Merge branch 'develop' into imu-examples

release/4.3a0
Varun Agrawal 2020-06-29 11:16:10 -05:00
commit d79ddb6858
254 changed files with 40827 additions and 975 deletions

View File

@ -63,7 +63,7 @@ function configure()
-DGTSAM_BUILD_EXAMPLES_ALWAYS=${GTSAM_BUILD_EXAMPLES_ALWAYS:-ON} \
-DGTSAM_ALLOW_DEPRECATED_SINCE_V4=${GTSAM_ALLOW_DEPRECATED_SINCE_V4:-OFF} \
-DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF \
-DCMAKE_VERBOSE_MAKEFILE=ON
-DCMAKE_VERBOSE_MAKEFILE=OFF
}

View File

@ -14,7 +14,8 @@ addons:
- clang-9
- build-essential pkg-config
- cmake
- libpython-dev python-numpy
- python3-dev libpython-dev
- python3-numpy
- libboost-all-dev
# before_install:

View File

@ -1,3 +1,3 @@
Cython>=0.25.2
backports_abc>=0.5
numpy>=1.12.0
numpy>=1.11.0

12
debian/README.md vendored
View File

@ -1,12 +0,0 @@
# How to build a GTSAM debian package
To use the ``debuild`` command, install the ``devscripts`` package
sudo apt install devscripts
Change into the gtsam directory, then run:
debuild -us -uc -j4
Adjust the ``-j4`` depending on how many CPUs you want to build on in
parallel.

5
debian/changelog vendored
View File

@ -1,5 +0,0 @@
gtsam (4.0.0-1berndpfrommer) bionic; urgency=medium
* initial release
-- Bernd Pfrommer <bernd.pfrommer@gmail.com> Wed, 18 Jul 2018 20:36:44 -0400

1
debian/compat vendored
View File

@ -1 +0,0 @@
9

15
debian/control vendored
View File

@ -1,15 +0,0 @@
Source: gtsam
Section: libs
Priority: optional
Maintainer: Frank Dellaert <frank@cc.gatech.edu>
Uploaders: Jose Luis Blanco Claraco <joseluisblancoc@gmail.com>, Bernd Pfrommer <bernd.pfrommer@gmail.com>
Build-Depends: cmake, libboost-all-dev (>= 1.58), libeigen3-dev, libtbb-dev, debhelper (>=9)
Standards-Version: 3.9.7
Homepage: https://github.com/borglab/gtsam
Vcs-Browser: https://github.com/borglab/gtsam
Package: libgtsam-dev
Architecture: any
Depends: ${shlibs:Depends}, ${misc:Depends}, libboost-serialization-dev, libboost-system-dev, libboost-filesystem-dev, libboost-thread-dev, libboost-program-options-dev, libboost-date-time-dev, libboost-timer-dev, libboost-chrono-dev, libboost-regex-dev
Description: Georgia Tech Smoothing and Mapping Library
gtsam: Georgia Tech Smoothing and Mapping library for SLAM type applications

15
debian/copyright vendored
View File

@ -1,15 +0,0 @@
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: gtsam
Source: https://bitbucket.org/gtborg/gtsam.git
Files: *
Copyright: 2017, Frank Dellaert
License: BSD
Files: gtsam/3rdparty/CCOLAMD/*
Copyright: 2005-2011, Univ. of Florida. Authors: Timothy A. Davis, Sivasankaran Rajamanickam, and Stefan Larimore. Closely based on COLAMD by Davis, Stefan Larimore, in collaboration with Esmond Ng, and John Gilbert. http://www.cise.ufl.edu/research/sparse
License: GNU LESSER GENERAL PUBLIC LICENSE
Files: gtsam/3rdparty/Eigen/*
Copyright: 2017, Multiple Authors
License: MPL2

View File

29
debian/rules vendored
View File

@ -1,29 +0,0 @@
#!/usr/bin/make -f
# See debhelper(7) (uncomment to enable)
# output every command that modifies files on the build system.
export DH_VERBOSE = 1
# Makefile target name for running unit tests:
GTSAM_TEST_TARGET = check
# see FEATURE AREAS in dpkg-buildflags(1)
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
# see ENVIRONMENT in dpkg-buildflags(1)
# package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
# package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed
%:
dh $@ --parallel
# dh_make generated override targets
# This is example for Cmake (See https://bugs.debian.org/641051 )
override_dh_auto_configure:
dh_auto_configure -- -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_INSTALL_PREFIX=/usr -DGTSAM_BUILD_EXAMPLES_ALWAYS=OFF -DGTSAM_BUILD_TESTS=ON -DGTSAM_BUILD_WRAP=OFF -DGTSAM_BUILD_DOCS=OFF -DGTSAM_INSTALL_CPPUNITLITE=OFF -DGTSAM_INSTALL_GEOGRAPHICLIB=OFF -DGTSAM_BUILD_TYPE_POSTFIXES=OFF -DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF
override_dh_auto_test-arch:
# Tests for arch-dependent :
echo "[override_dh_auto_test-arch]"
dh_auto_build -O--buildsystem=cmake -- $(GTSAM_TEST_TARGET)

View File

@ -1 +0,0 @@
3.0 (quilt)

View File

@ -2291,15 +2291,11 @@ uncalibration
used in the residual).
\end_layout
\begin_layout Standard
\begin_inset Note Note
status collapsed
\begin_layout Section
Noise models of prior factors
\end_layout
\begin_layout Plain Layout
\begin_layout Standard
The simplest way to describe noise models is by an example.
Let's take a prior factor on a 3D pose
\begin_inset Formula $x\in\SE 3$
@ -2353,7 +2349,7 @@ e\left(x\right)=\norm{h\left(x\right)}_{\Sigma}^{2}=h\left(x\right)^{\t}\Sigma^{
useful answer out quickly ]
\end_layout
\begin_layout Plain Layout
\begin_layout Standard
The density induced by a noise model on the prior factor is Gaussian in
the tangent space about the linearization point.
Suppose that the pose is linearized at
@ -2431,7 +2427,7 @@ Here we see that the update
.
\end_layout
\begin_layout Plain Layout
\begin_layout Standard
This means that to draw random pose samples, we actually draw random samples
of
\begin_inset Formula $\delta x$
@ -2456,7 +2452,7 @@ This means that to draw random pose samples, we actually draw random samples
Noise models of between factors
\end_layout
\begin_layout Plain Layout
\begin_layout Standard
The noise model of a BetweenFactor is a bit more complicated.
The unwhitened error is
\begin_inset Formula
@ -2516,11 +2512,6 @@ e\left(\delta x_{1}\right) & \approx\norm{\log\left(z^{-1}\left(x_{1}\exp\delta
\end_inset
\end_layout
\end_inset
\end_layout
\end_body

Binary file not shown.

View File

@ -281,7 +281,7 @@ virtual class Value {
};
#include <gtsam/base/GenericValue.h>
template<T = {Vector, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::StereoPoint2, gtsam::Cal3_S2, gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::imuBias::ConstantBias}>
template<T = {Vector, Matrix, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::StereoPoint2, gtsam::Cal3_S2, gtsam::Cal3DS2, gtsam::Cal3Bundler, gtsam::EssentialMatrix, gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::imuBias::ConstantBias}>
virtual class GenericValue : gtsam::Value {
void serializable() const;
};
@ -2955,6 +2955,7 @@ class PreintegratedImuMeasurements {
gtsam::Rot3 deltaRij() const;
Vector deltaPij() const;
Vector deltaVij() const;
gtsam::imuBias::ConstantBias biasHat() const;
Vector biasHatVector() const;
gtsam::NavState predict(const gtsam::NavState& state_i,
const gtsam::imuBias::ConstantBias& bias) const;
@ -3016,6 +3017,7 @@ class PreintegratedCombinedMeasurements {
gtsam::Rot3 deltaRij() const;
Vector deltaPij() const;
Vector deltaVij() const;
gtsam::imuBias::ConstantBias biasHat() const;
Vector biasHatVector() const;
gtsam::NavState predict(const gtsam::NavState& state_i,
const gtsam::imuBias::ConstantBias& bias) const;

View File

@ -17,7 +17,7 @@ if(NOT GTSAM_USE_SYSTEM_EIGEN)
endforeach(eigen_dir)
if(GTSAM_WITH_EIGEN_UNSUPPORTED)
message("-- Installing Eigen Unsupported modules")
message(STATUS "Installing Eigen Unsupported modules")
# do the same for the unsupported eigen folder
file(GLOB_RECURSE unsupported_eigen_headers "${CMAKE_CURRENT_SOURCE_DIR}/Eigen/unsupported/Eigen/*.h")

View File

@ -181,7 +181,7 @@ public:
// Alignment, see https://eigen.tuxfamily.org/dox/group__TopicStructHavingEigenMembers.html
enum { NeedsToAlign = (sizeof(T) % 16) == 0 };
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
GTSAM_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
};
/// use this macro instead of BOOST_CLASS_EXPORT for GenericValues

View File

@ -214,7 +214,7 @@ public:
enum { NeedsToAlign = (sizeof(M1) % 16) == 0 || (sizeof(M2) % 16) == 0
};
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
GTSAM_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
};
// Define any direct product group to be a model of the multiplicative Group concept

View File

@ -76,7 +76,7 @@ namespace gtsam {
blockStart_(0)
{
fillOffsets(dimensions.begin(), dimensions.end(), appendOneDimension);
matrix_.setZero(variableColOffsets_.back(), variableColOffsets_.back());
matrix_.resize(variableColOffsets_.back(), variableColOffsets_.back());
assertInvariants();
}
@ -86,7 +86,7 @@ namespace gtsam {
blockStart_(0)
{
fillOffsets(firstBlockDim, lastBlockDim, appendOneDimension);
matrix_.setZero(variableColOffsets_.back(), variableColOffsets_.back());
matrix_.resize(variableColOffsets_.back(), variableColOffsets_.back());
assertInvariants();
}
@ -95,7 +95,7 @@ namespace gtsam {
SymmetricBlockMatrix(const CONTAINER& dimensions, const Matrix& matrix, bool appendOneDimension = false) :
blockStart_(0)
{
matrix_.setZero(matrix.rows(), matrix.cols());
matrix_.resize(matrix.rows(), matrix.cols());
matrix_.triangularView<Eigen::Upper>() = matrix.triangularView<Eigen::Upper>();
fillOffsets(dimensions.begin(), dimensions.end(), appendOneDimension);
if(matrix_.rows() != matrix_.cols())
@ -416,4 +416,3 @@ namespace gtsam {
class CholeskyFailed;
}

67
gtsam/base/make_shared.h Normal file
View File

@ -0,0 +1,67 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2020, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file make_shared.h
* @brief make_shared trampoline function to ensure proper alignment
* @author Fan Jiang
*/
#pragma once
#include <gtsam/base/types.h>
#include <Eigen/Core>
#include <boost/make_shared.hpp>
#include <type_traits>
namespace gtsam {
/// An shorthand alias for accessing the ::type inside std::enable_if that can be used in a template directly
template<bool B, class T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
}
namespace gtsam {
/**
* Add our own `make_shared` as a layer of wrapping on `boost::make_shared`
* This solves the problem with the stock `make_shared` that custom alignment is not respected, causing SEGFAULTs
* at runtime, which is notoriously hard to debug.
*
* Explanation
* ===============
* The template `needs_eigen_aligned_allocator<T>::value` will evaluate to `std::true_type` if the type alias
* `_eigen_aligned_allocator_trait = void` is present in a class, which is automatically added by the
* `GTSAM_MAKE_ALIGNED_OPERATOR_NEW` macro.
*
* This function declaration will only be taken when the above condition is true, so if some object does not need to
* be aligned, `gtsam::make_shared` will fall back to the next definition, which is a simple wrapper for
* `boost::make_shared`.
*
* @tparam T The type of object being constructed
* @tparam Args Type of the arguments of the constructor
* @param args Arguments of the constructor
* @return The object created as a boost::shared_ptr<T>
*/
template<typename T, typename ... Args>
gtsam::enable_if_t<needs_eigen_aligned_allocator<T>::value, boost::shared_ptr<T>> make_shared(Args &&... args) {
return boost::allocate_shared<T>(Eigen::aligned_allocator<T>(), std::forward<Args>(args)...);
}
/// Fall back to the boost version if no need for alignment
template<typename T, typename ... Args>
gtsam::enable_if_t<!needs_eigen_aligned_allocator<T>::value, boost::shared_ptr<T>> make_shared(Args &&... args) {
return boost::make_shared<T>(std::forward<Args>(args)...);
}
}

View File

@ -42,123 +42,218 @@
namespace gtsam {
// Serialization directly to strings in compressed format
template<class T>
std::string serialize(const T& input) {
std::ostringstream out_archive_stream;
/** @name Standard serialization
* Serialization in default compressed format
*/
///@{
/// serializes to a stream
template <class T>
void serializeToStream(const T& input, std::ostream& out_archive_stream) {
boost::archive::text_oarchive out_archive(out_archive_stream);
out_archive << input;
return out_archive_stream.str();
}
template<class T>
void deserialize(const std::string& serialized, T& output) {
std::istringstream in_archive_stream(serialized);
/// deserializes from a stream
template <class T>
void deserializeFromStream(std::istream& in_archive_stream, T& output) {
boost::archive::text_iarchive in_archive(in_archive_stream);
in_archive >> output;
}
template<class T>
/// serializes to a string
template <class T>
std::string serializeToString(const T& input) {
std::ostringstream out_archive_stream;
serializeToStream(input, out_archive_stream);
return out_archive_stream.str();
}
/// deserializes from a string
template <class T>
void deserializeFromString(const std::string& serialized, T& output) {
std::istringstream in_archive_stream(serialized);
deserializeFromStream(in_archive_stream, output);
}
/// serializes to a file
template <class T>
bool serializeToFile(const T& input, const std::string& filename) {
std::ofstream out_archive_stream(filename.c_str());
if (!out_archive_stream.is_open())
return false;
boost::archive::text_oarchive out_archive(out_archive_stream);
out_archive << input;
if (!out_archive_stream.is_open()) return false;
serializeToStream(input, out_archive_stream);
out_archive_stream.close();
return true;
}
template<class T>
/// deserializes from a file
template <class T>
bool deserializeFromFile(const std::string& filename, T& output) {
std::ifstream in_archive_stream(filename.c_str());
if (!in_archive_stream.is_open())
return false;
boost::archive::text_iarchive in_archive(in_archive_stream);
in_archive >> output;
if (!in_archive_stream.is_open()) return false;
deserializeFromStream(in_archive_stream, output);
in_archive_stream.close();
return true;
}
// Serialization to XML format with named structures
template<class T>
std::string serializeXML(const T& input, const std::string& name="data") {
std::ostringstream out_archive_stream;
// braces to flush out_archive as it goes out of scope before taking str()
// fixes crash with boost 1.66-1.68
// see https://github.com/boostorg/serialization/issues/82
{
boost::archive::xml_oarchive out_archive(out_archive_stream);
out_archive << boost::serialization::make_nvp(name.c_str(), input);
}
return out_archive_stream.str();
/// serializes to a string
template <class T>
std::string serialize(const T& input) {
return serializeToString(input);
}
template<class T>
void deserializeXML(const std::string& serialized, T& output, const std::string& name="data") {
std::istringstream in_archive_stream(serialized);
boost::archive::xml_iarchive in_archive(in_archive_stream);
in_archive >> boost::serialization::make_nvp(name.c_str(), output);
/// deserializes from a string
template <class T>
void deserialize(const std::string& serialized, T& output) {
deserializeFromString(serialized, output);
}
///@}
template<class T>
bool serializeToXMLFile(const T& input, const std::string& filename, const std::string& name="data") {
std::ofstream out_archive_stream(filename.c_str());
if (!out_archive_stream.is_open())
return false;
/** @name XML Serialization
* Serialization to XML format with named structures
*/
///@{
/// serializes to a stream in XML
template <class T>
void serializeToXMLStream(const T& input, std::ostream& out_archive_stream,
const std::string& name = "data") {
boost::archive::xml_oarchive out_archive(out_archive_stream);
out_archive << boost::serialization::make_nvp(name.c_str(), input);;
out_archive_stream.close();
return true;
out_archive << boost::serialization::make_nvp(name.c_str(), input);
}
template<class T>
bool deserializeFromXMLFile(const std::string& filename, T& output, const std::string& name="data") {
std::ifstream in_archive_stream(filename.c_str());
if (!in_archive_stream.is_open())
return false;
/// deserializes from a stream in XML
template <class T>
void deserializeFromXMLStream(std::istream& in_archive_stream, T& output,
const std::string& name = "data") {
boost::archive::xml_iarchive in_archive(in_archive_stream);
in_archive >> boost::serialization::make_nvp(name.c_str(), output);
in_archive_stream.close();
return true;
}
// Serialization to binary format with named structures
template<class T>
std::string serializeBinary(const T& input, const std::string& name="data") {
/// serializes to a string in XML
template <class T>
std::string serializeToXMLString(const T& input,
const std::string& name = "data") {
std::ostringstream out_archive_stream;
boost::archive::binary_oarchive out_archive(out_archive_stream);
out_archive << boost::serialization::make_nvp(name.c_str(), input);
serializeToXMLStream(input, out_archive_stream, name);
return out_archive_stream.str();
}
template<class T>
void deserializeBinary(const std::string& serialized, T& output, const std::string& name="data") {
/// deserializes from a string in XML
template <class T>
void deserializeFromXMLString(const std::string& serialized, T& output,
const std::string& name = "data") {
std::istringstream in_archive_stream(serialized);
boost::archive::binary_iarchive in_archive(in_archive_stream);
in_archive >> boost::serialization::make_nvp(name.c_str(), output);
deserializeFromXMLStream(in_archive_stream, output, name);
}
template<class T>
bool serializeToBinaryFile(const T& input, const std::string& filename, const std::string& name="data") {
/// serializes to an XML file
template <class T>
bool serializeToXMLFile(const T& input, const std::string& filename,
const std::string& name = "data") {
std::ofstream out_archive_stream(filename.c_str());
if (!out_archive_stream.is_open())
return false;
boost::archive::binary_oarchive out_archive(out_archive_stream);
out_archive << boost::serialization::make_nvp(name.c_str(), input);
if (!out_archive_stream.is_open()) return false;
serializeToXMLStream(input, out_archive_stream, name);
out_archive_stream.close();
return true;
}
template<class T>
bool deserializeFromBinaryFile(const std::string& filename, T& output, const std::string& name="data") {
/// deserializes from an XML file
template <class T>
bool deserializeFromXMLFile(const std::string& filename, T& output,
const std::string& name = "data") {
std::ifstream in_archive_stream(filename.c_str());
if (!in_archive_stream.is_open())
return false;
boost::archive::binary_iarchive in_archive(in_archive_stream);
in_archive >> boost::serialization::make_nvp(name.c_str(), output);
if (!in_archive_stream.is_open()) return false;
deserializeFromXMLStream(in_archive_stream, output, name);
in_archive_stream.close();
return true;
}
} // \namespace gtsam
/// serializes to a string in XML
template <class T>
std::string serializeXML(const T& input,
const std::string& name = "data") {
return serializeToXMLString(input, name);
}
/// deserializes from a string in XML
template <class T>
void deserializeXML(const std::string& serialized, T& output,
const std::string& name = "data") {
deserializeFromXMLString(serialized, output, name);
}
///@}
/** @name Binary Serialization
* Serialization to binary format with named structures
*/
///@{
/// serializes to a stream in binary
template <class T>
void serializeToBinaryStream(const T& input, std::ostream& out_archive_stream,
const std::string& name = "data") {
boost::archive::binary_oarchive out_archive(out_archive_stream);
out_archive << boost::serialization::make_nvp(name.c_str(), input);
}
/// deserializes from a stream in binary
template <class T>
void deserializeFromBinaryStream(std::istream& in_archive_stream, T& output,
const std::string& name = "data") {
boost::archive::binary_iarchive in_archive(in_archive_stream);
in_archive >> boost::serialization::make_nvp(name.c_str(), output);
}
/// serializes to a string in binary
template <class T>
std::string serializeToBinaryString(const T& input,
const std::string& name = "data") {
std::ostringstream out_archive_stream;
serializeToBinaryStream(input, out_archive_stream, name);
return out_archive_stream.str();
}
/// deserializes from a string in binary
template <class T>
void deserializeFromBinaryString(const std::string& serialized, T& output,
const std::string& name = "data") {
std::istringstream in_archive_stream(serialized);
deserializeFromBinaryStream(in_archive_stream, output, name);
}
/// serializes to a binary file
template <class T>
bool serializeToBinaryFile(const T& input, const std::string& filename,
const std::string& name = "data") {
std::ofstream out_archive_stream(filename.c_str());
if (!out_archive_stream.is_open()) return false;
serializeToBinaryStream(input, out_archive_stream, name);
out_archive_stream.close();
return true;
}
/// deserializes from a binary file
template <class T>
bool deserializeFromBinaryFile(const std::string& filename, T& output,
const std::string& name = "data") {
std::ifstream in_archive_stream(filename.c_str());
if (!in_archive_stream.is_open()) return false;
deserializeFromBinaryStream(in_archive_stream, output, name);
in_archive_stream.close();
return true;
}
/// serializes to a string in binary
template <class T>
std::string serializeBinary(const T& input,
const std::string& name = "data") {
return serializeToBinaryString(input, name);
}
/// deserializes from a string in binary
template <class T>
void deserializeBinary(const std::string& serialized, T& output,
const std::string& name = "data") {
deserializeFromBinaryString(serialized, output, name);
}
///@}
} // namespace gtsam

