`DiscreteBayesNet` of size 2\n"
|
||||||
"\n"
|
"\n"
|
||||||
|
" *P(Smoking):*\n\n"
|
||||||
|
"|Smoking|value|\n"
|
||||||
|
"|:-:|:-:|\n"
|
||||||
|
"|0|0.5|\n"
|
||||||
|
"|1|0.5|\n"
|
||||||
|
"\n"
|
||||||
" *P(Asia):*\n\n"
|
" *P(Asia):*\n\n"
|
||||||
"|Asia|value|\n"
|
"|Asia|value|\n"
|
||||||
"|:-:|:-:|\n"
|
"|:-:|:-:|\n"
|
||||||
"|0|0.99|\n"
|
"|0|0.99|\n"
|
||||||
"|1|0.01|\n"
|
"|1|0.01|\n\n";
|
||||||
"\n"
|
auto formatter = [](Key key) { return key == A ? "Asia" : "Smoking"; };
|
||||||
" *P(Smoking|Asia):*\n\n"
|
std::string actual = priors.markdown(formatter);
|
||||||
"|*Asia*|0|1|\n"
|
|
||||||
"|:-:|:-:|:-:|\n"
|
|
||||||
"|0|0.8|0.2|\n"
|
|
||||||
"|1|0.7|0.3|\n\n";
|
|
||||||
auto formatter = [](Key key) { return key == keys::A ? "Asia" : "Smoking"; };
|
|
||||||
string actual = fragment.markdown(formatter);
|
|
||||||
EXPECT(actual == expected);
|
EXPECT(actual == expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
|
||||||
#include <algorithm>
|
|
||||||
#include <cmath>
|
|
||||||
#include <iostream>
|
|
||||||
#include <map>
|
|
||||||
#include <queue>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
using Value = size_t;
|
|
||||||
|
|
||||||
// ----------------------------------------------------------------------------
|
|
||||||
// 1) SearchNode: store partial assignment and next factor to expand
|
|
||||||
// ----------------------------------------------------------------------------
|
|
||||||
struct SearchNode {
|
|
||||||
DiscreteValues assignment;
|
|
||||||
double error;
|
|
||||||
double bound;
|
|
||||||
int nextConditional; // index into conditionals
|
|
||||||
|
|
||||||
/// if nextConditional < 0, we've assigned everything.
|
|
||||||
bool isComplete() const { return nextConditional < 0; }
|
|
||||||
|
|
||||||
/// lower bound on final error for unassigned variables. Stub=0.
|
|
||||||
double computeBound() const {
|
|
||||||
// Real code might do partial factor analysis or heuristics.
|
|
||||||
return 0.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Expand this node by assigning the next variable
|
|
||||||
SearchNode expand(const DiscreteConditional& conditional,
|
|
||||||
const DiscreteValues& fa) const {
|
|
||||||
// Combine the new frontal assignment with the current partial assignment
|
|
||||||
SearchNode child;
|
|
||||||
child.assignment = assignment;
|
|
||||||
for (auto& kv : fa) {
|
|
||||||
child.assignment[kv.first] = kv.second;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute the incremental error for this factor
|
|
||||||
child.error = error + conditional.error(child.assignment);
|
|
||||||
|
|
||||||
// Compute new bound
|
|
||||||
child.bound = child.error + computeBound();
|
|
||||||
|
|
||||||
// Next factor index
|
|
||||||
child.nextConditional = nextConditional - 1;
|
|
||||||
|
|
||||||
return child;
|
|
||||||
}
|
|
||||||
|
|
||||||
friend std::ostream& operator<<(std::ostream& os, const SearchNode& sn) {
|
|
||||||
os << "[ error=" << sn.error << " bound=" << sn.bound
|
|
||||||
<< " nextConditional=" << sn.nextConditional << " assignment={"
|
|
||||||
<< sn.assignment << "}]";
|
|
||||||
return os;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// ----------------------------------------------------------------------------
|
|
||||||
// 2) Priority functor to make a min-heap by bound
|
|
||||||
// ----------------------------------------------------------------------------
|
|
||||||
struct CompareByBound {
|
|
||||||
bool operator()(const SearchNode& a, const SearchNode& b) const {
|
|
||||||
return a.bound > b.bound; // smallest bound -> highest priority
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// ----------------------------------------------------------------------------
|
|
||||||
// 4) A Solution
|
|
