Fixed equality, transform_from, AdjointMap, and added wedge (for testing AdjointMap)

release/4.3a0
dellaert 2016-02-07 14:05:59 -08:00
parent 95f4d14d5e
commit d7ed19dc21
3 changed files with 86 additions and 89 deletions

View File

@ -38,13 +38,13 @@ Similarity3::Similarity3(const Matrix3& R, const Vector3& t, double s) :
R_(R), t_(t), s_(s) {
}
bool Similarity3::equals(const Similarity3& sim, double tol) const {
return R_.equals(sim.R_, tol) && t_.equals(sim.t_, tol) && s_ < (sim.s_ + tol)
&& s_ > (sim.s_ - tol);
bool Similarity3::equals(const Similarity3& other, double tol) const {
return R_.equals(other.R_, tol) && t_.equals(other.t_, tol)
&& s_ < (other.s_ + tol) && s_ > (other.s_ - tol);
}
bool Similarity3::operator==(const Similarity3& other) const {
return equals(other, 1e-9);
return R_.matrix() == other.R_.matrix() && t_ == other.t_ && s_ == other.s_;
}
void Similarity3::print(const std::string& s) const {
@ -70,40 +70,47 @@ Similarity3 Similarity3::inverse() const {
Point3 Similarity3::transform_from(const Point3& p, //
OptionalJacobian<3, 7> H1, OptionalJacobian<3, 3> H2) const {
Point3 q = R_ * p + t_;
if (H1) {
const Matrix3 R = R_.matrix();
Matrix3 DR = s_ * R * skewSymmetric(-p.x(), -p.y(), -p.z());
*H1 << DR, R, R * p.vector();
print("From Derivative");
// TODO(frank): explain the derivative in lambda
*H1 << DR, s_ * R, s_ * p.vector();
}
if (H2)
*H2 = s_ * R_.matrix(); // just 3*3 sub-block of matrix()
return R_ * (s_ * p) + t_;
// TODO: Effect of scale change is this, right?
// No, this is incorrect. Zhaoyang Lv
// sR t * (1+v)I 0 * p = s(1+v)R t * p = s(1+v)Rp + t = sRp + vRp + t
// 0001 000 1 1 000 1 1
return s_ * q;
}
Point3 Similarity3::operator*(const Point3& p) const {
return transform_from(p);
}
Matrix4 Similarity3::wedge(const Vector7& xi) {
// http://www.ethaneade.org/latex2html/lie/node29.html
const auto w = xi.head<3>();
const auto u = xi.segment<3>(3);
double lambda = xi[6];
Matrix4 W;
W << skewSymmetric(w), u, 0, 0, 0, -lambda;
return W;
}
Matrix7 Similarity3::AdjointMap() const {
// ToDo: This adjoint might not be correct, it is based on delta = [u, w, lambda]
// However, we use the convention delta = [w, u, lambda]
// http://www.ethaneade.org/latex2html/lie/node30.html
const Matrix3 R = R_.matrix();
const Vector3 t = t_.vector();
Matrix3 A = s_ * skewSymmetric(t) * R;
Matrix7 adj;
adj << s_ * R, A, -s_ * t, // 3*7
Z_3x3, R, Matrix31::Zero(), // 3*7
adj <<
R, Z_3x3, Matrix31::Zero(), // 3*7
A, s_ * R, -s_ * t, // 3*7
Matrix16::Zero(), 1; // 1*7
return adj;
}
Matrix33 Similarity3::GetV(Vector3 w, double lambda){
Matrix33 wx = skewSymmetric(w[0], w[1], w[2]);
Matrix3 Similarity3::GetV(Vector3 w, double lambda) {
Matrix3 wx = skewSymmetric(w[0], w[1], w[2]);
double lambdasquared = lambda * lambda;
double thetasquared = w.transpose() * w;
double theta = sqrt(thetasquared);