View File

@ -26,6 +26,7 @@
#include <gtsam/base/serialization.h>
#include <boost/serialization/serialization.hpp>
#include <boost/filesystem.hpp>
// whether to print the serialized text to stdout
@ -40,22 +41,37 @@ T create() {
return T();
}
// Creates or empties a folder in the build folder and returns the relative path
boost::filesystem::path resetFilesystem(
boost::filesystem::path folder = "actual") {
boost::filesystem::remove_all(folder);
boost::filesystem::create_directory(folder);
return folder;
}
// Templated round-trip serialization
template<class T>
void roundtrip(const T& input, T& output) {
// Serialize
std::string serialized = serialize(input);
if (verbose) std::cout << serialized << std::endl << std::endl;
deserialize(serialized, output);
}
// This version requires equality operator
// Templated round-trip serialization using a file
template<class T>
void roundtripFile(const T& input, T& output) {
boost::filesystem::path path = resetFilesystem()/"graph.dat";
serializeToFile(input, path.string());
deserializeFromFile(path.string(), output);
}
// This version requires equality operator and uses string and file round-trips
template<class T>
bool equality(const T& input = T()) {
T output = create<T>();
T output = create<T>(), outputf = create<T>();
roundtrip<T>(input,output);
return input==output;
roundtripFile<T>(input,outputf);
return (input==output) && (input==outputf);
}
// This version requires Testable
@ -77,20 +93,26 @@ bool equalsDereferenced(const T& input) {
// Templated round-trip serialization using XML
template<class T>
void roundtripXML(const T& input, T& output) {
// Serialize
std::string serialized = serializeXML<T>(input);
if (verbose) std::cout << serialized << std::endl << std::endl;
// De-serialize
deserializeXML(serialized, output);
}
// Templated round-trip serialization using XML File
template<class T>
void roundtripXMLFile(const T& input, T& output) {
boost::filesystem::path path = resetFilesystem()/"graph.xml";
serializeToXMLFile(input, path.string());
deserializeFromXMLFile(path.string(), output);
}
// This version requires equality operator
template<class T>
bool equalityXML(const T& input = T()) {
T output = create<T>();
T output = create<T>(), outputf = create<T>();
roundtripXML<T>(input,output);
return input==output;
roundtripXMLFile<T>(input,outputf);
return (input==output) && (input==outputf);
}
// This version requires Testable
@ -112,20 +134,26 @@ bool equalsDereferencedXML(const T& input = T()) {
// Templated round-trip serialization using XML
template<class T>
void roundtripBinary(const T& input, T& output) {
// Serialize
std::string serialized = serializeBinary<T>(input);
if (verbose) std::cout << serialized << std::endl << std::endl;
// De-serialize
deserializeBinary(serialized, output);
}
// Templated round-trip serialization using Binary file
template<class T>
void roundtripBinaryFile(const T& input, T& output) {
boost::filesystem::path path = resetFilesystem()/"graph.bin";
serializeToBinaryFile(input, path.string());
deserializeFromBinaryFile(path.string(), output);
}
// This version requires equality operator
template<class T>
bool equalityBinary(const T& input = T()) {
T output = create<T>();
T output = create<T>(), outputf = create<T>();
roundtripBinary<T>(input,output);
return input==output;
roundtripBinaryFile<T>(input,outputf);
return (input==output) && (input==outputf);
}
// This version requires Testable

View File

@ -230,3 +230,50 @@ namespace std {
#ifdef ERROR
#undef ERROR
#endif
namespace gtsam {
/// Convenience void_t as we assume C++11, it will not conflict the std one in C++17 as this is in `gtsam::`
template<typename ...> using void_t = void;
/**
* A SFINAE trait to mark classes that need special alignment.
*
* This is required to make boost::make_shared and etc respect alignment, which is essential for the Python
* wrappers to work properly.
*
* Explanation
* =============
* When a GTSAM type is not declared with the type alias `_eigen_aligned_allocator_trait = void`, the first template
* will be taken so `needs_eigen_aligned_allocator` will be resolved to `std::false_type`.
*
* Otherwise, it will resolve to the second template, which will be resolved to `std::true_type`.
*
* Please refer to `gtsam/base/make_shared.h` for an example.
*/
template<typename, typename = void_t<>>
struct needs_eigen_aligned_allocator : std::false_type {
};
template<typename T>
struct needs_eigen_aligned_allocator<T, void_t<typename T::_eigen_aligned_allocator_trait>> : std::true_type {
};
}
/**
* This marks a GTSAM object to require alignment. With this macro an object will automatically be allocated in aligned
* memory when one uses `gtsam::make_shared`. It reduces future misalignment problems that is hard to debug.
* See https://eigen.tuxfamily.org/dox/group__DenseMatrixManipulation__Alignement.html for detailed explanation.
*/
#define GTSAM_MAKE_ALIGNED_OPERATOR_NEW \
EIGEN_MAKE_ALIGNED_OPERATOR_NEW \
using _eigen_aligned_allocator_trait = void;
/**
* This marks a GTSAM object to require alignment. With this macro an object will automatically be allocated in aligned
* memory when one uses `gtsam::make_shared`. It reduces future misalignment problems that is hard to debug.
* See https://eigen.tuxfamily.org/dox/group__DenseMatrixManipulation__Alignement.html for detailed explanation.
*/
#define GTSAM_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
using _eigen_aligned_allocator_trait = void;

View File

@ -162,7 +162,7 @@ private:
NeedsToAlign = (sizeof(B) % 16) == 0 || (sizeof(R) % 16) == 0
};
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
GTSAM_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
};
// Declare this to be both Testable and a Manifold

View File

@ -24,7 +24,7 @@
namespace gtsam {
/* ************************************************************************* */
Cal3Fisheye::Cal3Fisheye(const Vector& v)
Cal3Fisheye::Cal3Fisheye(const Vector9& v)
: fx_(v[0]),
fy_(v[1]),
s_(v[2]),
@ -50,76 +50,73 @@ Matrix3 Cal3Fisheye::K() const {
}
/* ************************************************************************* */
static Matrix29 D2dcalibration(const double xd, const double yd,
const double xi, const double yi,
const double t3, const double t5,
const double t7, const double t9, const double r,
Matrix2& DK) {
// order: fx, fy, s, u0, v0
Matrix25 DR1;
DR1 << xd, 0.0, yd, 1.0, 0.0, 0.0, yd, 0.0, 0.0, 1.0;
// order: k1, k2, k3, k4
Matrix24 DR2;
DR2 << t3 * xi, t5 * xi, t7 * xi, t9 * xi, t3 * yi, t5 * yi, t7 * yi, t9 * yi;
DR2 /= r;
Matrix29 D;
D << DR1, DK * DR2;
return D;
}
/* ************************************************************************* */
static Matrix2 D2dintrinsic(const double xi, const double yi, const double r,
const double td, const double t, const double tt,
const double t4, const double t6, const double t8,
const double k1, const double k2, const double k3,
const double k4, const Matrix2& DK) {
const double dr_dxi = xi / sqrt(xi * xi + yi * yi);
const double dr_dyi = yi / sqrt(xi * xi + yi * yi);
const double dt_dr = 1 / (1 + r * r);
const double dtd_dt =
1 + 3 * k1 * tt + 5 * k2 * t4 + 7 * k3 * t6 + 9 * k4 * t8;
const double dtd_dxi = dtd_dt * dt_dr * dr_dxi;
const double dtd_dyi = dtd_dt * dt_dr * dr_dyi;
const double rinv = 1 / r;
const double rrinv = 1 / (r * r);
const double dxd_dxi =
dtd_dxi * xi * rinv + td * rinv + td * xi * (-rrinv) * dr_dxi;
const double dxd_dyi = dtd_dyi * xi * rinv - td * xi * rrinv * dr_dyi;
const double dyd_dxi = dtd_dxi * yi * rinv - td * yi * rrinv * dr_dxi;
const double dyd_dyi =
dtd_dyi * yi * rinv + td * rinv + td * yi * (-rrinv) * dr_dyi;
Matrix2 DR;
DR << dxd_dxi, dxd_dyi, dyd_dxi, dyd_dyi;
return DK * DR;
double Cal3Fisheye::Scaling(double r) {
static constexpr double threshold = 1e-8;
if (r > threshold || r < -threshold) {
return atan(r) / r;
} else {
// Taylor expansion close to 0
double r2 = r * r, r4 = r2 * r2;
return 1.0 - r2 / 3 + r4 / 5;
}
}
/* ************************************************************************* */
Point2 Cal3Fisheye::uncalibrate(const Point2& p, OptionalJacobian<2, 9> H1,
OptionalJacobian<2, 2> H2) const {
const double xi = p.x(), yi = p.y();
const double r = sqrt(xi * xi + yi * yi);
const double r2 = xi * xi + yi * yi, r = sqrt(r2);
const double t = atan(r);
const double tt = t * t, t4 = tt * tt, t6 = tt * t4, t8 = t4 * t4;
const double td = t * (1 + k1_ * tt + k2_ * t4 + k3_ * t6 + k4_ * t8);
const double td_o_r = r > 1e-8 ? td / r : 1;
const double xd = td_o_r * xi, yd = td_o_r * yi;
const double t2 = t * t, t4 = t2 * t2, t6 = t2 * t4, t8 = t4 * t4;
Vector5 K, T;
K << 1, k1_, k2_, k3_, k4_;
T << 1, t2, t4, t6, t8;
const double scaling = Scaling(r);
const double s = scaling * K.dot(T);
const double xd = s * xi, yd = s * yi;
Point2 uv(fx_ * xd + s_ * yd + u0_, fy_ * yd + v0_);
Matrix2 DK;
if (H1 || H2) DK << fx_, s_, 0.0, fy_;
// Derivative for calibration parameters (2 by 9)
if (H1)
*H1 = D2dcalibration(xd, yd, xi, yi, t * tt, t * t4, t * t6, t * t8, r, DK);
if (H1) {
Matrix25 DR1;
// order: fx, fy, s, u0, v0
DR1 << xd, 0.0, yd, 1.0, 0.0, 0.0, yd, 0.0, 0.0, 1.0;
// order: k1, k2, k3, k4
Matrix24 DR2;
auto T4 = T.tail<4>().transpose();
DR2 << xi * T4, yi * T4;
*H1 << DR1, DK * scaling * DR2;
}
// Derivative for points in intrinsic coords (2 by 2)
if (H2)
*H2 =
D2dintrinsic(xi, yi, r, td, t, tt, t4, t6, t8, k1_, k2_, k3_, k4_, DK);
if (H2) {
const double dtd_dt =
1 + 3 * k1_ * t2 + 5 * k2_ * t4 + 7 * k3_ * t6 + 9 * k4_ * t8;
const double dt_dr = 1 / (1 + r2);
const double rinv = 1 / r;
const double dr_dxi = xi * rinv;
const double dr_dyi = yi * rinv;
const double dtd_dxi = dtd_dt * dt_dr * dr_dxi;
const double dtd_dyi = dtd_dt * dt_dr * dr_dyi;
const double td = t * K.dot(T);
const double rrinv = 1 / r2;
const double dxd_dxi =
dtd_dxi * dr_dxi + td * rinv - td * xi * rrinv * dr_dxi;
const double dxd_dyi = dtd_dyi * dr_dxi - td * xi * rrinv * dr_dyi;
const double dyd_dxi = dtd_dxi * dr_dyi - td * yi * rrinv * dr_dxi;
const double dyd_dyi =
dtd_dyi * dr_dyi + td * rinv - td * yi * rrinv * dr_dyi;
Matrix2 DR;
DR << dxd_dxi, dxd_dyi, dyd_dxi, dyd_dyi;
*H2 = DK * DR;
}
return uv;
}
@ -157,39 +154,10 @@ Point2 Cal3Fisheye::calibrate(const Point2& uv, const double tol) const {
return pi;
}
/* ************************************************************************* */
Matrix2 Cal3Fisheye::D2d_intrinsic(const Point2& p) const {
const double xi = p.x(), yi = p.y();
const double r = sqrt(xi * xi + yi * yi);
const double t = atan(r);
const double tt = t * t, t4 = tt * tt, t6 = t4 * tt, t8 = t4 * t4;
const double td = t * (1 + k1_ * tt + k2_ * t4 + k3_ * t6 + k4_ * t8);
Matrix2 DK;
DK << fx_, s_, 0.0, fy_;
return D2dintrinsic(xi, yi, r, td, t, tt, t4, t6, t8, k1_, k2_, k3_, k4_, DK);
}
/* ************************************************************************* */
Matrix29 Cal3Fisheye::D2d_calibration(const Point2& p) const {
const double xi = p.x(), yi = p.y();
const double r = sqrt(xi * xi + yi * yi);
const double t = atan(r);
const double tt = t * t, t4 = tt * tt, t6 = tt * t4, t8 = t4 * t4;
const double td = t * (1 + k1_ * tt + k2_ * t4 + k3_ * t6 + k4_ * t8);
const double xd = td / r * xi, yd = td / r * yi;
Matrix2 DK;
DK << fx_, s_, 0.0, fy_;
return D2dcalibration(xd, yd, xi, yi, t * tt, t * t4, t * t6, t * t8, r, DK);
}
/* ************************************************************************* */
void Cal3Fisheye::print(const std::string& s_) const {
gtsam::print((Matrix)K(), s_ + ".K");
gtsam::print(Vector(k()), s_ + ".k");
;
}
/* ************************************************************************* */

View File

@ -20,6 +20,8 @@
#include <gtsam/geometry/Point2.h>
#include <string>
namespace gtsam {
/**
@ -43,7 +45,7 @@ namespace gtsam {
* [u; v; 1] = K*[x_d; y_d; 1]
*/
class GTSAM_EXPORT Cal3Fisheye {
protected:
private:
double fx_, fy_, s_, u0_, v0_; // focal length, skew and principal point
double k1_, k2_, k3_, k4_; // fisheye distortion coefficients
@ -78,7 +80,7 @@ class GTSAM_EXPORT Cal3Fisheye {
/// @name Advanced Constructors
/// @{
Cal3Fisheye(const Vector& v);
explicit Cal3Fisheye(const Vector9& v);
/// @}
/// @name Standard Interface
@ -120,6 +122,9 @@ class GTSAM_EXPORT Cal3Fisheye {
/// Return all parameters as a vector
Vector9 vector() const;
/// Helper function that calculates atan(r)/r
static double Scaling(double r);
/**
* @brief convert intrinsic coordinates [x_i; y_i] to (distorted) image
* coordinates [u; v]
@ -136,13 +141,6 @@ class GTSAM_EXPORT Cal3Fisheye {
/// y_i]
Point2 calibrate(const Point2& p, const double tol = 1e-5) const;
/// Derivative of uncalibrate wrpt intrinsic coordinates [x_i; y_i]
Matrix2 D2d_intrinsic(const Point2& p) const;
/// Derivative of uncalibrate wrpt the calibration parameters
/// [fx, fy, s, u0, v0, k1, k2, k3, k4]
Matrix29 D2d_calibration(const Point2& p) const;
/// @}
/// @name Testable
/// @{

View File

@ -319,7 +319,7 @@ private:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
template<class CAMERA>

View File

@ -212,7 +212,7 @@ class EssentialMatrix {
/// @}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
template<>

View File

@ -325,7 +325,7 @@ private:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
// manifold traits

View File

@ -222,7 +222,7 @@ private:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
// end of class PinholeBaseK
@ -425,7 +425,7 @@ private:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
// end of class PinholePose

View File

@ -317,7 +317,7 @@ public:
public:
// Align for Point2, which is either derived from, or is typedef, of Vector2
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
}; // Pose2
/** specialization for pose2 wedge function (generic template in Lie.h) */

View File

@ -355,7 +355,7 @@ public:
#ifdef GTSAM_USE_QUATERNIONS
// Align if we are using Quaternions
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
#endif
};
// Pose3 class

View File

@ -544,7 +544,7 @@ namespace gtsam {
#ifdef GTSAM_USE_QUATERNIONS
// only align if quaternion, Matrix3 has no alignment requirements
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
#endif
};

View File

@ -20,8 +20,8 @@
#include <gtsam/base/Lie.h>
#include <gtsam/base/Manifold.h>
#include <gtsam/base/make_shared.h>
#include <gtsam/dllexport.h>
#include <Eigen/Core>
#include <iostream> // TODO(frank): how to avoid?
@ -54,7 +54,7 @@ class SO : public LieGroup<SO<N>, internal::DimensionSO(N)> {
using VectorN2 = Eigen::Matrix<double, internal::NSquaredSO(N), 1>;
using MatrixDD = Eigen::Matrix<double, dimension, dimension>;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
protected:
MatrixNN matrix_; ///< Rotation matrix

View File

@ -214,7 +214,7 @@ private:
/// @}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
// Define GTSAM traits