||||||
// ----------------------------------------------------------------------------
|
|
||||||
struct Solution {
|
|
||||||
double error;
|
|
||||||
DiscreteValues assignment;
|
|
||||||
Solution(double err, const DiscreteValues& assign)
|
|
||||||
: error(err), assignment(assign) {}
|
|
||||||
friend std::ostream& operator<<(std::ostream& os, const Solution& sn) {
|
|
||||||
os << "[ error=" << sn.error << " assignment={" << sn.assignment << "}]";
|
|
||||||
return os;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
struct CompareByError {
|
|
||||||
bool operator()(const Solution& a, const Solution& b) const {
|
|
||||||
return a.error < b.error;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// Define the Solutions class
|
|
||||||
class Solutions {
|
|
||||||
private:
|
|
||||||
size_t maxSize_;
|
|
||||||
std::priority_queue<Solution, std::vector<Solution>, CompareByError> pq_;
|
|
||||||
|
|
||||||
public:
|
|
||||||
Solutions(size_t maxSize) : maxSize_(maxSize) {}
|
|
||||||
|
|
||||||
/// Add a solution to the priority queue, possibly evicting the worst one.
|
|
||||||
/// Return true if we added the solution.
|
|
||||||
bool maybeAdd(double error, const DiscreteValues& assignment) {
|
|
||||||
const bool full = pq_.size() == maxSize_;
|
|
||||||
if (full && error >= pq_.top().error) return false;
|
|
||||||
if (full) pq_.pop();
|
|
||||||
pq_.emplace(error, assignment);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Check if we have any solutions
|
|
||||||
bool empty() const { return pq_.empty(); }
|
|
||||||
|
|
||||||
// Method to print all solutions
|
|
||||||
void print() const {
|
|
||||||
auto pq = pq_;
|
|
||||||
while (!pq.empty()) {
|
|
||||||
const Solution& best = pq.top();
|
|
||||||
std::cout << "Error: " << best.error << ", Values: " << best.assignment
|
|
||||||
<< std::endl;
|
|
||||||
pq.pop();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Check if (partial) solution with given bound can be pruned. If we have
|
|
||||||
/// room, we never prune. Otherwise, prune if lower bound on error is worse
|
|
||||||
/// than our current worst error.
|
|
||||||
bool prune(double bound) const {
|
|
||||||
if (pq_.size() < maxSize_) return false;
|
|
||||||
double worstError = pq_.top().error;
|
|
||||||
return (bound >= worstError);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Method to extract solutions in ascending order of error
|
|
||||||
std::vector<Solution> extractSolutions() {
|
|
||||||
std::vector<Solution> result;
|
|
||||||
while (!pq_.empty()) {
|
|
||||||
result.push_back(pq_.top());
|
|
||||||
pq_.pop();
|
|
||||||
}
|
|
||||||
std::sort(
|
|
||||||
result.begin(), result.end(),
|
|
||||||
[](const Solution& a, const Solution& b) { return a.error < b.error; });
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
/**
|
|
||||||
* BestKSearch: Search for the K best solutions.
|
|
||||||
*/
|
|
||||||
class BestKSearch {
|
|
||||||
public:
|
|
||||||
/**
|
|
||||||
* Construct from a DiscreteBayesNet and K.
|
|
||||||
*/
|
|
||||||
BestKSearch(const DiscreteBayesNet& bayesNet, size_t K)
|
|
||||||
: bayesNet_(bayesNet), solutions_(K) {
|
|
||||||
// Copy out the conditionals
|
|
||||||
for (auto& factor : bayesNet_) {
|
|
||||||
conditionals_.push_back(factor);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Create the root node: no variables assigned, nextConditional = last.
|
|
||||||
SearchNode root{
|
|
||||||
.assignment = DiscreteValues(),
|
|
||||||
.error = 0.0,
|
|
||||||
.nextConditional = static_cast<int>(conditionals_.size()) - 1};
|
|
||||||
root.bound = root.computeBound();
|
|
||||||
std::cout << "Root: " << root << std::endl;
|
|
||||||
expansions_.push(root);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Search for the K best solutions.