@ -122,13 +129,12 @@ Matrix33 Similarity3::GetV(Vector3 w, double lambda){
A = (1 - exp(-lambda)) / lambda;
B = alpha * (beta - gama) + gama;
C = alpha * (mu - upsilon) + upsilon;
}
else if(thetasquared <= 1e-9 && lambdasquared > 1e-9) {
} else if (thetasquared <= 1e-9 && lambdasquared > 1e-9) {
//Taylor series expansions
X = 1;
Y = 0.5-thetasquared/24.0;
Z = 1.0/6.0 - thetasquared/120.0;
W = 1.0/24.0 - thetasquared/720.0;
Y = 0.5 - thetasquared / 24.0;
Z = 1.0 / 6.0 - thetasquared / 120.0;
W = 1.0 / 24.0 - thetasquared / 720.0;
alpha = lambdasquared / (lambdasquared + thetasquared);
beta = (exp(-lambda) - 1 + lambda) / lambdasquared;
gama = Y - (lambda * Z);
@ -138,8 +144,7 @@ Matrix33 Similarity3::GetV(Vector3 w, double lambda){
A = (1 - exp(-lambda)) / lambda;
B = alpha * (beta - gama) + gama;
C = alpha * (mu - upsilon) + upsilon;
}
else if(thetasquared > 1e-9 && lambdasquared <= 1e-9) {
} else if (thetasquared > 1e-9 && lambdasquared <= 1e-9) {
X = sin(theta) / theta;
Y = (1 - cos(theta)) / thetasquared;
Z = (1 - X) / thetasquared;
@ -158,10 +163,9 @@ Matrix33 Similarity3::GetV(Vector3 w, double lambda){
}
B = alpha * (beta - gama) + gama;
C = alpha * (mu - upsilon) + upsilon;
}
else {
} else {
X = 1;
Y = 0.5-thetasquared/24.0;
Y = 0.5 - thetasquared / 24.0;
Z = 1.0 / 6.0 - thetasquared / 120.0;
W = 1.0 / 24.0 - thetasquared / 720.0;
alpha = lambdasquared / (lambdasquared + thetasquared);
@ -179,7 +183,7 @@ Matrix33 Similarity3::GetV(Vector3 w, double lambda){
B = gama;
C = upsilon;
}
return A * Matrix33::Identity() + B * wx + C * wx * wx;
return A * I_3x3 + B * wx + C * wx * wx;
}
Vector7 Similarity3::Logmap(const Similarity3& s, OptionalJacobian<7, 7> Hm) {
@ -196,26 +200,27 @@ Vector7 Similarity3::Logmap(const Similarity3& s, OptionalJacobian<7, 7> Hm) {
}
Similarity3 Similarity3::Expmap(const Vector7& v, OptionalJacobian<7, 7> Hm) {
Vector3 w(v.head<3>());
const auto w = v.head<3>();
const auto u = v.segment<3>(3);
double lambda = v[6];
if (Hm) {
Matrix6 J_pose = Pose3::ExpmapDerivative(v.head<6>());
// Matrix6 J_pose = Pose3::ExpmapDerivative(v.head<6>());
// incomplete
}
return Similarity3(Rot3::Expmap(w), Point3(GetV(w, lambda)*v.segment<3>(3)), 1.0/exp(-lambda));
const Matrix3 V = GetV(w, lambda);
return Similarity3(Rot3::Expmap(w), Point3(V * u), exp(lambda));
}
std::ostream &operator<<(std::ostream &os, const Similarity3& p) {
os << "[" << p.rotation().xyz().transpose() << " " << p.translation().vector().transpose() << " " <<
p.scale() << "]\';";
os << "[" << p.rotation().xyz().transpose() << " "
<< p.translation().vector().transpose() << " " << p.scale() << "]\';";
return os;
}
const Matrix4 Similarity3::matrix() const {
Matrix4 T;
T.topRows<3>() << s_ * R_.matrix(), t_.vector();
T.bottomRows<1>() << 0, 0, 0, 1;
T.topRows<3>() << R_.matrix(), t_.vector();
T.bottomRows<1>() << 0, 0, 0, 1.0/s_;
return T;
}