View File

@ -10,17 +10,18 @@
* -------------------------------------------------------------------------- */
/**
* @file testCal3Fisheye.cpp
* @file testCal3DFisheye.cpp
* @brief Unit tests for fisheye calibration class
* @author ghaggin
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/geometry/Cal3Fisheye.h>
#include <gtsam/geometry/Point3.h>
#include <CppUnitLite/TestHarness.h>
using namespace gtsam;
GTSAM_CONCEPT_TESTABLE_INST(Cal3Fisheye)
@ -30,12 +31,27 @@ static const double fx = 250, fy = 260, s = 0.1, u0 = 320, v0 = 240;
static Cal3Fisheye K(fx, fy, s, u0, v0, -0.013721808247486035,
0.020727425669427896, -0.012786476702685545,
0.0025242267320687625);
static Point2 p(2, 3);
static Point2 kTestPoint2(2, 3);
/* ************************************************************************* */
TEST(Cal3Fisheye, assert_equal) { CHECK(assert_equal(K, K, 1e-5)); }
/* ************************************************************************* */
TEST(Cal3Fisheye, retract) {
Cal3Fisheye expected(K.fx() + 1, K.fy() + 2, K.skew() + 3, K.px() + 4,
K.py() + 5, K.k1() + 6, K.k2() + 7, K.k3() + 8,
K.k4() + 9);
Vector d(9);
d << 1, 2, 3, 4, 5, 6, 7, 8, 9;
Cal3Fisheye actual = K.retract(d);
CHECK(assert_equal(expected, actual, 1e-7));
CHECK(assert_equal(d, K.localCoordinates(actual), 1e-7));
}
/* ************************************************************************* */
TEST(Cal3Fisheye, uncalibrate1) {
// Calculate the solution
const double xi = p.x(), yi = p.y();
const double xi = kTestPoint2.x(), yi = kTestPoint2.y();
const double r = sqrt(xi * xi + yi * yi);
const double t = atan(r);
const double tt = t * t, t4 = tt * tt, t6 = tt * t4, t8 = t4 * t4;
@ -46,32 +62,42 @@ TEST(Cal3Fisheye, uncalibrate1) {
Point2 uv_sol(v[0] / v[2], v[1] / v[2]);
Point2 uv = K.uncalibrate(p);
Point2 uv = K.uncalibrate(kTestPoint2);
CHECK(assert_equal(uv, uv_sol));
}
/* ************************************************************************* */
/**
* Check that a point at (0,0) projects to the
* image center.
*/
TEST(Cal3Fisheye, uncalibrate2) {
Point2 pz(0, 0);
auto uv = K.uncalibrate(pz);
CHECK(assert_equal(uv, Point2(u0, v0)));
// For numerical derivatives
Point2 f(const Cal3Fisheye& k, const Point2& pt) { return k.uncalibrate(pt); }
/* ************************************************************************* */
TEST(Cal3Fisheye, Derivatives) {
Matrix H1, H2;
K.uncalibrate(kTestPoint2, H1, H2);
CHECK(assert_equal(numericalDerivative21(f, K, kTestPoint2, 1e-7), H1, 1e-5));
CHECK(assert_equal(numericalDerivative22(f, K, kTestPoint2, 1e-7), H2, 1e-5));
}
/* ************************************************************************* */
/**
* This test uses cv2::fisheye::projectPoints to test that uncalibrate
* properly projects a point into the image plane. One notable difference
* between opencv and the Cal3Fisheye::uncalibrate function is the skew
* parameter. The equivalence is alpha = s/fx.
*
*
* Python script to project points with fisheye model in OpenCv
* (script run with OpenCv version 4.2.0 and Numpy version 1.18.2)
*/
// Check that a point at (0,0) projects to the image center.
TEST(Cal3Fisheye, uncalibrate2) {
Point2 pz(0, 0);
Matrix H1, H2;
auto uv = K.uncalibrate(pz, H1, H2);
CHECK(assert_equal(uv, Point2(u0, v0)));
CHECK(assert_equal(numericalDerivative21(f, K, pz, 1e-7), H1, 1e-5));
// TODO(frank): the second jacobian is all NaN for the image center!
// CHECK(assert_equal(numericalDerivative22(f, K, pz, 1e-7), H2, 1e-5));
}
/* ************************************************************************* */
// This test uses cv2::fisheye::projectPoints to test that uncalibrate
// properly projects a point into the image plane. One notable difference
// between opencv and the Cal3Fisheye::uncalibrate function is the skew
// parameter. The equivalence is alpha = s/fx.
//
// Python script to project points with fisheye model in OpenCv
// (script run with OpenCv version 4.2.0 and Numpy version 1.18.2)
// clang-format off
/*
===========================================================
@ -94,6 +120,7 @@ tvec = np.float64([[0.,0.,0.]]);
imagePoints, jacobian = cv2.fisheye.projectPoints(objpts, rvec, tvec, cameraMatrix, distCoeffs, alpha=alpha)
np.set_printoptions(precision=14)
print(imagePoints)
===========================================================
* Script output: [[[457.82638130304935 408.18905848512986]]]
*/
@ -134,21 +161,18 @@ TEST(Cal3Fisheye, calibrate1) {
}
/* ************************************************************************* */
/**
* Check that calibrate returns (0,0) for the image center
*/
// Check that calibrate returns (0,0) for the image center
TEST(Cal3Fisheye, calibrate2) {
Point2 uv(u0, v0);
auto xi_hat = K.calibrate(uv);
CHECK(assert_equal(xi_hat, Point2(0, 0)))
}
/**
* Run calibrate on OpenCv test from uncalibrate3
* (script shown above)
* 3d point: (23, 27, 31)
* 2d point in image plane: (457.82638130304935, 408.18905848512986)
*/
/* ************************************************************************* */
// Run calibrate on OpenCv test from uncalibrate3
// (script shown above)
// 3d point: (23, 27, 31)
// 2d point in image plane: (457.82638130304935, 408.18905848512986)
TEST(Cal3Fisheye, calibrate3) {
Point3 p3(23, 27, 31);
Point2 xi(p3.x() / p3.z(), p3.y() / p3.z());
@ -157,47 +181,6 @@ TEST(Cal3Fisheye, calibrate3) {
CHECK(assert_equal(xi_hat, xi));
}
/* ************************************************************************* */
// For numerical derivatives
Point2 uncalibrate_(const Cal3Fisheye& k, const Point2& pt) {
return k.uncalibrate(pt);
}
/* ************************************************************************* */
TEST(Cal3Fisheye, Duncalibrate1) {
Matrix computed;
K.uncalibrate(p, computed, boost::none);
Matrix numerical = numericalDerivative21(uncalibrate_, K, p, 1e-7);
CHECK(assert_equal(numerical, computed, 1e-5));
Matrix separate = K.D2d_calibration(p);
CHECK(assert_equal(numerical, separate, 1e-5));
}
/* ************************************************************************* */
TEST(Cal3Fisheye, Duncalibrate2) {
Matrix computed;
K.uncalibrate(p, boost::none, computed);
Matrix numerical = numericalDerivative22(uncalibrate_, K, p, 1e-7);
CHECK(assert_equal(numerical, computed, 1e-5));
Matrix separate = K.D2d_intrinsic(p);
CHECK(assert_equal(numerical, separate, 1e-5));
}
/* ************************************************************************* */
TEST(Cal3Fisheye, assert_equal) { CHECK(assert_equal(K, K, 1e-5)); }
/* ************************************************************************* */
TEST(Cal3Fisheye, retract) {
Cal3Fisheye expected(K.fx() + 1, K.fy() + 2, K.skew() + 3, K.px() + 4,
K.py() + 5, K.k1() + 6, K.k2() + 7, K.k3() + 8,
K.k4() + 9);
Vector d(9);
d << 1, 2, 3, 4, 5, 6, 7, 8, 9;
Cal3Fisheye actual = K.retract(d);
CHECK(assert_equal(expected, actual, 1e-7));
CHECK(assert_equal(d, K.localCoordinates(actual), 1e-7));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -215,7 +215,7 @@ struct CameraProjectionMatrix {
private:
const Matrix3 K_;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
/**

View File

@ -139,7 +139,7 @@ private:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
/// traits
@ -219,7 +219,7 @@ private:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
/// traits

View File

@ -100,7 +100,7 @@ private:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
@ -210,7 +210,7 @@ public:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
/**
@ -332,7 +332,7 @@ private:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
// class CombinedImuFactor

View File

@ -171,7 +171,7 @@ private:
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
/// @}
}; // ConstantBias class

View File

@ -69,7 +69,7 @@ struct GTSAM_EXPORT PreintegratedRotationParams {
#ifdef GTSAM_USE_QUATERNIONS
// Align if we are using Quaternions
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
#endif
};
@ -182,7 +182,7 @@ class GTSAM_EXPORT PreintegratedRotation {
#ifdef GTSAM_USE_QUATERNIONS
// Align if we are using Quaternions
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
#endif
};

View File

@ -214,7 +214,7 @@ class GTSAM_EXPORT PreintegrationBase {
#endif
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
} /// namespace gtsam

View File

@ -84,7 +84,7 @@ protected:
#ifdef GTSAM_USE_QUATERNIONS
// Align if we are using Quaternions
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
#endif
};

View File

@ -141,7 +141,7 @@ private:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
} /// namespace gtsam

View File

@ -209,7 +209,7 @@ private:
// Alignment, see https://eigen.tuxfamily.org/dox/group__TopicStructHavingEigenMembers.html
enum { NeedsToAlign = (sizeof(T) % 16) == 0 };
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
GTSAM_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
};
// ExpressionFactor

View File

@ -175,7 +175,7 @@ public:
/// @}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
private:
@ -265,7 +265,7 @@ public:
traits<X>::Print(value_, "Value");
}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
private:
@ -331,7 +331,7 @@ public:
return traits<X>::Local(x1,x2);
}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
private:

View File

@ -114,7 +114,7 @@ namespace gtsam {
// Alignment, see https://eigen.tuxfamily.org/dox/group__TopicStructHavingEigenMembers.html
enum { NeedsToAlign = (sizeof(T) % 16) == 0 };
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
GTSAM_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
};
} /// namespace gtsam

View File

@ -150,7 +150,7 @@ public:
return constant_;
}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
//-----------------------------------------------------------------------------

View File

@ -126,7 +126,7 @@ namespace gtsam {
// Alignment, see https://eigen.tuxfamily.org/dox/group__TopicStructHavingEigenMembers.html
enum { NeedsToAlign = (sizeof(VALUE) % 16) == 0 };
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
GTSAM_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
}; // \class BetweenFactor
/// traits

View File

@ -105,7 +105,7 @@ private:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
// \class EssentialMatrixConstraint

View File

@ -81,7 +81,7 @@ public:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
/**
@ -201,7 +201,7 @@ public:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
// EssentialMatrixFactor2
@ -286,7 +286,7 @@ public:
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
// EssentialMatrixFactor3

View File

@ -189,7 +189,7 @@ namespace gtsam {
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
/// traits

View File

@ -10,7 +10,11 @@
#include <gtsam/geometry/CameraSet.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/VectorValues.h>
#include <iosfwd>
#include <map>
#include <string>
#include <vector>
namespace gtsam {
@ -76,7 +80,7 @@ public:
/// print
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const {
DefaultKeyFormatter) const override {
std::cout << " RegularImplicitSchurFactor " << std::endl;
Factor::print(s);
for (size_t pos = 0; pos < size(); ++pos) {
@ -88,7 +92,7 @@ public:
}
/// equals
bool equals(const GaussianFactor& lf, double tol) const {
bool equals(const GaussianFactor& lf, double tol) const override {
const This* f = dynamic_cast<const This*>(&lf);
if (!f)
return false;
@ -104,37 +108,36 @@ public:
}
/// Degrees of freedom of camera
virtual DenseIndex getDim(const_iterator variable) const {
DenseIndex getDim(const_iterator variable) const override {
return D;
}
virtual void updateHessian(const KeyVector& keys,
SymmetricBlockMatrix* info) const {
void updateHessian(const KeyVector& keys,
SymmetricBlockMatrix* info) const override {
throw std::runtime_error(
"RegularImplicitSchurFactor::updateHessian non implemented");
}
virtual Matrix augmentedJacobian() const {
Matrix augmentedJacobian() const override {
throw std::runtime_error(
"RegularImplicitSchurFactor::augmentedJacobian non implemented");
return Matrix();
}
virtual std::pair<Matrix, Vector> jacobian() const {
std::pair<Matrix, Vector> jacobian() const override {
throw std::runtime_error(
"RegularImplicitSchurFactor::jacobian non implemented");
return std::make_pair(Matrix(), Vector());
}
/// *Compute* full augmented information matrix
virtual Matrix augmentedInformation() const {
Matrix augmentedInformation() const override {
// Do the Schur complement
SymmetricBlockMatrix augmentedHessian = //
SymmetricBlockMatrix augmentedHessian =
Set::SchurComplement(FBlocks_, E_, b_);
return augmentedHessian.selfadjointView();
}
/// *Compute* full information matrix
virtual Matrix information() const {
Matrix information() const override {
Matrix augmented = augmentedInformation();
int m = this->keys_.size();
size_t M = D * m;
@ -145,7 +148,7 @@ public:
using GaussianFactor::hessianDiagonal;
/// Add the diagonal of the Hessian for this factor to existing VectorValues
virtual void hessianDiagonalAdd(VectorValues &d) const override {
void hessianDiagonalAdd(VectorValues &d) const override {
// diag(Hessian) = diag(F' * (I - E * PointCov * E') * F);
for (size_t k = 0; k < size(); ++k) { // for each camera
Key j = keys_[k];
@ -176,7 +179,7 @@ public:
* @brief add the contribution of this factor to the diagonal of the hessian
* d(output) = d(input) + deltaHessianFactor
*/
virtual void hessianDiagonal(double* d) const {
void hessianDiagonal(double* d) const override {
// diag(Hessian) = diag(F' * (I - E * PointCov * E') * F);
// Use eigen magic to access raw memory
typedef Eigen::Matrix<double, D, 1> DVector;
@ -202,7 +205,7 @@ public:
}
/// Return the block diagonal of the Hessian for this factor
virtual std::map<Key, Matrix> hessianBlockDiagonal() const {
std::map<Key, Matrix> hessianBlockDiagonal() const override {
std::map<Key, Matrix> blocks;
// F'*(I - E*P*E')*F
for (size_t pos = 0; pos < size(); ++pos) {
@ -227,17 +230,18 @@ public:
return blocks;
}
virtual GaussianFactor::shared_ptr clone() const {
GaussianFactor::shared_ptr clone() const override {
return boost::make_shared<RegularImplicitSchurFactor<CAMERA> >(keys_,
FBlocks_, PointCovariance_, E_, b_);
throw std::runtime_error(
"RegularImplicitSchurFactor::clone non implemented");
}
virtual bool empty() const {
bool empty() const override {
return false;
}
virtual GaussianFactor::shared_ptr negate() const {
GaussianFactor::shared_ptr negate() const override {
return boost::make_shared<RegularImplicitSchurFactor<CAMERA> >(keys_,
FBlocks_, PointCovariance_, E_, b_);
throw std::runtime_error(
@ -288,7 +292,7 @@ public:
* f = nonlinear error
* (x'*H*x - 2*x'*eta + f) = x'*F'*Q*F*x - 2*x'*F'*Q *b + f = x'*F'*Q*(F*x - 2*b) + f
*/
virtual double error(const VectorValues& x) const {
double error(const VectorValues& x) const override {
// resize does not do malloc if correct size
e1.resize(size());
@ -383,13 +387,12 @@ public:
void multiplyHessianAdd(double alpha, const double* x, double* y,
std::vector<size_t> keys) const {
}
;
/**
* @brief Hessian-vector multiply, i.e. y += F'*alpha*(I - E*P*E')*F*x
*/
void multiplyHessianAdd(double alpha, const VectorValues& x,
VectorValues& y) const {
VectorValues& y) const override {
// resize does not do malloc if correct size
e1.resize(size());
@ -432,7 +435,7 @@ public:
/**
* Calculate gradient, which is -F'Q*b, see paper
*/
VectorValues gradientAtZero() const {
VectorValues gradientAtZero() const override {
// calculate Q*b
e1.resize(size());
e2.resize(size());
@ -454,7 +457,7 @@ public:
/**
* Calculate gradient, which is -F'Q*b, see paper - RAW MEMORY ACCESS
*/
virtual void gradientAtZero(double* d) const {
void gradientAtZero(double* d) const override {
// Use eigen magic to access raw memory
typedef Eigen::Matrix<double, D, 1> DVector;
@ -474,7 +477,7 @@ public:
}
/// Gradient wrt a key at any values
Vector gradient(Key key, const VectorValues& x) const {
Vector gradient(Key key, const VectorValues& x) const override {
throw std::runtime_error(
"gradient for RegularImplicitSchurFactor is not implemented yet");
}

View File

@ -113,7 +113,7 @@ public:
return error;
}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
};
} // namespace gtsam

View File

@ -81,7 +81,7 @@ protected:
mutable FBlocks Fs;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;

View File

@ -37,6 +37,7 @@
#include <boost/assign/list_inserter.hpp>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/optional.hpp>
#include <cmath>
#include <fstream>
@ -541,10 +542,16 @@ std::map<Key, Pose3> parse3DPoses(const string& filename) {
}
/* ************************************************************************* */
BetweenFactorPose3s parse3DFactors(const string& filename) {
BetweenFactorPose3s parse3DFactors(const string& filename,
const noiseModel::Diagonal::shared_ptr& corruptingNoise) {
ifstream is(filename.c_str());
if (!is) throw invalid_argument("parse3DFactors: can not find file " + filename);
boost::optional<Sampler> sampler;
if (corruptingNoise) {
sampler = Sampler(corruptingNoise);
}
std::vector<BetweenFactor<Pose3>::shared_ptr> factors;
while (!is.eof()) {
char buf[LINESIZE];
@ -585,8 +592,13 @@ BetweenFactorPose3s parse3DFactors(const string& filename) {
mgtsam.block<3, 3>(3, 0) = m.block<3, 3>(3, 0); // off diagonal
SharedNoiseModel model = noiseModel::Gaussian::Information(mgtsam);
auto R12 = Rot3::Quaternion(qw, qx, qy, qz);
if (sampler) {
R12 = R12.retract(sampler->sample());
}
factors.emplace_back(new BetweenFactor<Pose3>(
id1, id2, Pose3(Rot3::Quaternion(qw, qx, qy, qz), {x, y, z}), model));
id1, id2, Pose3(R12, {x, y, z}), model));
}
}
return factors;

View File

@ -159,7 +159,8 @@ GTSAM_EXPORT void writeG2o(const NonlinearFactorGraph& graph,
/// Parse edges in 3D TORO graph file into a set of BetweenFactors.
using BetweenFactorPose3s = std::vector<gtsam::BetweenFactor<Pose3>::shared_ptr>;
GTSAM_EXPORT BetweenFactorPose3s parse3DFactors(const std::string& filename);
GTSAM_EXPORT BetweenFactorPose3s parse3DFactors(const std::string& filename,
const noiseModel::Diagonal::shared_ptr& corruptingNoise=nullptr);
/// Parse vertices in 3D TORO graph file into a map of Pose3s.
GTSAM_EXPORT std::map<Key, Pose3> parse3DPoses(const std::string& filename);

View File

@ -9,5 +9,6 @@ set (GTSAM_USE_TBB @GTSAM_USE_TBB@)
set (GTSAM_DEFAULT_ALLOCATOR @GTSAM_DEFAULT_ALLOCATOR@)
if("@GTSAM_INSTALL_CYTHON_TOOLBOX@")
list(APPEND GTSAM_CYTHON_INSTALL_PATH "@GTSAM_CYTHON_INSTALL_PATH@")
list(APPEND GTSAM_EIGENCY_INSTALL_PATH "@GTSAM_EIGENCY_INSTALL_PATH@")
endif()