|
|
||||||
*
|
|
||||||
* This method performs a search to find the K best solutions for the given
|
|
||||||
* DiscreteBayesNet. It uses a priority queue to manage the search nodes,
|
|
||||||
* expanding nodes with the smallest bound first. The search continues until
|
|
||||||
* all possible nodes have been expanded or pruned.
|
|
||||||
*
|
|
||||||
* @return A vector of the K best solutions found during the search.
|
|
||||||
*/
|
|
||||||
std::vector<Solution> run() {
|
|
||||||
size_t numExpansions = 0;
|
|
||||||
while (!expansions_.empty()) {
|
|
||||||
expandNextNode();
|
|
||||||
numExpansions++;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::cout << "Expansions: " << numExpansions << std::endl;
|
|
||||||
|
|
||||||
// Extract solutions from bestSolutions in ascending order of error
|
|
||||||
return solutions_.extractSolutions();
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
//
|
|
||||||
void expandNextNode() {
|
|
||||||
// Pop the partial assignment with the smallest bound
|
|
||||||
SearchNode current = expansions_.top();
|
|
||||||
expansions_.pop();
|
|
||||||
std::cout << "Expanding: " << current << std::endl;
|
|
||||||
|
|
||||||
// If we already have K solutions, prune if we cannot beat the worst one.
|
|
||||||
if (solutions_.prune(current.bound)) {
|
|
||||||
std::cout << "Pruning: bound=" << current.bound << std::endl;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Check if we have a complete assignment
|
|
||||||
if (current.isComplete()) {
|
|
||||||
const bool added = solutions_.maybeAdd(current.error, current.assignment);
|
|
||||||
if (added) {
|
|
||||||
std::cout << "Best solutions so far:" << std::endl;
|
|
||||||
solutions_.print();
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Expand on the next factor
|
|
||||||
const auto& conditional = conditionals_[current.nextConditional];
|
|
||||||
|
|
||||||
for (auto& fa : conditional->frontalAssignments()) {
|
|
||||||
std::cout << "Frontal assignment: " << fa << std::endl;
|
|
||||||
auto childNode = current.expand(*conditional, fa);
|
|
||||||
|
|
||||||
// Again, prune if we cannot beat the worst solution
|
|
||||||
if (solutions_.prune(current.bound)) {
|
|
||||||
std::cout << "Pruning: bound=" << childNode.bound << std::endl;
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
expansions_.push(childNode);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const DiscreteBayesNet& bayesNet_;
|
|
||||||
std::vector<std::shared_ptr<DiscreteConditional>> conditionals_;
|
|
||||||
std::priority_queue<SearchNode, std::vector<SearchNode>, CompareByBound>
|
|
||||||
expansions_;
|
|
||||||
Solutions solutions_;
|
|
||||||
};
|
|
||||||
|
|
||||||
// ----------------------------------------------------------------------------
|
|
||||||
// Example “Unit Tests” (trivial stubs)
|
|
||||||
// ----------------------------------------------------------------------------
|
|
||||||
|
|
||||||
TEST(DiscreteBayesNet, EmptyKBest) {
|
|
||||||
DiscreteBayesNet net; // no factors
|
|
||||||
BestKSearch search(net, 3);
|
|
||||||
auto solutions = search.run();
|
|
||||||
// Expect one solution with empty assignment, error=0
|
|
||||||
EXPECT_LONGS_EQUAL(1, solutions.size());
|
|
||||||
EXPECT_DOUBLES_EQUAL(0, std::fabs(solutions[0].error), 1e-9);
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST(DiscreteBayesNet, AsiaKBest) {
|
|
||||||
DiscreteBayesNet asia = constructAsiaExample();
|
|
||||||
BestKSearch search(asia, 4);
|
|
||||||
auto solutions = search.run();
|
|
||||||
EXPECT(!solutions.empty());
|
|
||||||
// Regression test: check the first solution
|
|
||||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(solutions[0].error), 1e-5);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
int main() {
|
int main() {
|
||||||
TestResult tr;
|
TestResult tr;
|
||||||
|
|
Loading…
Reference in New Issue