View File

@ -67,7 +67,7 @@ public:
/// Compare with tolerance
bool equals(const Similarity3& sim, double tol) const;
/// Compare with standard tolerance
/// Exact equality
bool operator==(const Similarity3& other) const;
/// Print with optional string
@ -92,6 +92,7 @@ public:
/// @name Group action on Point3
/// @{
/// Action on a point p is s*(R*p+t)
Point3 transform_from(const Point3& p, //
OptionalJacobian<3, 7> H1 = boost::none, //
OptionalJacobian<3, 3> H2 = boost::none) const;
@ -124,11 +125,19 @@ public:
}
};
using LieGroup<Similarity3, 7>::inverse;
/**
* wedge for Similarity3:
* @param xi 7-dim twist (w,u,lambda) where
* @return 4*4 element of Lie algebra that can be exponentiated
* TODO(frank): rename to Hat, make part of traits
*/
static Matrix4 wedge(const Vector7& xi);
/// Project from one tangent space to another
Matrix7 AdjointMap() const;
using LieGroup<Similarity3, 7>::inverse;
/// @}
/// @name Standard interface
/// @{
@ -152,6 +161,7 @@ public:
}
/// Convert to a rigid body pose (R, s*t)
/// TODO(frank): why is this here? Red flag! Definitely don't have it as a cast.
operator Pose3() const;
/// Dimensionality of tangent space = 7 DOF - used to autodetect sizes
@ -170,7 +180,7 @@ public:
/// Calculate expmap and logmap coefficients.
private:
static Matrix33 GetV(Vector3 w, double lambda);
static Matrix3 GetV(Vector3 w, double lambda);
/// @}