View File

@ -0,0 +1,90 @@
/**
* @file PoseToPointFactor.hpp
* @brief This factor can be used to track a 3D landmark over time by
*providing local measurements of its location.
* @author David Wisth
**/
#pragma once
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <ostream>
namespace gtsam {
/**
* A class for a measurement between a pose and a point.
* @addtogroup SLAM
*/
class PoseToPointFactor : public NoiseModelFactor2<Pose3, Point3> {
private:
typedef PoseToPointFactor This;
typedef NoiseModelFactor2<Pose3, Point3> Base;
Point3 measured_; /** the point measurement in local coordinates */
public:
// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<PoseToPointFactor> shared_ptr;
/** default constructor - only use for serialization */
PoseToPointFactor() {}
/** Constructor */
PoseToPointFactor(Key key1, Key key2, const Point3& measured,
const SharedNoiseModel& model)
: Base(model, key1, key2), measured_(measured) {}
virtual ~PoseToPointFactor() {}
/** implement functions needed for Testable */
/** print */
virtual void print(const std::string& s, const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const {
std::cout << s << "PoseToPointFactor(" << keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << ")\n"
<< " measured: " << measured_.transpose() << std::endl;
this->noiseModel_->print(" noise model: ");
}
/** equals */
virtual bool equals(const NonlinearFactor& expected,
double tol = 1e-9) const {
const This* e = dynamic_cast<const This*>(&expected);
return e != nullptr && Base::equals(*e, tol) &&
traits<Point3>::Equals(this->measured_, e->measured_, tol);
}
/** implement functions needed to derive from Factor */
/** vector of errors
* @brief Error = wTwi.inverse()*wPwp - measured_
* @param wTwi The pose of the sensor in world coordinates
* @param wPwp The estimated point location in world coordinates
*
* Note: measured_ and the error are in local coordiantes.
*/
Vector evaluateError(const Pose3& wTwi, const Point3& wPwp,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const {
return wTwi.transformTo(wPwp, H1, H2) - measured_;
}
/** return the measured */
const Point3& measured() const { return measured_; }
private:
/** Serialization function */
friend class boost::serialization::access;
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& boost::serialization::make_nvp(
"NoiseModelFactor2", boost::serialization::base_object<Base>(*this));
ar& BOOST_SERIALIZATION_NVP(measured_);
}
}; // \class PoseToPointFactor
} // namespace gtsam

View File

@ -0,0 +1,86 @@
/**
* @file testPoseToPointFactor.cpp
* @brief
* @author David Wisth
* @date June 20, 2020
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam_unstable/slam/PoseToPointFactor.h>
using namespace gtsam;
using namespace gtsam::noiseModel;
/// Verify zero error when there is no noise
TEST(PoseToPointFactor, errorNoiseless) {
Pose3 pose = Pose3::identity();
Point3 point(1.0, 2.0, 3.0);
Point3 noise(0.0, 0.0, 0.0);
Point3 measured = t + noise;
Key pose_key(1);
Key point_key(2);
PoseToPointFactor factor(pose_key, point_key, measured,
Isotropic::Sigma(3, 0.05));
Vector expectedError = Vector3(0.0, 0.0, 0.0);
Vector actualError = factor.evaluateError(pose, point);
EXPECT(assert_equal(expectedError, actualError, 1E-5));
}
/// Verify expected error in test scenario
TEST(PoseToPointFactor, errorNoise) {
Pose3 pose = Pose3::identity();
Point3 point(1.0, 2.0, 3.0);
Point3 noise(-1.0, 0.5, 0.3);
Point3 measured = t + noise;
Key pose_key(1);
Key point_key(2);
PoseToPointFactor factor(pose_key, point_key, measured,
Isotropic::Sigma(3, 0.05));
Vector expectedError = noise;
Vector actualError = factor.evaluateError(pose, point);
EXPECT(assert_equal(expectedError, actualError, 1E-5));
}
/// Check Jacobians are correct
TEST(PoseToPointFactor, jacobian) {
// Measurement
gtsam::Point3 l_meas = gtsam::Point3(1, 2, 3);
// Linearisation point
gtsam::Point3 p_t = gtsam::Point3(-5, 12, 2);
gtsam::Rot3 p_R = gtsam::Rot3::RzRyRx(1.5 * M_PI, -0.3 * M_PI, 0.4 * M_PI);
Pose3 p(p_R, p_t);
gtsam::Point3 l = gtsam::Point3(3, 0, 5);
// Factor
Key pose_key(1);
Key point_key(2);
SharedGaussian noise = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1));
PoseToPointFactor factor(pose_key, point_key, l_meas, noise);
// Calculate numerical derivatives
auto f = boost::bind(&PoseToPointFactor::evaluateError, factor, _1, _2,
boost::none, boost::none);
Matrix numerical_H1 = numericalDerivative21<Vector, Pose3, Point3>(f, p, l);
Matrix numerical_H2 = numericalDerivative22<Vector, Pose3, Point3>(f, p, l);
// Use the factor to calculate the derivative
Matrix actual_H1;
Matrix actual_H2;
factor.evaluateError(p, l, actual_H1, actual_H2);
// Verify we get the expected error
EXPECT_TRUE(assert_equal(numerical_H1, actual_H1, 1e-8));
EXPECT_TRUE(assert_equal(numerical_H2, actual_H2, 1e-8));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -1,44 +0,0 @@
# How to build Debian and Ubuntu Packages
## Preparations
Packages must be signed with a GPG key. First have a look of the keys
you have available:
gpg --list-secret-keys
If you don't have one, create one, then list again.
Pick a secret key you like from the listed keys, for instance
"Your Name <your.email@yourprovider.com>". Then unlock that key by
signing a dummy file. The following line should pop up a window to
enter the passphrase:
echo | gpg --local-user "Your Name <your.email@yourprovider.com>" -s >/dev/null
Now you can run the below scripts. Without this step they will fail
with "No secret key" or similar messages.
## How to generate a Debian package
Run the package script, providing a name/email that matches your PGP key.
cd [GTSAM_SOURCE_ROOT]
bash package_scripts/prepare_debian.sh -e "Your Name <your.email@yourprovider.com>"
## How to generate Ubuntu packages for a PPA
Run the packaging script, passing the name of the gpg key
(see above) with the "-e" option:
cd [GTSAM_SOURCE_ROOT]
bash package_scripts/prepare_ubuntu_pkgs_for_ppa.sh -e "Your Name <your.email@yourprovider.com>"
Check that you have uploaded this key to the ubuntu key server, and
have added the key to your account.
Upload the package to your ppa:
cd ~/gtsam_ubuntu
bash [GTSAM_SOURCE_ROOT]/package_scripts/upload_all_gtsam_ppa.sh -p "ppa:your-name/ppa-name"

View File

@ -1,8 +0,0 @@
#!/bin/sh
# Compile boost statically, with -fPIC to allow linking it into the mex
# module (which is a dynamic library). --disable-icu prevents depending
# on libicu, which is unneeded and would require then linking the mex
# module with it as well. We just stage instead of install, then the
# toolbox_package_unix.sh script uses the staged boost.
./b2 link=static threading=multi cxxflags=-fPIC cflags=-fPIC --disable-icu -a -j4 stage

View File

@ -1,187 +0,0 @@
#!/bin/bash
# Prepare to build a Debian package.
# Jose Luis Blanco Claraco, 2019 (for GTSAM)
# Jose Luis Blanco Claraco, 2008-2018 (for MRPT)
set -e # end on error
#set -x # for debugging
APPEND_SNAPSHOT_NUM=0
IS_FOR_UBUNTU=0
APPEND_LINUX_DISTRO=""
VALUE_EXTRA_CMAKE_PARAMS=""
while getopts "sud:c:e:" OPTION
do
case $OPTION in
s)
APPEND_SNAPSHOT_NUM=1
;;
u)
IS_FOR_UBUNTU=1
;;
d)
APPEND_LINUX_DISTRO=$OPTARG
;;
c)
VALUE_EXTRA_CMAKE_PARAMS=$OPTARG
;;
e)
PACKAGER_EMAIL=$OPTARG
;;
?)
echo "Unknown command line argument!"
exit 1
;;
esac
done
if [ -z ${PACKAGER_EMAIL+x} ]; then
echo "must specify packager email via -e option!"
exit -1
fi
if [ -f CMakeLists.txt ];
then
source package_scripts/prepare_debian_gen_snapshot_version.sh
else
echo "Error: cannot find CMakeList.txt. This script is intended to be run from the root of the source tree."
exit 1
fi
# Append snapshot?
if [ $APPEND_SNAPSHOT_NUM == "1" ];
then
CUR_SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
source $CUR_SCRIPT_DIR/prepare_debian_gen_snapshot_version.sh # populate GTSAM_SNAPSHOT_VERSION
GTSAM_VERSION_STR="${GTSAM_VERSION_STR}~snapshot${GTSAM_SNAPSHOT_VERSION}${APPEND_LINUX_DISTRO}"
else
GTSAM_VERSION_STR="${GTSAM_VERSION_STR}${APPEND_LINUX_DISTRO}"
fi
# Call prepare_release
GTSAMSRC=`pwd`
if [ -f $HOME/gtsam_release/gtsam*.tar.gz ];
then
echo "## release file already exists. Reusing it."
else
source package_scripts/prepare_release.sh
echo
echo "## Done prepare_release.sh"
fi
echo "=========== Generating GTSAM ${GTSAM_VER_MMP} Debian package =============="
cd $GTSAMSRC
set -x
if [ -z "$GTSAM_DEB_DIR" ]; then
GTSAM_DEB_DIR="$HOME/gtsam_debian"
fi
GTSAM_EXTERN_DEBIAN_DIR="$GTSAMSRC/debian/"
GTSAM_EXTERN_UBUNTU_PPA_DIR="$GTSAMSRC/debian/"
if [ -f ${GTSAM_EXTERN_DEBIAN_DIR}/control ];
then
echo "Using debian dir: ${GTSAM_EXTERN_DEBIAN_DIR}"
else
echo "ERROR: Cannot find ${GTSAM_EXTERN_DEBIAN_DIR}"
exit 1
fi
GTSAM_DEBSRC_DIR=$GTSAM_DEB_DIR/gtsam-${GTSAM_VERSION_STR}
echo "GTSAM_VERSION_STR: ${GTSAM_VERSION_STR}"
echo "GTSAM_DEBSRC_DIR: ${GTSAM_DEBSRC_DIR}"
# Prepare a directory for building the debian package:
#
rm -fR $GTSAM_DEB_DIR || true
mkdir -p $GTSAM_DEB_DIR || true
# Orig tarball:
echo "Copying orig tarball: gtsam_${GTSAM_VERSION_STR}.orig.tar.gz"
cp $HOME/gtsam_release/gtsam*.tar.gz $GTSAM_DEB_DIR/gtsam_${GTSAM_VERSION_STR}.orig.tar.gz
cd ${GTSAM_DEB_DIR}
tar -xf gtsam_${GTSAM_VERSION_STR}.orig.tar.gz
if [ ! -d "${GTSAM_DEBSRC_DIR}" ];
then
mv gtsam-* ${GTSAM_DEBSRC_DIR} # fix different dir names for Ubuntu PPA packages
fi
if [ ! -f "${GTSAM_DEBSRC_DIR}/CMakeLists.txt" ];
then
echo "*ERROR*: Seems there was a problem copying sources to ${GTSAM_DEBSRC_DIR}... aborting script."
exit 1
fi
cd ${GTSAM_DEBSRC_DIR}
# Copy debian directory:
#mkdir debian
cp -r ${GTSAM_EXTERN_DEBIAN_DIR}/* debian
# Use modified control & rules files for Ubuntu PPA packages:
#if [ $IS_FOR_UBUNTU == "1" ];
#then
# already done: cp ${GTSAM_EXTERN_UBUNTU_PPA_DIR}/control.in debian/
# Ubuntu: force use of gcc-7:
#sed -i '9i\export CXX=/usr/bin/g++-7\' debian/rules
#sed -i '9i\export CC=/usr/bin/gcc-7\' debian/rules7
#fi
# Export signing pub key:
mkdir debian/upstream/
gpg --export --export-options export-minimal --armor > debian/upstream/signing-key.asc
# Parse debian/ control.in --> control
#mv debian/control.in debian/control
#sed -i "s/@GTSAM_VER_MM@/${GTSAM_VER_MM}/g" debian/control
# Replace the text "REPLACE_HERE_EXTRA_CMAKE_PARAMS" in the "debian/rules" file
# with: ${${VALUE_EXTRA_CMAKE_PARAMS}}
RULES_FILE=debian/rules
sed -i -e "s/REPLACE_HERE_EXTRA_CMAKE_PARAMS/${VALUE_EXTRA_CMAKE_PARAMS}/g" $RULES_FILE
echo "Using these extra parameters for CMake: '${VALUE_EXTRA_CMAKE_PARAMS}'"
# Strip my custom files...
rm debian/*.new || true
# Figure out the next Debian version number:
echo "Detecting next Debian version number..."
CHANGELOG_UPSTREAM_VER=$( dpkg-parsechangelog | sed -n 's/Version:.*\([0-9]\.[0-9]*\.[0-9]*.*snapshot.*\)-.*/\1/p' )
CHANGELOG_LAST_DEBIAN_VER=$( dpkg-parsechangelog | sed -n 's/Version:.*\([0-9]\.[0-9]*\.[0-9]*\).*-\([0-9]*\).*/\2/p' )
echo " -> PREVIOUS UPSTREAM: $CHANGELOG_UPSTREAM_VER -> New: ${GTSAM_VERSION_STR}"
echo " -> PREVIOUS DEBIAN VERSION: $CHANGELOG_LAST_DEBIAN_VER"
# If we have the same upstream versions, increase the Debian version, otherwise create a new entry:
if [ "$CHANGELOG_UPSTREAM_VER" = "$GTSAM_VERSION_STR" ];
then
NEW_DEBIAN_VER=$[$CHANGELOG_LAST_DEBIAN_VER + 1]
echo "Changing to a new Debian version: ${GTSAM_VERSION_STR}-${NEW_DEBIAN_VER}"
DEBCHANGE_CMD="--newversion ${GTSAM_VERSION_STR}-${NEW_DEBIAN_VER}"
else
DEBCHANGE_CMD="--newversion ${GTSAM_VERSION_STR}-1"
fi
echo "Adding a new entry to debian/changelog..."
DEBEMAIL=${PACKAGER_EMAIL} debchange $DEBCHANGE_CMD -b --distribution unstable --force-distribution New version of upstream sources.
echo "Copying back the new changelog to a temporary file in: ${GTSAM_EXTERN_DEBIAN_DIR}changelog.new"
cp debian/changelog ${GTSAM_EXTERN_DEBIAN_DIR}changelog.new
set +x
echo "=============================================================="
echo "Now, you can build the source Deb package with 'debuild -S -sa'"
echo "=============================================================="
cd ..
ls -lh
exit 0

View File

@ -1,25 +0,0 @@
#!/bin/bash
# See https://reproducible-builds.org/specs/source-date-epoch/
# get SOURCE_DATE_EPOCH with UNIX time_t
if [ -d ".git" ];
then
SOURCE_DATE_EPOCH=$(git log -1 --pretty=%ct)
else
echo "Error: intended for use from within a git repository"
exit 1
fi
GTSAM_SNAPSHOT_VERSION=$(date -d @$SOURCE_DATE_EPOCH +%Y%m%d-%H%M)
GTSAM_SNAPSHOT_VERSION+="-git-"
GTSAM_SNAPSHOT_VERSION+=`git rev-parse --short=8 HEAD`
GTSAM_SNAPSHOT_VERSION+="-"
# x.y.z version components:
GTSAM_VERSION_MAJOR=$(grep "(GTSAM_VERSION_MAJOR" CMakeLists.txt | sed -r 's/^.*GTSAM_VERSION_MAJOR\s*([0-9])*.*$/\1/g')
GTSAM_VERSION_MINOR=$(grep "(GTSAM_VERSION_MINOR" CMakeLists.txt | sed -r 's/^.*GTSAM_VERSION_MINOR\s*([0-9])*.*$/\1/g')
GTSAM_VERSION_PATCH=$(grep "(GTSAM_VERSION_PATCH" CMakeLists.txt | sed -r 's/^.*GTSAM_VERSION_PATCH\s*([0-9])*.*$/\1/g')
GTSAM_VER_MM="${GTSAM_VERSION_MAJOR}.${GTSAM_VERSION_MINOR}"
GTSAM_VER_MMP="${GTSAM_VERSION_MAJOR}.${GTSAM_VERSION_MINOR}.${GTSAM_VERSION_PATCH}"
GTSAM_VERSION_STR=$GTSAM_VER_MMP

View File

@ -1,71 +0,0 @@
#!/bin/bash
# Export sources from a git tree and prepare it for a public release.
# Jose Luis Blanco Claraco, 2019 (for GTSAM)
# Jose Luis Blanco Claraco, 2008-2018 (for MRPT)
set -e # exit on error
#set -x # for debugging
# Checks
# --------------------------------
if [ -f version_prefix.txt ];
then
if [ -z ${GTSAM_VERSION_STR+x} ];
then
source package_scripts/prepare_debian_gen_snapshot_version.sh
fi
echo "ERROR: Run this script from the GTSAM source tree root directory."
exit 1
fi
GTSAM_SRC=`pwd`
OUT_RELEASES_DIR="$HOME/gtsam_release"
OUT_DIR=$OUT_RELEASES_DIR/gtsam-${GTSAM_VERSION_STR}
echo "=========== Generating GTSAM release ${GTSAM_VER_MMP} =================="
echo "GTSAM_VERSION_STR : ${GTSAM_VERSION_STR}"
echo "OUT_DIR : ${OUT_DIR}"
echo "============================================================"
echo
# Prepare output directory:
rm -fR $OUT_RELEASES_DIR || true
mkdir -p ${OUT_DIR}
# Export / copy sources to target dir:
if [ -d "$GTSAM_SRC/.git" ];
then
echo "# Exporting git source tree to ${OUT_DIR}"
git archive --format=tar HEAD | tar -x -C ${OUT_DIR}
# Remove VCS control files:
find ${OUT_DIR} -name '.gitignore' | xargs rm
# Generate ./SOURCE_DATE_EPOCH with UNIX time_t
SOURCE_DATE_EPOCH=$(git log -1 --pretty=%ct)
else
echo "# Copying sources to ${OUT_DIR}"
cp -R . ${OUT_DIR}
# Generate ./SOURCE_DATE_EPOCH with UNIX time_t
SOURCE_DATE_EPOCH=$(date +%s)
fi
# See https://reproducible-builds.org/specs/source-date-epoch/
echo $SOURCE_DATE_EPOCH > ${OUT_DIR}/SOURCE_DATE_EPOCH
cd ${OUT_DIR}
# Dont include Debian files in releases:
rm -fR package_scripts
# Orig tarball:
cd ..
echo "# Creating orig tarball: gtsam-${GTSAM_VERSION_STR}.tar.gz"
tar czf gtsam-${GTSAM_VERSION_STR}.tar.gz gtsam-${GTSAM_VERSION_STR}
rm -fr gtsam-${GTSAM_VERSION_STR}
# GPG signature:
gpg --armor --detach-sign gtsam-${GTSAM_VERSION_STR}.tar.gz

View File

@ -1,123 +0,0 @@
#!/bin/bash
# Creates a set of packages for each different Ubuntu distribution, with the
# intention of uploading them to a PPA on launchpad
#
# JLBC, 2010
# [Addition 2012:]
#
# You can declare a variable (in the caller shell) with extra flags for the
# CMake in the final ./configure like:
#
# GTSAM_PKG_CUSTOM_CMAKE_PARAMS="\"-DDISABLE_SSE3=ON\""
#
function show_help {
echo "USAGE:"
echo ""
echo "- to display this help: "
echo "prepare_ubuntu_packages_for_ppa.sh -h or -?"
echo ""
echo "- to package to your PPA: "
echo "prepare_ubuntu_packages_for_ppa.sh -e email_of_your_gpg_key"
echo ""
echo "to pass custom config for GTSAM, set the following"
echo "environment variable beforehand: "
echo ""
echo "GTSAM_PKG_CUSTOM_CMAKE_PARAMS=\"\"-DDISABLE_SSE3=ON\"\""
echo ""
}
while getopts "h?e:" opt; do
case "$opt" in
h|\?)
show_help
exit 0
;;
e) PACKAGER_EMAIL=$OPTARG
;;
esac
done
if [ -z ${PACKAGER_EMAIL+x} ]; then
show_help
exit -1
fi
set -e
# List of distributions to create PPA packages for:
LST_DISTROS=(xenial bionic eoan focal)
# Checks
# --------------------------------
if [ -f CMakeLists.txt ];
then
source package_scripts/prepare_debian_gen_snapshot_version.sh
echo "GTSAM version: ${GTSAM_VER_MMP}"
else
echo "ERROR: Run this script from the GTSAM root directory."
exit 1
fi
if [ -z "${gtsam_ubuntu_OUT_DIR}" ]; then
export gtsam_ubuntu_OUT_DIR="$HOME/gtsam_ubuntu"
fi
GTSAMSRC=`pwd`
if [ -z "${GTSAM_DEB_DIR}" ]; then
export GTSAM_DEB_DIR="$HOME/gtsam_debian"
fi
GTSAM_EXTERN_DEBIAN_DIR="$GTSAMSRC/debian/"
# Clean out dirs:
rm -fr $gtsam_ubuntu_OUT_DIR/
# -------------------------------------------------------------------
# And now create the custom packages for each Ubuntu distribution:
# -------------------------------------------------------------------
count=${#LST_DISTROS[@]}
IDXS=$(seq 0 $(expr $count - 1))
cp ${GTSAM_EXTERN_DEBIAN_DIR}/changelog /tmp/my_changelog
for IDX in ${IDXS};
do
DEBIAN_DIST=${LST_DISTROS[$IDX]}
# -------------------------------------------------------------------
# Call the standard "prepare_debian.sh" script:
# -------------------------------------------------------------------
cd ${GTSAMSRC}
bash package_scripts/prepare_debian.sh -e "$PACKAGER_EMAIL" -s -u -d ${DEBIAN_DIST} -c "${GTSAM_PKG_CUSTOM_CMAKE_PARAMS}"
CUR_SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
source $CUR_SCRIPT_DIR/prepare_debian_gen_snapshot_version.sh # populate GTSAM_SNAPSHOT_VERSION
echo "===== Distribution: ${DEBIAN_DIST} ========="
cd ${GTSAM_DEB_DIR}/gtsam-${GTSAM_VER_MMP}~snapshot${GTSAM_SNAPSHOT_VERSION}${DEBIAN_DIST}/debian
#cp ${GTSAM_EXTERN_DEBIAN_DIR}/changelog changelog
cp /tmp/my_changelog changelog
DEBCHANGE_CMD="--newversion ${GTSAM_VERSION_STR}~snapshot${GTSAM_SNAPSHOT_VERSION}${DEBIAN_DIST}-1"
echo "Changing to a new Debian version: ${DEBCHANGE_CMD}"
echo "Adding a new entry to debian/changelog for distribution ${DEBIAN_DIST}"
DEBEMAIL="${PACKAGER_EMAIL}" debchange $DEBCHANGE_CMD -b --distribution ${DEBIAN_DIST} --force-distribution New version of upstream sources.
cp changelog /tmp/my_changelog
echo "Now, let's build the source Deb package with 'debuild -S -sa':"
cd ..
# -S: source package
# -sa: force inclusion of sources
# -d: don't check dependencies in this system
debuild -S -sa -d
# Make a copy of all these packages:
cd ..
mkdir -p $gtsam_ubuntu_OUT_DIR/$DEBIAN_DIST
cp gtsam_* $gtsam_ubuntu_OUT_DIR/${DEBIAN_DIST}/
echo ">>>>>> Saving packages to: $gtsam_ubuntu_OUT_DIR/$DEBIAN_DIST/"
done
exit 0

View File

@ -1,64 +0,0 @@
#!/bin/sh
# Script to build a tarball with the matlab toolbox
# Detect platform
os=`uname -s`
arch=`uname -m`
if [ "$os" = "Linux" -a "$arch" = "x86_64" ]; then
platform=lin64
elif [ "$os" = "Linux" -a "$arch" = "i686" ]; then
platform=lin32
elif [ "$os" = "Darwin" -a "$arch" = "x86_64" ]; then
platform=mac64
else
echo "Unrecognized platform"
exit 1
fi
echo "Platform is ${platform}"
# Check for empty diectory
if [ ! -z "`ls`" ]; then
echo "Please run this script from an empty build directory"
exit 1
fi
# Check for boost
if [ -z "$1" ]; then
echo "Usage: $0 BOOSTTREE"
echo "BOOSTTREE should be a boost source tree compiled with toolbox_build_boost."
exit 1
fi
# Run cmake
cmake -DCMAKE_BUILD_TYPE=Release \
-DGTSAM_INSTALL_MATLAB_TOOLBOX:BOOL=ON \
-DCMAKE_INSTALL_PREFIX="$PWD/stage" \
-DBoost_NO_SYSTEM_PATHS:BOOL=ON \
-DBoost_USE_STATIC_LIBS:BOOL=ON \
-DBOOST_ROOT="$1" \
-DGTSAM_BUILD_TESTS:BOOL=OFF \
-DGTSAM_BUILD_TIMING:BOOL=OFF \
-DGTSAM_BUILD_EXAMPLES_ALWAYS:BOOL=OFF \
-DGTSAM_WITH_TBB:BOOL=OFF \
-DGTSAM_SUPPORT_NESTED_DISSECTION:BOOL=OFF \
-DGTSAM_INSTALL_GEOGRAPHICLIB:BOOL=OFF \
-DGTSAM_BUILD_UNSTABLE:BOOL=OFF \
-DGTSAM_MEX_BUILD_STATIC_MODULE:BOOL=ON ..
if [ $? -ne 0 ]; then
echo "CMake failed"
exit 1
fi
# Compile
make -j8 install
if [ $? -ne 0 ]; then
echo "Compile failed"
exit 1
fi
# Create package
tar czf gtsam-toolbox-3.2.0-$platform.tgz -C stage/gtsam_toolbox toolbox

View File

@ -1,31 +0,0 @@
#!/bin/bash
function show_help {
echo "USAGE:"
echo ""
echo "- to display this help: "
echo "upload_all_gtsam_ppa.sh -h or -?"
echo ""
echo "- to upload to your PPA: "
echo "upload_all_gtsam_ppa.sh -p ppa:your_name/name_of_ppa"
echo ""
}
while getopts "h?p:" opt; do
case "$opt" in
h|\?)
show_help
exit 0
;;
p) ppa_name=$OPTARG
;;
esac
done
if [ -z ${ppa_name+x} ]; then
show_help
exit -1
fi
find . -name '*.changes' | xargs -I FIL dput ${ppa_name} FIL

View File

@ -350,7 +350,10 @@ void Module::emit_cython_pxd(FileWriter& pxdFile) const {
" T* get()\n"
" long use_count() const\n"
" T& operator*()\n\n"
" cdef shared_ptr[T] dynamic_pointer_cast[T,U](const shared_ptr[U]& r)\n"
" cdef shared_ptr[T] dynamic_pointer_cast[T,U](const shared_ptr[U]& r)\n\n";
// gtsam alignment-friendly shared_ptr
pxdFile.oss << "cdef extern from \"gtsam/base/make_shared.h\" namespace \"gtsam\":\n"
" cdef shared_ptr[T] make_shared[T](const T& r)\n\n";
for(const TypedefPair& types: typedefs)

@ -1 +0,0 @@
Subproject commit b3bf248eec9cad8260753c982e1ae6cb72fff470

View File

@ -0,0 +1,70 @@
version: 1.0.{build}
image:
- Visual Studio 2017
- Visual Studio 2015
test: off
skip_branch_with_pr: true
build:
parallel: true
platform:
- x64
- x86
environment:
matrix:
- PYTHON: 36
CPP: 14
CONFIG: Debug
- PYTHON: 27
CPP: 14
CONFIG: Debug
- CONDA: 36
CPP: latest
CONFIG: Release
matrix:
exclude:
- image: Visual Studio 2015
platform: x86
- image: Visual Studio 2015
CPP: latest
- image: Visual Studio 2017
CPP: latest
platform: x86
install:
- ps: |
if ($env:PLATFORM -eq "x64") { $env:CMAKE_ARCH = "x64" }
if ($env:APPVEYOR_JOB_NAME -like "*Visual Studio 2017*") {
$env:CMAKE_GENERATOR = "Visual Studio 15 2017"
$env:CMAKE_INCLUDE_PATH = "C:\Libraries\boost_1_64_0"
$env:CXXFLAGS = "-permissive-"
} else {
$env:CMAKE_GENERATOR = "Visual Studio 14 2015"
}
if ($env:PYTHON) {
if ($env:PLATFORM -eq "x64") { $env:PYTHON = "$env:PYTHON-x64" }
$env:PATH = "C:\Python$env:PYTHON\;C:\Python$env:PYTHON\Scripts\;$env:PATH"
python -W ignore -m pip install --upgrade pip wheel
python -W ignore -m pip install pytest numpy --no-warn-script-location
} elseif ($env:CONDA) {
if ($env:CONDA -eq "27") { $env:CONDA = "" }
if ($env:PLATFORM -eq "x64") { $env:CONDA = "$env:CONDA-x64" }
$env:PATH = "C:\Miniconda$env:CONDA\;C:\Miniconda$env:CONDA\Scripts\;$env:PATH"
$env:PYTHONHOME = "C:\Miniconda$env:CONDA"
conda --version
conda install -y -q pytest numpy scipy
}
- ps: |
Start-FileDownload 'http://bitbucket.org/eigen/eigen/get/3.3.3.zip'
7z x 3.3.3.zip -y > $null
$env:CMAKE_INCLUDE_PATH = "eigen-eigen-67e894c6cd8f;$env:CMAKE_INCLUDE_PATH"
build_script:
- cmake -G "%CMAKE_GENERATOR%" -A "%CMAKE_ARCH%"
-DPYBIND11_CPP_STANDARD=/std:c++%CPP%
-DPYBIND11_WERROR=ON
-DDOWNLOAD_CATCH=ON
-DCMAKE_SUPPRESS_REGENERATION=1
.
- set MSBuildLogger="C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll"
- cmake --build . --config %CONFIG% --target pytest -- /m /v:m /logger:%MSBuildLogger%
- cmake --build . --config %CONFIG% --target cpptest -- /m /v:m /logger:%MSBuildLogger%
- if "%CPP%"=="latest" (cmake --build . --config %CONFIG% --target test_cmake_build -- /m /v:m /logger:%MSBuildLogger%)
on_failure: if exist "tests\test_cmake_build" type tests\test_cmake_build\*.log*

38
wrap/python/pybind11/.gitignore vendored Normal file
View File

@ -0,0 +1,38 @@
CMakeCache.txt
CMakeFiles
Makefile
cmake_install.cmake
.DS_Store
*.so
*.pyd
*.dll
*.sln
*.sdf
*.opensdf
*.vcxproj
*.filters
example.dir
Win32
x64
Release
Debug
.vs
CTestTestfile.cmake
Testing
autogen
MANIFEST
/.ninja_*
/*.ninja
/docs/.build
*.py[co]
*.egg-info
*~
.*.swp
.DS_Store
/dist
/build
/cmake/
.cache/
sosize-*.txt
pybind11Config*.cmake
pybind11Targets.cmake

3
wrap/python/pybind11/.gitmodules vendored Normal file
View File

@ -0,0 +1,3 @@
[submodule "tools/clang"]
path = tools/clang
url = ../../wjakob/clang-cindex-python3

View File

@ -0,0 +1,3 @@
python:
version: 3
requirements_file: docs/requirements.txt

View File

@ -0,0 +1,280 @@
language: cpp
matrix:
include:
# This config does a few things:
# - Checks C++ and Python code styles (check-style.sh and flake8).
# - Makes sure sphinx can build the docs without any errors or warnings.
# - Tests setup.py sdist and install (all header files should be present).
# - Makes sure that everything still works without optional deps (numpy/scipy/eigen) and
# also tests the automatic discovery functions in CMake (Python version, C++ standard).
- os: linux
dist: xenial # Necessary to run doxygen 1.8.15
name: Style, docs, and pip
cache: false
before_install:
- pyenv global $(pyenv whence 2to3) # activate all python versions
- PY_CMD=python3
- $PY_CMD -m pip install --user --upgrade pip wheel setuptools
install:
- $PY_CMD -m pip install --user --upgrade sphinx sphinx_rtd_theme breathe flake8 pep8-naming pytest
- curl -fsSL https://sourceforge.net/projects/doxygen/files/rel-1.8.15/doxygen-1.8.15.linux.bin.tar.gz/download | tar xz
- export PATH="$PWD/doxygen-1.8.15/bin:$PATH"
script:
- tools/check-style.sh
- flake8
- $PY_CMD -m sphinx -W -b html docs docs/.build
- |
# Make sure setup.py distributes and installs all the headers
$PY_CMD setup.py sdist
$PY_CMD -m pip install --user -U ./dist/*
installed=$($PY_CMD -c "import pybind11; print(pybind11.get_include(True) + '/pybind11')")
diff -rq $installed ./include/pybind11
- |
# Barebones build
cmake -DCMAKE_BUILD_TYPE=Debug -DPYBIND11_WERROR=ON -DDOWNLOAD_CATCH=ON -DPYTHON_EXECUTABLE=$(which $PY_CMD) .
make pytest -j 2
make cpptest -j 2
# The following are regular test configurations, including optional dependencies.
# With regard to each other they differ in Python version, C++ standard and compiler.
- os: linux
dist: trusty
name: Python 2.7, c++11, gcc 4.8
env: PYTHON=2.7 CPP=11 GCC=4.8
addons:
apt:
packages:
- cmake=2.\*
- cmake-data=2.\*
- os: linux
dist: trusty
name: Python 3.6, c++11, gcc 4.8
env: PYTHON=3.6 CPP=11 GCC=4.8
addons:
apt:
sources:
- deadsnakes
packages:
- python3.6-dev
- python3.6-venv
- cmake=2.\*
- cmake-data=2.\*
- os: linux
dist: trusty
env: PYTHON=2.7 CPP=14 GCC=6 CMAKE=1
name: Python 2.7, c++14, gcc 4.8, CMake test
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- g++-6
- os: linux
dist: trusty
name: Python 3.5, c++14, gcc 6, Debug build
# N.B. `ensurepip` could be installed transitively by `python3.5-venv`, but
# seems to have apt conflicts (at least for Trusty). Use Docker instead.
services: docker
env: DOCKER=debian:stretch PYTHON=3.5 CPP=14 GCC=6 DEBUG=1
- os: linux
dist: xenial
env: PYTHON=3.6 CPP=17 GCC=7
name: Python 3.6, c++17, gcc 7
addons:
apt:
sources:
- deadsnakes
- ubuntu-toolchain-r-test
packages:
- g++-7
- python3.6-dev
- python3.6-venv
- os: linux
dist: xenial
env: PYTHON=3.6 CPP=17 CLANG=7
name: Python 3.6, c++17, Clang 7
addons:
apt:
sources:
- deadsnakes
- llvm-toolchain-xenial-7
packages:
- python3.6-dev
- python3.6-venv
- clang-7
- libclang-7-dev
- llvm-7-dev
- lld-7
- libc++-7-dev
- libc++abi-7-dev # Why is this necessary???
- os: osx
name: Python 2.7, c++14, AppleClang 7.3, CMake test
osx_image: xcode7.3
env: PYTHON=2.7 CPP=14 CLANG CMAKE=1
- os: osx
name: Python 3.7, c++14, AppleClang 9, Debug build
osx_image: xcode9
env: PYTHON=3.7 CPP=14 CLANG DEBUG=1
# Test a PyPy 2.7 build
- os: linux
dist: trusty
env: PYPY=5.8 PYTHON=2.7 CPP=11 GCC=4.8
name: PyPy 5.8, Python 2.7, c++11, gcc 4.8
addons:
apt:
packages:
- libblas-dev
- liblapack-dev
- gfortran
# Build in 32-bit mode and tests against the CMake-installed version
- os: linux
dist: trusty
services: docker
env: DOCKER=i386/debian:stretch PYTHON=3.5 CPP=14 GCC=6 INSTALL=1
name: Python 3.4, c++14, gcc 6, 32-bit
script:
- |
# Consolidated 32-bit Docker Build + Install
set -ex
$SCRIPT_RUN_PREFIX sh -c "
set -ex
cmake ${CMAKE_EXTRA_ARGS} -DPYBIND11_INSTALL=1 -DPYBIND11_TEST=0 .
make install
cp -a tests /pybind11-tests
mkdir /build-tests && cd /build-tests
cmake ../pybind11-tests ${CMAKE_EXTRA_ARGS} -DPYBIND11_WERROR=ON
make pytest -j 2"
set +ex
cache:
directories:
- $HOME/.local/bin
- $HOME/.local/lib
- $HOME/.local/include
- $HOME/Library/Python
before_install:
- |
# Configure build variables
set -ex
if [ "$TRAVIS_OS_NAME" = "linux" ]; then
if [ -n "$CLANG" ]; then
export CXX=clang++-$CLANG CC=clang-$CLANG
EXTRA_PACKAGES+=" clang-$CLANG llvm-$CLANG-dev"
else
if [ -z "$GCC" ]; then GCC=4.8
else EXTRA_PACKAGES+=" g++-$GCC"
fi
export CXX=g++-$GCC CC=gcc-$GCC
fi
elif [ "$TRAVIS_OS_NAME" = "osx" ]; then
export CXX=clang++ CC=clang;
fi
if [ -n "$CPP" ]; then CPP=-std=c++$CPP; fi
if [ "${PYTHON:0:1}" = "3" ]; then PY=3; fi
if [ -n "$DEBUG" ]; then CMAKE_EXTRA_ARGS+=" -DCMAKE_BUILD_TYPE=Debug"; fi
set +ex
- |
# Initialize environment
set -ex
if [ -n "$DOCKER" ]; then
docker pull $DOCKER
containerid=$(docker run --detach --tty \
--volume="$PWD":/pybind11 --workdir=/pybind11 \
--env="CC=$CC" --env="CXX=$CXX" --env="DEBIAN_FRONTEND=$DEBIAN_FRONTEND" \
--env=GCC_COLORS=\ \
$DOCKER)
SCRIPT_RUN_PREFIX="docker exec --tty $containerid"
$SCRIPT_RUN_PREFIX sh -c 'for s in 0 15; do sleep $s; apt-get update && apt-get -qy dist-upgrade && break; done'
else
if [ "$PYPY" = "5.8" ]; then
curl -fSL https://bitbucket.org/pypy/pypy/downloads/pypy2-v5.8.0-linux64.tar.bz2 | tar xj
PY_CMD=$(echo `pwd`/pypy2-v5.8.0-linux64/bin/pypy)
CMAKE_EXTRA_ARGS+=" -DPYTHON_EXECUTABLE:FILEPATH=$PY_CMD"
else
PY_CMD=python$PYTHON
if [ "$TRAVIS_OS_NAME" = "osx" ]; then
if [ "$PY" = "3" ]; then
brew update && brew upgrade python
else
curl -fsSL https://bootstrap.pypa.io/get-pip.py | $PY_CMD - --user
fi
fi
fi
if [ "$PY" = 3 ] || [ -n "$PYPY" ]; then
$PY_CMD -m ensurepip --user
fi
$PY_CMD --version
$PY_CMD -m pip install --user --upgrade pip wheel
fi
set +ex
install:
- |
# Install dependencies
set -ex
cmake --version
if [ -n "$DOCKER" ]; then
if [ -n "$DEBUG" ]; then
PY_DEBUG="python$PYTHON-dbg python$PY-scipy-dbg"
CMAKE_EXTRA_ARGS+=" -DPYTHON_EXECUTABLE=/usr/bin/python${PYTHON}dm"
fi
$SCRIPT_RUN_PREFIX sh -c "for s in 0 15; do sleep \$s; \
apt-get -qy --no-install-recommends install \
$PY_DEBUG python$PYTHON-dev python$PY-pytest python$PY-scipy \
libeigen3-dev libboost-dev cmake make ${EXTRA_PACKAGES} && break; done"
else
if [ "$CLANG" = "7" ]; then
export CXXFLAGS="-stdlib=libc++"
fi
export NPY_NUM_BUILD_JOBS=2
echo "Installing pytest, numpy, scipy..."
local PIP_CMD=""
if [ -n $PYPY ]; then
# For expediency, install only versions that are available on the extra index.
travis_wait 30 \
$PY_CMD -m pip install --user --upgrade --extra-index-url https://imaginary.ca/trusty-pypi \
pytest numpy==1.15.4 scipy==1.2.0
else
$PY_CMD -m pip install --user --upgrade pytest numpy scipy
fi
echo "done."
mkdir eigen
curl -fsSL https://bitbucket.org/eigen/eigen/get/3.3.4.tar.bz2 | \
tar --extract -j --directory=eigen --strip-components=1
export CMAKE_INCLUDE_PATH="${CMAKE_INCLUDE_PATH:+$CMAKE_INCLUDE_PATH:}$PWD/eigen"
fi
set +ex
script:
- |
# CMake Configuration
set -ex
$SCRIPT_RUN_PREFIX cmake ${CMAKE_EXTRA_ARGS} \
-DPYBIND11_PYTHON_VERSION=$PYTHON \
-DPYBIND11_CPP_STANDARD=$CPP \
-DPYBIND11_WERROR=${WERROR:-ON} \
-DDOWNLOAD_CATCH=${DOWNLOAD_CATCH:-ON} \
.
set +ex
- |
# pytest
set -ex
$SCRIPT_RUN_PREFIX make pytest -j 2 VERBOSE=1
set +ex
- |
# cpptest
set -ex
$SCRIPT_RUN_PREFIX make cpptest -j 2
set +ex
- |
# CMake Build Interface
set -ex
if [ -n "$CMAKE" ]; then $SCRIPT_RUN_PREFIX make test_cmake_build; fi
set +ex
after_failure: cat tests/test_cmake_build/*.log*
after_script:
- |
# Cleanup (Docker)
set -ex
if [ -n "$DOCKER" ]; then docker stop "$containerid"; docker rm "$containerid"; fi
set +ex