View File

@ -42,7 +42,7 @@ GTSAM_CONCEPT_TESTABLE_INST(Similarity3)
static Point3 P(0.2, 0.7, -2);
static Rot3 R = Rot3::Rodrigues(0.3, 0, 0);
static double s = 4;
static Similarity3 T_default(R, Point3(3.5, -8.2, 4.2), 1);
static Similarity3 T1(R, Point3(3.5, -8.2, 4.2), 1);
static Similarity3 T2(Rot3::Rodrigues(0.3, 0.2, 0.1), Point3(3.5, -8.2, 4.2), 1);
static Similarity3 T3(Rot3::Rodrigues(-90, 0, 0), Point3(1, 2, 3), 1);
static Similarity3 T4(R, P, s);
@ -79,16 +79,13 @@ TEST(Similarity3, Getters) {
//******************************************************************************
TEST(Similarity3, AdjointMap) {
Similarity3 test(Rot3::Ypr(1, 2, 3).inverse(), Point3(4, 5, 6), 7);
Matrix7 result;
result << -1.5739, -2.4512, -6.3651, -50.7671, -11.2503, 16.8859, -28.0000,
6.3167, -2.9884, -0.4111, 0.8502, 8.6373, -49.7260, -35.0000,
-2.5734, -5.8362, 2.8839, 33.1363, 0.3024, 30.1811, -42.0000,
0, 0, 0, -0.2248, -0.3502, -0.9093, 0,
0, 0, 0, 0.9024, -0.4269, -0.0587, 0,
0, 0, 0, -0.3676, -0.8337, 0.4120, 0,
0, 0, 0, 0, 0, 0, 1.0000;
EXPECT(assert_equal(result, test.AdjointMap(), 1e-3));
const Matrix4 T = T2.matrix();
// Check Ad with actual definition
Vector7 delta;
delta << 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7;
Matrix4 W = Similarity3::wedge(delta);
Matrix4 TW = Similarity3::wedge(T2.AdjointMap() * delta);
EXPECT(assert_equal(TW, Matrix4(T * W * T.inverse()), 1e-9));
}
//******************************************************************************
@ -169,13 +166,13 @@ TEST( Similarity3, retract_first_order) {
TEST(Similarity3, localCoordinates_first_order) {
Vector d12 = repeat(7, 0.1);
d12(6) = 1.0;
Similarity3 t1 = T_default, t2 = t1.retract(d12);
Similarity3 t1 = T1, t2 = t1.retract(d12);
EXPECT(assert_equal(d12, t1.localCoordinates(t2)));
}
//******************************************************************************
TEST(Similarity3, manifold_first_order) {
Similarity3 t1 = T_default;
Similarity3 t1 = T1;
Similarity3 t2 = T3;
Similarity3 origin;
Vector d12 = t1.localCoordinates(t2);
@ -188,10 +185,11 @@ TEST(Similarity3, manifold_first_order) {
// Return as a 4*4 Matrix
TEST(Similarity3, Matrix) {
Matrix4 expected;
expected << 2, 0, 0, 1,
0, 2, 0, 1,
0, 0, 2, 0,
0, 0, 0, 1;
expected <<
1, 0, 0, 1,
0, 1, 0, 1,
0, 0, 1, 0,
0, 0, 0, 0.5;
Matrix4 actual = T6.matrix();
EXPECT(assert_equal(expected, actual));
}
@ -226,55 +224,39 @@ TEST(Similarity3, ExpLogMap) {
//******************************************************************************
// Group action on Point3 (with simpler transform)
TEST(Similarity3, GroupAction) {
EXPECT(assert_equal(Point3(1, 1, 0), T6 * Point3(0, 0, 0)));
EXPECT(assert_equal(Point3(2, 2, 0), T6 * Point3(0, 0, 0)));
EXPECT(assert_equal(Point3(4, 2, 0), T6 * Point3(1, 0, 0)));
// Test actual group action on R^4
// Test group action on R^4 via matrix representation
Vector4 qh;
qh << 1, 0, 0, 1;
Vector4 ph;
ph << 3, 1, 0, 1;
ph << 2, 1, 0, 0.5; // equivalent to Point3(4, 2, 0)
EXPECT(assert_equal((Vector )ph, T6.matrix() * qh));
// Test some more...
Point3 pa = Point3(1, 0, 0);
Similarity3 Ta(Rot3(), Point3(1, 2, 3), 1.0);
Similarity3 Tb(Rot3(), Point3(1, 2, 3), 2.0);
Point3 pa = Point3(1, 0, 0);
Point3 pTa = Point3(2, 2, 3);
Point3 pTb = Point3(3, 2, 3);
EXPECT(assert_equal(pTa, Ta.transform_from(pa)));
EXPECT(assert_equal(pTb, Tb.transform_from(pa)));
EXPECT(assert_equal(Point3(2, 2, 3), Ta.transform_from(pa)));
EXPECT(assert_equal(Point3(4, 4, 6), Tb.transform_from(pa)));
Similarity3 Tc(Rot3::Rz(M_PI/2.0), Point3(1, 2, 3), 1.0);
Similarity3 Td(Rot3::Rz(M_PI/2.0), Point3(1, 2, 3), 2.0);
Point3 pTc = Point3(1, 3, 3);
Point3 pTd = Point3(1, 4, 3);
EXPECT(assert_equal(pTc, Tc.transform_from(pa)));
EXPECT(assert_equal(pTd, Td.transform_from(pa)));
EXPECT(assert_equal(Point3(1, 3, 3), Tc.transform_from(pa)));
EXPECT(assert_equal(Point3(2, 6, 6), Td.transform_from(pa)));
// Test derivative
boost::function<Point3(Similarity3, Point3)> f = boost::bind(
&Similarity3::transform_from, _1, _2, boost::none, boost::none);
{ // T default
Point3 q(1, 2, 3);
for (const auto T : { T1, T2, T3, T4, T5, T6 }) {
Point3 q(1, 0, 0);
Matrix H1 = numericalDerivative21<Point3, Similarity3, Point3>(f, T_default, q);
Matrix H2 = numericalDerivative22<Point3, Similarity3, Point3>(f, T_default, q);
Matrix H1 = numericalDerivative21<Point3, Similarity3, Point3>(f, T1, q);
Matrix H2 = numericalDerivative22<Point3, Similarity3, Point3>(f, T1, q);
Matrix actualH1, actualH2;
T_default.transform_from(q, actualH1, actualH2);
EXPECT(assert_equal(H1, actualH1));
EXPECT(assert_equal(H2, actualH2));
}
{ // T4
Point3 q(1, 0, 0);
Matrix H1 = numericalDerivative21<Point3, Similarity3, Point3>(f, T6, q);
Matrix H2 = numericalDerivative22<Point3, Similarity3, Point3>(f, T6, q);
Matrix actualH1, actualH2;
Point3 p = T6.transform_from(q, actualH1, actualH2);
EXPECT(assert_equal(Point3(3, 1, 0), p));
EXPECT(assert_equal(Point3(3, 1, 0), T6 * q));
T1.transform_from(q, actualH1, actualH2);
EXPECT(assert_equal(H1, actualH1));
EXPECT(assert_equal(H2, actualH2));
}