View File

@ -0,0 +1,157 @@
# CMakeLists.txt -- Build system for the pybind11 modules
#
# Copyright (c) 2015 Wenzel Jakob <wenzel@inf.ethz.ch>
#
# All rights reserved. Use of this source code is governed by a
# BSD-style license that can be found in the LICENSE file.
cmake_minimum_required(VERSION 2.8.12)
if (POLICY CMP0048)
# cmake warns if loaded from a min-3.0-required parent dir, so silence the warning:
cmake_policy(SET CMP0048 NEW)
endif()
# CMake versions < 3.4.0 do not support try_compile/pthread checks without C as active language.
if(CMAKE_VERSION VERSION_LESS 3.4.0)
project(pybind11)
else()
project(pybind11 CXX)
endif()
# Check if pybind11 is being used directly or via add_subdirectory
set(PYBIND11_MASTER_PROJECT OFF)
if (CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
set(PYBIND11_MASTER_PROJECT ON)
endif()
option(PYBIND11_INSTALL "Install pybind11 header files?" ${PYBIND11_MASTER_PROJECT})
option(PYBIND11_TEST "Build pybind11 test suite?" ${PYBIND11_MASTER_PROJECT})
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/tools")
include(pybind11Tools)
# Cache variables so pybind11_add_module can be used in parent projects
set(PYBIND11_INCLUDE_DIR "${CMAKE_CURRENT_LIST_DIR}/include" CACHE INTERNAL "")
set(PYTHON_INCLUDE_DIRS ${PYTHON_INCLUDE_DIRS} CACHE INTERNAL "")
set(PYTHON_LIBRARIES ${PYTHON_LIBRARIES} CACHE INTERNAL "")
set(PYTHON_MODULE_PREFIX ${PYTHON_MODULE_PREFIX} CACHE INTERNAL "")
set(PYTHON_MODULE_EXTENSION ${PYTHON_MODULE_EXTENSION} CACHE INTERNAL "")
set(PYTHON_VERSION_MAJOR ${PYTHON_VERSION_MAJOR} CACHE INTERNAL "")
set(PYTHON_VERSION_MINOR ${PYTHON_VERSION_MINOR} CACHE INTERNAL "")
# NB: when adding a header don't forget to also add it to setup.py
set(PYBIND11_HEADERS
include/pybind11/detail/class.h
include/pybind11/detail/common.h
include/pybind11/detail/descr.h
include/pybind11/detail/init.h
include/pybind11/detail/internals.h
include/pybind11/detail/typeid.h
include/pybind11/attr.h
include/pybind11/buffer_info.h
include/pybind11/cast.h
include/pybind11/chrono.h
include/pybind11/common.h
include/pybind11/complex.h
include/pybind11/options.h
include/pybind11/eigen.h
include/pybind11/embed.h
include/pybind11/eval.h
include/pybind11/functional.h
include/pybind11/numpy.h
include/pybind11/operators.h
include/pybind11/pybind11.h
include/pybind11/pytypes.h
include/pybind11/stl.h
include/pybind11/stl_bind.h
)
string(REPLACE "include/" "${CMAKE_CURRENT_SOURCE_DIR}/include/"
PYBIND11_HEADERS "${PYBIND11_HEADERS}")
if (PYBIND11_TEST)
add_subdirectory(tests)
endif()
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
# extract project version from source
file(STRINGS "${PYBIND11_INCLUDE_DIR}/pybind11/detail/common.h" pybind11_version_defines
REGEX "#define PYBIND11_VERSION_(MAJOR|MINOR|PATCH) ")
foreach(ver ${pybind11_version_defines})
if (ver MATCHES "#define PYBIND11_VERSION_(MAJOR|MINOR|PATCH) +([^ ]+)$")
set(PYBIND11_VERSION_${CMAKE_MATCH_1} "${CMAKE_MATCH_2}" CACHE INTERNAL "")
endif()
endforeach()
set(${PROJECT_NAME}_VERSION ${PYBIND11_VERSION_MAJOR}.${PYBIND11_VERSION_MINOR}.${PYBIND11_VERSION_PATCH})
message(STATUS "pybind11 v${${PROJECT_NAME}_VERSION}")
option (USE_PYTHON_INCLUDE_DIR "Install pybind11 headers in Python include directory instead of default installation prefix" OFF)
if (USE_PYTHON_INCLUDE_DIR)
file(RELATIVE_PATH CMAKE_INSTALL_INCLUDEDIR ${CMAKE_INSTALL_PREFIX} ${PYTHON_INCLUDE_DIRS})
endif()
if(NOT (CMAKE_VERSION VERSION_LESS 3.0)) # CMake >= 3.0
# Build an interface library target:
add_library(pybind11 INTERFACE)
add_library(pybind11::pybind11 ALIAS pybind11) # to match exported target
target_include_directories(pybind11 INTERFACE $<BUILD_INTERFACE:${PYBIND11_INCLUDE_DIR}>
$<BUILD_INTERFACE:${PYTHON_INCLUDE_DIRS}>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>)
target_compile_options(pybind11 INTERFACE $<BUILD_INTERFACE:${PYBIND11_CPP_STANDARD}>)
add_library(module INTERFACE)
add_library(pybind11::module ALIAS module)
if(NOT MSVC)
target_compile_options(module INTERFACE -fvisibility=hidden)
endif()
target_link_libraries(module INTERFACE pybind11::pybind11)
if(WIN32 OR CYGWIN)
target_link_libraries(module INTERFACE $<BUILD_INTERFACE:${PYTHON_LIBRARIES}>)
elseif(APPLE)
target_link_libraries(module INTERFACE "-undefined dynamic_lookup")
endif()
add_library(embed INTERFACE)
add_library(pybind11::embed ALIAS embed)
target_link_libraries(embed INTERFACE pybind11::pybind11 $<BUILD_INTERFACE:${PYTHON_LIBRARIES}>)
endif()
if (PYBIND11_INSTALL)
install(DIRECTORY ${PYBIND11_INCLUDE_DIR}/pybind11 DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
# GNUInstallDirs "DATADIR" wrong here; CMake search path wants "share".
set(PYBIND11_CMAKECONFIG_INSTALL_DIR "share/cmake/${PROJECT_NAME}" CACHE STRING "install path for pybind11Config.cmake")
configure_package_config_file(tools/${PROJECT_NAME}Config.cmake.in
"${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}Config.cmake"
INSTALL_DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
# Remove CMAKE_SIZEOF_VOID_P from ConfigVersion.cmake since the library does
# not depend on architecture specific settings or libraries.
set(_PYBIND11_CMAKE_SIZEOF_VOID_P ${CMAKE_SIZEOF_VOID_P})
unset(CMAKE_SIZEOF_VOID_P)
write_basic_package_version_file(${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}ConfigVersion.cmake
VERSION ${${PROJECT_NAME}_VERSION}
COMPATIBILITY AnyNewerVersion)
set(CMAKE_SIZEOF_VOID_P ${_PYBIND11_CMAKE_SIZEOF_VOID_P})
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}Config.cmake
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}ConfigVersion.cmake
tools/FindPythonLibsNew.cmake
tools/pybind11Tools.cmake
DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
if(NOT (CMAKE_VERSION VERSION_LESS 3.0))
if(NOT PYBIND11_EXPORT_NAME)
set(PYBIND11_EXPORT_NAME "${PROJECT_NAME}Targets")
endif()
install(TARGETS pybind11 module embed
EXPORT "${PYBIND11_EXPORT_NAME}")
if(PYBIND11_MASTER_PROJECT)
install(EXPORT "${PYBIND11_EXPORT_NAME}"
NAMESPACE "${PROJECT_NAME}::"
DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
endif()
endif()
endif()

View File

@ -0,0 +1,49 @@
Thank you for your interest in this project! Please refer to the following
sections on how to contribute code and bug reports.
### Reporting bugs
At the moment, this project is run in the spare time of a single person
([Wenzel Jakob](http://rgl.epfl.ch/people/wjakob)) with very limited resources
for issue tracker tickets. Thus, before submitting a question or bug report,
please take a moment of your time and ensure that your issue isn't already
discussed in the project documentation provided at
[http://pybind11.readthedocs.org/en/latest](http://pybind11.readthedocs.org/en/latest).
Assuming that you have identified a previously unknown problem or an important
question, it's essential that you submit a self-contained and minimal piece of
code that reproduces the problem. In other words: no external dependencies,
isolate the function(s) that cause breakage, submit matched and complete C++
and Python snippets that can be easily compiled and run on my end.
## Pull requests
Contributions are submitted, reviewed, and accepted using Github pull requests.
Please refer to [this
article](https://help.github.com/articles/using-pull-requests) for details and
adhere to the following rules to make the process as smooth as possible:
* Make a new branch for every feature you're working on.
* Make small and clean pull requests that are easy to review but make sure they
do add value by themselves.
* Add tests for any new functionality and run the test suite (``make pytest``)
to ensure that no existing features break.
* Please run ``flake8`` and ``tools/check-style.sh`` to check your code matches
the project style. (Note that ``check-style.sh`` requires ``gawk``.)
* This project has a strong focus on providing general solutions using a
minimal amount of code, thus small pull requests are greatly preferred.
### Licensing of contributions
pybind11 is provided under a BSD-style license that can be found in the
``LICENSE`` file. By using, distributing, or contributing to this project, you
agree to the terms and conditions of this license.
You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
("Enhancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to the author of this software, without
imposing a separate written license agreement for such Enhancements, then you
hereby grant the following license: a non-exclusive, royalty-free perpetual
license to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.

View File

@ -0,0 +1,17 @@
Make sure you've completed the following steps before submitting your issue -- thank you!
1. Check if your question has already been answered in the [FAQ](http://pybind11.readthedocs.io/en/latest/faq.html) section.
2. Make sure you've read the [documentation](http://pybind11.readthedocs.io/en/latest/). Your issue may be addressed there.
3. If those resources didn't help and you only have a short question (not a bug report), consider asking in the [Gitter chat room](https://gitter.im/pybind/Lobby).
4. If you have a genuine bug report or a more complex question which is not answered in the previous items (or not suitable for chat), please fill in the details below.
5. Include a self-contained and minimal piece of code that reproduces the problem. If that's not possible, try to make the description as clear as possible.
*After reading, remove this checklist and the template text in parentheses below.*
## Issue description
(Provide a short description, state the expected behavior and what actually happens.)
## Reproducible example code
(The code should be minimal, have no external dependencies, isolate the function(s) that cause breakage. Submit matched and complete C++ and Python snippets that can be easily compiled and run to diagnose the issue.)

View File

@ -0,0 +1,29 @@
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>, All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Please also refer to the file CONTRIBUTING.md, which clarifies licensing of
external contributions to this project including patches, pull requests, etc.

View File

@ -0,0 +1,2 @@
recursive-include include/pybind11 *.h
include LICENSE README.md CONTRIBUTING.md

View File

@ -0,0 +1,129 @@
![pybind11 logo](https://github.com/pybind/pybind11/raw/master/docs/pybind11-logo.png)
# pybind11 — Seamless operability between C++11 and Python
[![Documentation Status](https://readthedocs.org/projects/pybind11/badge/?version=master)](http://pybind11.readthedocs.org/en/master/?badge=master)
[![Documentation Status](https://readthedocs.org/projects/pybind11/badge/?version=stable)](http://pybind11.readthedocs.org/en/stable/?badge=stable)
[![Gitter chat](https://img.shields.io/gitter/room/gitterHQ/gitter.svg)](https://gitter.im/pybind/Lobby)
[![Build Status](https://travis-ci.org/pybind/pybind11.svg?branch=master)](https://travis-ci.org/pybind/pybind11)
[![Build status](https://ci.appveyor.com/api/projects/status/riaj54pn4h08xy40?svg=true)](https://ci.appveyor.com/project/wjakob/pybind11)
**pybind11** is a lightweight header-only library that exposes C++ types in Python
and vice versa, mainly to create Python bindings of existing C++ code. Its
goals and syntax are similar to the excellent
[Boost.Python](http://www.boost.org/doc/libs/1_58_0/libs/python/doc/) library
by David Abrahams: to minimize boilerplate code in traditional extension
modules by inferring type information using compile-time introspection.
The main issue with Boost.Python—and the reason for creating such a similar
project—is Boost. Boost is an enormously large and complex suite of utility
libraries that works with almost every C++ compiler in existence. This
compatibility has its cost: arcane template tricks and workarounds are
necessary to support the oldest and buggiest of compiler specimens. Now that
C++11-compatible compilers are widely available, this heavy machinery has
become an excessively large and unnecessary dependency.
Think of this library as a tiny self-contained version of Boost.Python with
everything stripped away that isn't relevant for binding generation. Without
comments, the core header files only require ~4K lines of code and depend on
Python (2.7 or 3.x, or PyPy2.7 >= 5.7) and the C++ standard library. This
compact implementation was possible thanks to some of the new C++11 language
features (specifically: tuples, lambda functions and variadic templates). Since
its creation, this library has grown beyond Boost.Python in many ways, leading
to dramatically simpler binding code in many common situations.
Tutorial and reference documentation is provided at
[http://pybind11.readthedocs.org/en/master](http://pybind11.readthedocs.org/en/master).
A PDF version of the manual is available
[here](https://media.readthedocs.org/pdf/pybind11/master/pybind11.pdf).
## Core features
pybind11 can map the following core C++ features to Python
- Functions accepting and returning custom data structures per value, reference, or pointer
- Instance methods and static methods
- Overloaded functions
- Instance attributes and static attributes
- Arbitrary exception types
- Enumerations
- Callbacks
- Iterators and ranges
- Custom operators
- Single and multiple inheritance
- STL data structures
- Smart pointers with reference counting like ``std::shared_ptr``
- Internal references with correct reference counting
- C++ classes with virtual (and pure virtual) methods can be extended in Python
## Goodies
In addition to the core functionality, pybind11 provides some extra goodies:
- Python 2.7, 3.x, and PyPy (PyPy2.7 >= 5.7) are supported with an
implementation-agnostic interface.
- It is possible to bind C++11 lambda functions with captured variables. The
lambda capture data is stored inside the resulting Python function object.
- pybind11 uses C++11 move constructors and move assignment operators whenever
possible to efficiently transfer custom data types.
- It's easy to expose the internal storage of custom data types through
Pythons' buffer protocols. This is handy e.g. for fast conversion between
C++ matrix classes like Eigen and NumPy without expensive copy operations.
- pybind11 can automatically vectorize functions so that they are transparently
applied to all entries of one or more NumPy array arguments.
- Python's slice-based access and assignment operations can be supported with
just a few lines of code.
- Everything is contained in just a few header files; there is no need to link
against any additional libraries.
- Binaries are generally smaller by a factor of at least 2 compared to
equivalent bindings generated by Boost.Python. A recent pybind11 conversion
of PyRosetta, an enormous Boost.Python binding project,
[reported](http://graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf) a binary
size reduction of **5.4x** and compile time reduction by **5.8x**.
- Function signatures are precomputed at compile time (using ``constexpr``),
leading to smaller binaries.
- With little extra effort, C++ types can be pickled and unpickled similar to
regular Python objects.
## Supported compilers
1. Clang/LLVM 3.3 or newer (for Apple Xcode's clang, this is 5.0.0 or newer)
2. GCC 4.8 or newer
3. Microsoft Visual Studio 2015 Update 3 or newer
4. Intel C++ compiler 17 or newer (16 with pybind11 v2.0 and 15 with pybind11 v2.0 and a [workaround](https://github.com/pybind/pybind11/issues/276))
5. Cygwin/GCC (tested on 2.5.1)
## About
This project was created by [Wenzel Jakob](http://rgl.epfl.ch/people/wjakob).
Significant features and/or improvements to the code were contributed by
Jonas Adler,
Lori A. Burns,
Sylvain Corlay,
Trent Houliston,
Axel Huebl,
@hulucc,
Sergey Lyskov
Johan Mabille,
Tomasz Miąsko,
Dean Moldovan,
Ben Pritchard,
Jason Rhinelander,
Boris Schäling,
Pim Schellart,
Henry Schreiner,
Ivan Smirnov, and
Patrick Stewart.
### License
pybind11 is provided under a BSD-style license that can be found in the
``LICENSE`` file. By using, distributing, or contributing to this project,
you agree to the terms and conditions of this license.

View File

@ -0,0 +1,20 @@
PROJECT_NAME = pybind11
INPUT = ../include/pybind11/
RECURSIVE = YES
GENERATE_HTML = NO
GENERATE_LATEX = NO
GENERATE_XML = YES
XML_OUTPUT = .build/doxygenxml
XML_PROGRAMLISTING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
EXPAND_AS_DEFINED = PYBIND11_RUNTIME_EXCEPTION
ALIASES = "rst=\verbatim embed:rst"
ALIASES += "endrst=\endverbatim"
QUIET = YES
WARNINGS = YES
WARN_IF_UNDOCUMENTED = NO

View File

@ -0,0 +1,11 @@
.wy-table-responsive table td,
.wy-table-responsive table th {
white-space: initial !important;
}
.rst-content table.docutils td {
vertical-align: top !important;
}
div[class^='highlight'] pre {
white-space: pre;
white-space: pre-wrap;
}

View File

@ -0,0 +1,81 @@
Chrono
======
When including the additional header file :file:`pybind11/chrono.h` conversions
from C++11 chrono datatypes to python datetime objects are automatically enabled.
This header also enables conversions of python floats (often from sources such
as ``time.monotonic()``, ``time.perf_counter()`` and ``time.process_time()``)
into durations.
An overview of clocks in C++11
------------------------------
A point of confusion when using these conversions is the differences between
clocks provided in C++11. There are three clock types defined by the C++11
standard and users can define their own if needed. Each of these clocks have
different properties and when converting to and from python will give different
results.
The first clock defined by the standard is ``std::chrono::system_clock``. This
clock measures the current date and time. However, this clock changes with to
updates to the operating system time. For example, if your time is synchronised
with a time server this clock will change. This makes this clock a poor choice
for timing purposes but good for measuring the wall time.
The second clock defined in the standard is ``std::chrono::steady_clock``.
This clock ticks at a steady rate and is never adjusted. This makes it excellent
for timing purposes, however the value in this clock does not correspond to the
current date and time. Often this clock will be the amount of time your system
has been on, although it does not have to be. This clock will never be the same
clock as the system clock as the system clock can change but steady clocks
cannot.
The third clock defined in the standard is ``std::chrono::high_resolution_clock``.
This clock is the clock that has the highest resolution out of the clocks in the
system. It is normally a typedef to either the system clock or the steady clock
but can be its own independent clock. This is important as when using these
conversions as the types you get in python for this clock might be different
depending on the system.
If it is a typedef of the system clock, python will get datetime objects, but if
it is a different clock they will be timedelta objects.
Provided conversions
--------------------
.. rubric:: C++ to Python
- ``std::chrono::system_clock::time_point````datetime.datetime``
System clock times are converted to python datetime instances. They are
in the local timezone, but do not have any timezone information attached
to them (they are naive datetime objects).
- ``std::chrono::duration````datetime.timedelta``
Durations are converted to timedeltas, any precision in the duration
greater than microseconds is lost by rounding towards zero.
- ``std::chrono::[other_clocks]::time_point````datetime.timedelta``
Any clock time that is not the system clock is converted to a time delta.
This timedelta measures the time from the clocks epoch to now.
.. rubric:: Python to C++
- ``datetime.datetime````std::chrono::system_clock::time_point``
Date/time objects are converted into system clock timepoints. Any
timezone information is ignored and the type is treated as a naive
object.
- ``datetime.timedelta````std::chrono::duration``
Time delta are converted into durations with microsecond precision.
- ``datetime.timedelta````std::chrono::[other_clocks]::time_point``
Time deltas that are converted into clock timepoints are treated as
the amount of time from the start of the clocks epoch.
- ``float````std::chrono::duration``
Floats that are passed to C++ as durations be interpreted as a number of
seconds. These will be converted to the duration using ``duration_cast``
from the float.
- ``float````std::chrono::[other_clocks]::time_point``
Floats that are passed to C++ as time points will be interpreted as the
number of seconds from the start of the clocks epoch.

View File

@ -0,0 +1,91 @@
Custom type casters
===================
In very rare cases, applications may require custom type casters that cannot be
expressed using the abstractions provided by pybind11, thus requiring raw
Python C API calls. This is fairly advanced usage and should only be pursued by
experts who are familiar with the intricacies of Python reference counting.
The following snippets demonstrate how this works for a very simple ``inty``
type that that should be convertible from Python types that provide a
``__int__(self)`` method.
.. code-block:: cpp
struct inty { long long_value; };
void print(inty s) {
std::cout << s.long_value << std::endl;
}
The following Python snippet demonstrates the intended usage from the Python side:
.. code-block:: python
class A:
def __int__(self):
return 123
from example import print
print(A())
To register the necessary conversion routines, it is necessary to add
a partial overload to the ``pybind11::detail::type_caster<T>`` template.
Although this is an implementation detail, adding partial overloads to this
type is explicitly allowed.
.. code-block:: cpp
namespace pybind11 { namespace detail {
template <> struct type_caster<inty> {
public:
/**
* This macro establishes the name 'inty' in
* function signatures and declares a local variable
* 'value' of type inty
*/
PYBIND11_TYPE_CASTER(inty, _("inty"));
/**
* Conversion part 1 (Python->C++): convert a PyObject into a inty
* instance or return false upon failure. The second argument
* indicates whether implicit conversions should be applied.
*/
bool load(handle src, bool) {
/* Extract PyObject from handle */
PyObject *source = src.ptr();
/* Try converting into a Python integer value */
PyObject *tmp = PyNumber_Long(source);
if (!tmp)
return false;
/* Now try to convert into a C++ int */
value.long_value = PyLong_AsLong(tmp);
Py_DECREF(tmp);
/* Ensure return code was OK (to avoid out-of-range errors etc) */
return !(value.long_value == -1 && !PyErr_Occurred());
}
/**
* Conversion part 2 (C++ -> Python): convert an inty instance into
* a Python object. The second and third arguments are used to
* indicate the return value policy and parent object (for
* ``return_value_policy::reference_internal``) and are generally
* ignored by implicit casters.
*/
static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) {
return PyLong_FromLong(src.long_value);
}
};
}} // namespace pybind11::detail
.. note::
A ``type_caster<T>`` defined with ``PYBIND11_TYPE_CASTER(T, ...)`` requires
that ``T`` is default-constructible (``value`` is first default constructed
and then ``load()`` assigns to it).
.. warning::
When using custom type casters, it's important to declare them consistently
in every compilation unit of the Python extension module. Otherwise,
undefined behavior can ensue.

View File

@ -0,0 +1,310 @@
Eigen
#####
`Eigen <http://eigen.tuxfamily.org>`_ is C++ header-based library for dense and
sparse linear algebra. Due to its popularity and widespread adoption, pybind11
provides transparent conversion and limited mapping support between Eigen and
Scientific Python linear algebra data types.
To enable the built-in Eigen support you must include the optional header file
:file:`pybind11/eigen.h`.
Pass-by-value
=============
When binding a function with ordinary Eigen dense object arguments (for
example, ``Eigen::MatrixXd``), pybind11 will accept any input value that is
already (or convertible to) a ``numpy.ndarray`` with dimensions compatible with
the Eigen type, copy its values into a temporary Eigen variable of the
appropriate type, then call the function with this temporary variable.
Sparse matrices are similarly copied to or from
``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` objects.
Pass-by-reference
=================
One major limitation of the above is that every data conversion implicitly
involves a copy, which can be both expensive (for large matrices) and disallows
binding functions that change their (Matrix) arguments. Pybind11 allows you to
work around this by using Eigen's ``Eigen::Ref<MatrixType>`` class much as you
would when writing a function taking a generic type in Eigen itself (subject to
some limitations discussed below).
When calling a bound function accepting a ``Eigen::Ref<const MatrixType>``
type, pybind11 will attempt to avoid copying by using an ``Eigen::Map`` object
that maps into the source ``numpy.ndarray`` data: this requires both that the
data types are the same (e.g. ``dtype='float64'`` and ``MatrixType::Scalar`` is
``double``); and that the storage is layout compatible. The latter limitation
is discussed in detail in the section below, and requires careful
consideration: by default, numpy matrices and Eigen matrices are *not* storage
compatible.
If the numpy matrix cannot be used as is (either because its types differ, e.g.
passing an array of integers to an Eigen parameter requiring doubles, or
because the storage is incompatible), pybind11 makes a temporary copy and
passes the copy instead.
When a bound function parameter is instead ``Eigen::Ref<MatrixType>`` (note the
lack of ``const``), pybind11 will only allow the function to be called if it
can be mapped *and* if the numpy array is writeable (that is
``a.flags.writeable`` is true). Any access (including modification) made to
the passed variable will be transparently carried out directly on the
``numpy.ndarray``.
This means you can can write code such as the following and have it work as
expected:
.. code-block:: cpp
void scale_by_2(Eigen::Ref<Eigen::VectorXd> v) {
v *= 2;
}
Note, however, that you will likely run into limitations due to numpy and
Eigen's difference default storage order for data; see the below section on
:ref:`storage_orders` for details on how to bind code that won't run into such
limitations.
.. note::
Passing by reference is not supported for sparse types.
Returning values to Python
==========================
When returning an ordinary dense Eigen matrix type to numpy (e.g.
``Eigen::MatrixXd`` or ``Eigen::RowVectorXf``) pybind11 keeps the matrix and
returns a numpy array that directly references the Eigen matrix: no copy of the
data is performed. The numpy array will have ``array.flags.owndata`` set to
``False`` to indicate that it does not own the data, and the lifetime of the
stored Eigen matrix will be tied to the returned ``array``.
If you bind a function with a non-reference, ``const`` return type (e.g.
``const Eigen::MatrixXd``), the same thing happens except that pybind11 also
sets the numpy array's ``writeable`` flag to false.
If you return an lvalue reference or pointer, the usual pybind11 rules apply,
as dictated by the binding function's return value policy (see the
documentation on :ref:`return_value_policies` for full details). That means,
without an explicit return value policy, lvalue references will be copied and
pointers will be managed by pybind11. In order to avoid copying, you should
explicitly specify an appropriate return value policy, as in the following
example:
.. code-block:: cpp
class MyClass {
Eigen::MatrixXd big_mat = Eigen::MatrixXd::Zero(10000, 10000);
public:
Eigen::MatrixXd &getMatrix() { return big_mat; }
const Eigen::MatrixXd &viewMatrix() { return big_mat; }
};
// Later, in binding code:
py::class_<MyClass>(m, "MyClass")
.def(py::init<>())
.def("copy_matrix", &MyClass::getMatrix) // Makes a copy!
.def("get_matrix", &MyClass::getMatrix, py::return_value_policy::reference_internal)
.def("view_matrix", &MyClass::viewMatrix, py::return_value_policy::reference_internal)
;
.. code-block:: python
a = MyClass()
m = a.get_matrix() # flags.writeable = True, flags.owndata = False
v = a.view_matrix() # flags.writeable = False, flags.owndata = False
c = a.copy_matrix() # flags.writeable = True, flags.owndata = True
# m[5,6] and v[5,6] refer to the same element, c[5,6] does not.
Note in this example that ``py::return_value_policy::reference_internal`` is
used to tie the life of the MyClass object to the life of the returned arrays.
You may also return an ``Eigen::Ref``, ``Eigen::Map`` or other map-like Eigen
object (for example, the return value of ``matrix.block()`` and related
methods) that map into a dense Eigen type. When doing so, the default
behaviour of pybind11 is to simply reference the returned data: you must take
care to ensure that this data remains valid! You may ask pybind11 to
explicitly *copy* such a return value by using the
``py::return_value_policy::copy`` policy when binding the function. You may
also use ``py::return_value_policy::reference_internal`` or a
``py::keep_alive`` to ensure the data stays valid as long as the returned numpy
array does.
When returning such a reference of map, pybind11 additionally respects the
readonly-status of the returned value, marking the numpy array as non-writeable
if the reference or map was itself read-only.
.. note::
Sparse types are always copied when returned.
.. _storage_orders:
Storage orders
==============
Passing arguments via ``Eigen::Ref`` has some limitations that you must be
aware of in order to effectively pass matrices by reference. First and
foremost is that the default ``Eigen::Ref<MatrixType>`` class requires
contiguous storage along columns (for column-major types, the default in Eigen)
or rows if ``MatrixType`` is specifically an ``Eigen::RowMajor`` storage type.
The former, Eigen's default, is incompatible with ``numpy``'s default row-major
storage, and so you will not be able to pass numpy arrays to Eigen by reference
without making one of two changes.
(Note that this does not apply to vectors (or column or row matrices): for such
types the "row-major" and "column-major" distinction is meaningless).
The first approach is to change the use of ``Eigen::Ref<MatrixType>`` to the
more general ``Eigen::Ref<MatrixType, 0, Eigen::Stride<Eigen::Dynamic,
Eigen::Dynamic>>`` (or similar type with a fully dynamic stride type in the
third template argument). Since this is a rather cumbersome type, pybind11
provides a ``py::EigenDRef<MatrixType>`` type alias for your convenience (along
with EigenDMap for the equivalent Map, and EigenDStride for just the stride
type).
This type allows Eigen to map into any arbitrary storage order. This is not
the default in Eigen for performance reasons: contiguous storage allows
vectorization that cannot be done when storage is not known to be contiguous at
compile time. The default ``Eigen::Ref`` stride type allows non-contiguous
storage along the outer dimension (that is, the rows of a column-major matrix
or columns of a row-major matrix), but not along the inner dimension.
This type, however, has the added benefit of also being able to map numpy array
slices. For example, the following (contrived) example uses Eigen with a numpy
slice to multiply by 2 all coefficients that are both on even rows (0, 2, 4,
...) and in columns 2, 5, or 8:
.. code-block:: cpp
m.def("scale", [](py::EigenDRef<Eigen::MatrixXd> m, double c) { m *= c; });
.. code-block:: python
# a = np.array(...)
scale_by_2(myarray[0::2, 2:9:3])
The second approach to avoid copying is more intrusive: rearranging the
underlying data types to not run into the non-contiguous storage problem in the
first place. In particular, that means using matrices with ``Eigen::RowMajor``
storage, where appropriate, such as:
.. code-block:: cpp
using RowMatrixXd = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
// Use RowMatrixXd instead of MatrixXd
Now bound functions accepting ``Eigen::Ref<RowMatrixXd>`` arguments will be
callable with numpy's (default) arrays without involving a copying.
You can, alternatively, change the storage order that numpy arrays use by
adding the ``order='F'`` option when creating an array:
.. code-block:: python
myarray = np.array(source, order='F')
Such an object will be passable to a bound function accepting an
``Eigen::Ref<MatrixXd>`` (or similar column-major Eigen type).
One major caveat with this approach, however, is that it is not entirely as
easy as simply flipping all Eigen or numpy usage from one to the other: some
operations may alter the storage order of a numpy array. For example, ``a2 =
array.transpose()`` results in ``a2`` being a view of ``array`` that references
the same data, but in the opposite storage order!
While this approach allows fully optimized vectorized calculations in Eigen, it
cannot be used with array slices, unlike the first approach.
When *returning* a matrix to Python (either a regular matrix, a reference via
``Eigen::Ref<>``, or a map/block into a matrix), no special storage
consideration is required: the created numpy array will have the required
stride that allows numpy to properly interpret the array, whatever its storage
order.
Failing rather than copying
===========================
The default behaviour when binding ``Eigen::Ref<const MatrixType>`` Eigen
references is to copy matrix values when passed a numpy array that does not
conform to the element type of ``MatrixType`` or does not have a compatible
stride layout. If you want to explicitly avoid copying in such a case, you
should bind arguments using the ``py::arg().noconvert()`` annotation (as
described in the :ref:`nonconverting_arguments` documentation).
The following example shows an example of arguments that don't allow data
copying to take place:
.. code-block:: cpp
// The method and function to be bound:
class MyClass {
// ...
double some_method(const Eigen::Ref<const MatrixXd> &matrix) { /* ... */ }
};
float some_function(const Eigen::Ref<const MatrixXf> &big,
const Eigen::Ref<const MatrixXf> &small) {
// ...
}
// The associated binding code:
using namespace pybind11::literals; // for "arg"_a
py::class_<MyClass>(m, "MyClass")
// ... other class definitions
.def("some_method", &MyClass::some_method, py::arg().noconvert());
m.def("some_function", &some_function,
"big"_a.noconvert(), // <- Don't allow copying for this arg
"small"_a // <- This one can be copied if needed
);
With the above binding code, attempting to call the the ``some_method(m)``
method on a ``MyClass`` object, or attempting to call ``some_function(m, m2)``
will raise a ``RuntimeError`` rather than making a temporary copy of the array.
It will, however, allow the ``m2`` argument to be copied into a temporary if
necessary.
Note that explicitly specifying ``.noconvert()`` is not required for *mutable*
Eigen references (e.g. ``Eigen::Ref<MatrixXd>`` without ``const`` on the
``MatrixXd``): mutable references will never be called with a temporary copy.
Vectors versus column/row matrices
==================================
Eigen and numpy have fundamentally different notions of a vector. In Eigen, a
vector is simply a matrix with the number of columns or rows set to 1 at
compile time (for a column vector or row vector, respectively). Numpy, in
contrast, has comparable 2-dimensional 1xN and Nx1 arrays, but *also* has
1-dimensional arrays of size N.
When passing a 2-dimensional 1xN or Nx1 array to Eigen, the Eigen type must
have matching dimensions: That is, you cannot pass a 2-dimensional Nx1 numpy
array to an Eigen value expecting a row vector, or a 1xN numpy array as a
column vector argument.
On the other hand, pybind11 allows you to pass 1-dimensional arrays of length N
as Eigen parameters. If the Eigen type can hold a column vector of length N it
will be passed as such a column vector. If not, but the Eigen type constraints
will accept a row vector, it will be passed as a row vector. (The column
vector takes precedence when both are supported, for example, when passing a
1D numpy array to a MatrixXd argument). Note that the type need not be
explicitly a vector: it is permitted to pass a 1D numpy array of size 5 to an
Eigen ``Matrix<double, Dynamic, 5>``: you would end up with a 1x5 Eigen matrix.
Passing the same to an ``Eigen::MatrixXd`` would result in a 5x1 Eigen matrix.
When returning an Eigen vector to numpy, the conversion is ambiguous: a row
vector of length 4 could be returned as either a 1D array of length 4, or as a
2D array of size 1x4. When encountering such a situation, pybind11 compromises
by considering the returned Eigen type: if it is a compile-time vector--that
is, the type has either the number of rows or columns set to 1 at compile
time--pybind11 converts to a 1D numpy array when returning the value. For
instances that are a vector only at run-time (e.g. ``MatrixXd``,
``Matrix<float, Dynamic, 4>``), pybind11 returns the vector as a 2D array to
numpy. If this isn't want you want, you can use ``array.reshape(...)`` to get
a view of the same data in the desired dimensions.
.. seealso::
The file :file:`tests/test_eigen.cpp` contains a complete example that
shows how to pass Eigen sparse and dense data types in more detail.

View File

@ -0,0 +1,109 @@
Functional
##########
The following features must be enabled by including :file:`pybind11/functional.h`.
Callbacks and passing anonymous functions
=========================================
The C++11 standard brought lambda functions and the generic polymorphic
function wrapper ``std::function<>`` to the C++ programming language, which
enable powerful new ways of working with functions. Lambda functions come in
two flavors: stateless lambda function resemble classic function pointers that
link to an anonymous piece of code, while stateful lambda functions
additionally depend on captured variables that are stored in an anonymous
*lambda closure object*.
Here is a simple example of a C++ function that takes an arbitrary function
(stateful or stateless) with signature ``int -> int`` as an argument and runs
it with the value 10.
.. code-block:: cpp
int func_arg(const std::function<int(int)> &f) {
return f(10);
}
The example below is more involved: it takes a function of signature ``int -> int``
and returns another function of the same kind. The return value is a stateful
lambda function, which stores the value ``f`` in the capture object and adds 1 to
its return value upon execution.
.. code-block:: cpp
std::function<int(int)> func_ret(const std::function<int(int)> &f) {
return [f](int i) {
return f(i) + 1;
};
}
This example demonstrates using python named parameters in C++ callbacks which
requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
methods of classes:
.. code-block:: cpp
py::cpp_function func_cpp() {
return py::cpp_function([](int i) { return i+1; },
py::arg("number"));
}
After including the extra header file :file:`pybind11/functional.h`, it is almost
trivial to generate binding code for all of these functions.
.. code-block:: cpp
#include <pybind11/functional.h>
PYBIND11_MODULE(example, m) {
m.def("func_arg", &func_arg);
m.def("func_ret", &func_ret);
m.def("func_cpp", &func_cpp);
}
The following interactive session shows how to call them from Python.
.. code-block:: pycon
$ python
>>> import example
>>> def square(i):
... return i * i
...
>>> example.func_arg(square)
100L
>>> square_plus_1 = example.func_ret(square)
>>> square_plus_1(4)
17L
>>> plus_1 = func_cpp()
>>> plus_1(number=43)
44L
.. warning::
Keep in mind that passing a function from C++ to Python (or vice versa)
will instantiate a piece of wrapper code that translates function
invocations between the two languages. Naturally, this translation
increases the computational cost of each function call somewhat. A
problematic situation can arise when a function is copied back and forth
between Python and C++ many times in a row, in which case the underlying
wrappers will accumulate correspondingly. The resulting long sequence of
C++ -> Python -> C++ -> ... roundtrips can significantly decrease
performance.
There is one exception: pybind11 detects case where a stateless function
(i.e. a function pointer or a lambda function without captured variables)
is passed as an argument to another C++ function exposed in Python. In this
case, there is no overhead. Pybind11 will extract the underlying C++
function pointer from the wrapped function to sidestep a potential C++ ->
Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`.
.. note::
This functionality is very useful when generating bindings for callbacks in
C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
The file :file:`tests/test_callbacks.cpp` contains a complete example
that demonstrates how to work with callbacks and anonymous functions in
more detail.

View File

@ -0,0 +1,42 @@
Type conversions
################
Apart from enabling cross-language function calls, a fundamental problem
that a binding tool like pybind11 must address is to provide access to
native Python types in C++ and vice versa. There are three fundamentally
different ways to do this—which approach is preferable for a particular type
depends on the situation at hand.
1. Use a native C++ type everywhere. In this case, the type must be wrapped
using pybind11-generated bindings so that Python can interact with it.
2. Use a native Python type everywhere. It will need to be wrapped so that
C++ functions can interact with it.
3. Use a native C++ type on the C++ side and a native Python type on the
Python side. pybind11 refers to this as a *type conversion*.
Type conversions are the most "natural" option in the sense that native
(non-wrapped) types are used everywhere. The main downside is that a copy
of the data must be made on every Python ↔ C++ transition: this is
needed since the C++ and Python versions of the same type generally won't
have the same memory layout.
pybind11 can perform many kinds of conversions automatically. An overview
is provided in the table ":ref:`conversion_table`".
The following subsections discuss the differences between these options in more
detail. The main focus in this section is on type conversions, which represent
the last case of the above list.
.. toctree::
:maxdepth: 1
overview
strings
stl
functional
chrono
eigen
custom

View File

@ -0,0 +1,165 @@
Overview
########
.. rubric:: 1. Native type in C++, wrapper in Python
Exposing a custom C++ type using :class:`py::class_` was covered in detail
in the :doc:`/classes` section. There, the underlying data structure is
always the original C++ class while the :class:`py::class_` wrapper provides
a Python interface. Internally, when an object like this is sent from C++ to
Python, pybind11 will just add the outer wrapper layer over the native C++
object. Getting it back from Python is just a matter of peeling off the
wrapper.
.. rubric:: 2. Wrapper in C++, native type in Python
This is the exact opposite situation. Now, we have a type which is native to
Python, like a ``tuple`` or a ``list``. One way to get this data into C++ is
with the :class:`py::object` family of wrappers. These are explained in more
detail in the :doc:`/advanced/pycpp/object` section. We'll just give a quick
example here:
.. code-block:: cpp
void print_list(py::list my_list) {
for (auto item : my_list)
std::cout << item << " ";
}
.. code-block:: pycon
>>> print_list([1, 2, 3])
1 2 3
The Python ``list`` is not converted in any way -- it's just wrapped in a C++
:class:`py::list` class. At its core it's still a Python object. Copying a
:class:`py::list` will do the usual reference-counting like in Python.
Returning the object to Python will just remove the thin wrapper.
.. rubric:: 3. Converting between native C++ and Python types
In the previous two cases we had a native type in one language and a wrapper in
the other. Now, we have native types on both sides and we convert between them.
.. code-block:: cpp
void print_vector(const std::vector<int> &v) {
for (auto item : v)
std::cout << item << "\n";
}
.. code-block:: pycon
>>> print_vector([1, 2, 3])
1 2 3
In this case, pybind11 will construct a new ``std::vector<int>`` and copy each
element from the Python ``list``. The newly constructed object will be passed
to ``print_vector``. The same thing happens in the other direction: a new
``list`` is made to match the value returned from C++.
Lots of these conversions are supported out of the box, as shown in the table
below. They are very convenient, but keep in mind that these conversions are
fundamentally based on copying data. This is perfectly fine for small immutable
types but it may become quite expensive for large data structures. This can be
avoided by overriding the automatic conversion with a custom wrapper (i.e. the
above-mentioned approach 1). This requires some manual effort and more details
are available in the :ref:`opaque` section.
.. _conversion_table:
List of all builtin conversions
-------------------------------
The following basic data types are supported out of the box (some may require
an additional extension header to be included). To pass other data structures
as arguments and return values, refer to the section on binding :ref:`classes`.
+------------------------------------+---------------------------+-------------------------------+
| Data type | Description | Header file |
+====================================+===========================+===============================+
| ``int8_t``, ``uint8_t`` | 8-bit integers | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``int16_t``, ``uint16_t`` | 16-bit integers | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``int32_t``, ``uint32_t`` | 32-bit integers | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``int64_t``, ``uint64_t`` | 64-bit integers | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``ssize_t``, ``size_t`` | Platform-dependent size | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``float``, ``double`` | Floating point types | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``bool`` | Two-state Boolean type | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``char`` | Character literal | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``char16_t`` | UTF-16 character literal | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``char32_t`` | UTF-32 character literal | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``wchar_t`` | Wide character literal | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``const char *`` | UTF-8 string literal | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``const char16_t *`` | UTF-16 string literal | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``const char32_t *`` | UTF-32 string literal | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``const wchar_t *`` | Wide string literal | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::string`` | STL dynamic UTF-8 string | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::u16string`` | STL dynamic UTF-16 string | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::u32string`` | STL dynamic UTF-32 string | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::wstring`` | STL dynamic wide string | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::string_view``, | STL C++17 string views | :file:`pybind11/pybind11.h` |
| ``std::u16string_view``, etc. | | |
+------------------------------------+---------------------------+-------------------------------+
| ``std::pair<T1, T2>`` | Pair of two custom types | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::tuple<...>`` | Arbitrary tuple of types | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::reference_wrapper<...>`` | Reference type wrapper | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::complex<T>`` | Complex numbers | :file:`pybind11/complex.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::array<T, Size>`` | STL static array | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::vector<T>`` | STL dynamic array | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::deque<T>`` | STL double-ended queue | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::valarray<T>`` | STL value array | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::list<T>`` | STL linked list | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::map<T1, T2>`` | STL ordered map | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::unordered_map<T1, T2>`` | STL unordered map | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::set<T>`` | STL ordered set | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::unordered_set<T>`` | STL unordered set | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::optional<T>`` | STL optional type (C++17) | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::experimental::optional<T>`` | STL optional type (exp.) | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::variant<...>`` | Type-safe union (C++17) | :file:`pybind11/stl.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::function<...>`` | STL polymorphic function | :file:`pybind11/functional.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::chrono::duration<...>`` | STL time duration | :file:`pybind11/chrono.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``std::chrono::time_point<...>`` | STL date/time | :file:`pybind11/chrono.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``Eigen::Matrix<...>`` | Eigen: dense matrix | :file:`pybind11/eigen.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``Eigen::Map<...>`` | Eigen: mapped memory | :file:`pybind11/eigen.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``Eigen::SparseMatrix<...>`` | Eigen: sparse matrix | :file:`pybind11/eigen.h` |
+------------------------------------+---------------------------+-------------------------------+

View File

@ -0,0 +1,240 @@
STL containers
##############
Automatic conversion
====================
When including the additional header file :file:`pybind11/stl.h`, conversions
between ``std::vector<>``/``std::deque<>``/``std::list<>``/``std::array<>``,
``std::set<>``/``std::unordered_set<>``, and
``std::map<>``/``std::unordered_map<>`` and the Python ``list``, ``set`` and
``dict`` data structures are automatically enabled. The types ``std::pair<>``
and ``std::tuple<>`` are already supported out of the box with just the core
:file:`pybind11/pybind11.h` header.
The major downside of these implicit conversions is that containers must be
converted (i.e. copied) on every Python->C++ and C++->Python transition, which
can have implications on the program semantics and performance. Please read the
next sections for more details and alternative approaches that avoid this.
.. note::
Arbitrary nesting of any of these types is possible.
.. seealso::
The file :file:`tests/test_stl.cpp` contains a complete
example that demonstrates how to pass STL data types in more detail.
.. _cpp17_container_casters:
C++17 library containers
========================
The :file:`pybind11/stl.h` header also includes support for ``std::optional<>``
and ``std::variant<>``. These require a C++17 compiler and standard library.
In C++14 mode, ``std::experimental::optional<>`` is supported if available.
Various versions of these containers also exist for C++11 (e.g. in Boost).
pybind11 provides an easy way to specialize the ``type_caster`` for such
types:
.. code-block:: cpp
// `boost::optional` as an example -- can be any `std::optional`-like container
namespace pybind11 { namespace detail {
template <typename T>
struct type_caster<boost::optional<T>> : optional_caster<boost::optional<T>> {};
}}
The above should be placed in a header file and included in all translation units
where automatic conversion is needed. Similarly, a specialization can be provided
for custom variant types:
.. code-block:: cpp
// `boost::variant` as an example -- can be any `std::variant`-like container
namespace pybind11 { namespace detail {
template <typename... Ts>
struct type_caster<boost::variant<Ts...>> : variant_caster<boost::variant<Ts...>> {};
// Specifies the function used to visit the variant -- `apply_visitor` instead of `visit`
template <>
struct visit_helper<boost::variant> {
template <typename... Args>
static auto call(Args &&...args) -> decltype(boost::apply_visitor(args...)) {
return boost::apply_visitor(args...);
}
};
}} // namespace pybind11::detail
The ``visit_helper`` specialization is not required if your ``name::variant`` provides
a ``name::visit()`` function. For any other function name, the specialization must be
included to tell pybind11 how to visit the variant.
.. note::
pybind11 only supports the modern implementation of ``boost::variant``
which makes use of variadic templates. This requires Boost 1.56 or newer.
Additionally, on Windows, MSVC 2017 is required because ``boost::variant``
falls back to the old non-variadic implementation on MSVC 2015.
.. _opaque:
Making opaque types
===================
pybind11 heavily relies on a template matching mechanism to convert parameters
and return values that are constructed from STL data types such as vectors,
linked lists, hash tables, etc. This even works in a recursive manner, for
instance to deal with lists of hash maps of pairs of elementary and custom
types, etc.
However, a fundamental limitation of this approach is that internal conversions
between Python and C++ types involve a copy operation that prevents
pass-by-reference semantics. What does this mean?
Suppose we bind the following function
.. code-block:: cpp
void append_1(std::vector<int> &v) {
v.push_back(1);
}
and call it from Python, the following happens:
.. code-block:: pycon
>>> v = [5, 6]
>>> append_1(v)
>>> print(v)
[5, 6]
As you can see, when passing STL data structures by reference, modifications
are not propagated back the Python side. A similar situation arises when
exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
functions:
.. code-block:: cpp
/* ... definition ... */
class MyClass {
std::vector<int> contents;
};
/* ... binding code ... */
py::class_<MyClass>(m, "MyClass")
.def(py::init<>())
.def_readwrite("contents", &MyClass::contents);
In this case, properties can be read and written in their entirety. However, an
``append`` operation involving such a list type has no effect:
.. code-block:: pycon
>>> m = MyClass()
>>> m.contents = [5, 6]
>>> print(m.contents)
[5, 6]
>>> m.contents.append(7)
>>> print(m.contents)
[5, 6]
Finally, the involved copy operations can be costly when dealing with very
large lists. To deal with all of the above situations, pybind11 provides a
macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based
conversion machinery of types, thus rendering them *opaque*. The contents of
opaque objects are never inspected or extracted, hence they *can* be passed by
reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
the declaration
.. code-block:: cpp
PYBIND11_MAKE_OPAQUE(std::vector<int>);
before any binding code (e.g. invocations to ``class_::def()``, etc.). This
macro must be specified at the top level (and outside of any namespaces), since
it instantiates a partial template overload. If your binding code consists of
multiple compilation units, it must be present in every file (typically via a
common header) preceding any usage of ``std::vector<int>``. Opaque types must
also have a corresponding ``class_`` declaration to associate them with a name
in Python, and to define a set of available operations, e.g.:
.. code-block:: cpp
py::class_<std::vector<int>>(m, "IntVector")
.def(py::init<>())
.def("clear", &std::vector<int>::clear)
.def("pop_back", &std::vector<int>::pop_back)
.def("__len__", [](const std::vector<int> &v) { return v.size(); })
.def("__iter__", [](std::vector<int> &v) {
return py::make_iterator(v.begin(), v.end());
}, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
// ....
.. seealso::
The file :file:`tests/test_opaque_types.cpp` contains a complete
example that demonstrates how to create and expose opaque types using
pybind11 in more detail.
.. _stl_bind:
Binding STL containers
======================
The ability to expose STL containers as native Python objects is a fairly
common request, hence pybind11 also provides an optional header file named
:file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try
to match the behavior of their native Python counterparts as much as possible.
The following example showcases usage of :file:`pybind11/stl_bind.h`:
.. code-block:: cpp
// Don't forget this
#include <pybind11/stl_bind.h>
PYBIND11_MAKE_OPAQUE(std::vector<int>);
PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);
// ...
// later in binding code:
py::bind_vector<std::vector<int>>(m, "VectorInt");
py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");
When binding STL containers pybind11 considers the types of the container's
elements to decide whether the container should be confined to the local module
(via the :ref:`module_local` feature). If the container element types are
anything other than already-bound custom types bound without
``py::module_local()`` the container binding will have ``py::module_local()``
applied. This includes converting types such as numeric types, strings, Eigen
types; and types that have not yet been bound at the time of the stl container
binding. This module-local binding is designed to avoid potential conflicts
between module bindings (for example, from two separate modules each attempting
to bind ``std::vector<int>`` as a python type).
It is possible to override this behavior to force a definition to be either
module-local or global. To do so, you can pass the attributes
``py::module_local()`` (to make the binding module-local) or
``py::module_local(false)`` (to make the binding global) into the
``py::bind_vector`` or ``py::bind_map`` arguments:
.. code-block:: cpp
py::bind_vector<std::vector<int>>(m, "VectorInt", py::module_local(false));
Note, however, that such a global binding would make it impossible to load this
module at the same time as any other pybind module that also attempts to bind
the same container type (``std::vector<int>`` in the above example).
See :ref:`module_local` for more details on module-local bindings.
.. seealso::
The file :file:`tests/test_stl_binders.cpp` shows how to use the
convenience STL container wrappers.

View File

@ -0,0 +1,305 @@
Strings, bytes and Unicode conversions
######################################
.. note::
This section discusses string handling in terms of Python 3 strings. For
Python 2.7, replace all occurrences of ``str`` with ``unicode`` and
``bytes`` with ``str``. Python 2.7 users may find it best to use ``from
__future__ import unicode_literals`` to avoid unintentionally using ``str``
instead of ``unicode``.
Passing Python strings to C++
=============================
When a Python ``str`` is passed from Python to a C++ function that accepts
``std::string`` or ``char *`` as arguments, pybind11 will encode the Python
string to UTF-8. All Python ``str`` can be encoded in UTF-8, so this operation
does not fail.
The C++ language is encoding agnostic. It is the responsibility of the
programmer to track encodings. It's often easiest to simply `use UTF-8
everywhere <http://utf8everywhere.org/>`_.
.. code-block:: c++
m.def("utf8_test",
[](const std::string &s) {
cout << "utf-8 is icing on the cake.\n";
cout << s;
}
);
m.def("utf8_charptr",
[](const char *s) {
cout << "My favorite food is\n";
cout << s;
}
);
.. code-block:: python
>>> utf8_test('🎂')
utf-8 is icing on the cake.
🎂
>>> utf8_charptr('🍕')
My favorite food is
🍕
.. note::
Some terminal emulators do not support UTF-8 or emoji fonts and may not
display the example above correctly.
The results are the same whether the C++ function accepts arguments by value or
reference, and whether or not ``const`` is used.
Passing bytes to C++
--------------------
A Python ``bytes`` object will be passed to C++ functions that accept
``std::string`` or ``char*`` *without* conversion. On Python 3, in order to
make a function *only* accept ``bytes`` (and not ``str``), declare it as taking
a ``py::bytes`` argument.
Returning C++ strings to Python
===============================
When a C++ function returns a ``std::string`` or ``char*`` to a Python caller,
**pybind11 will assume that the string is valid UTF-8** and will decode it to a
native Python ``str``, using the same API as Python uses to perform
``bytes.decode('utf-8')``. If this implicit conversion fails, pybind11 will
raise a ``UnicodeDecodeError``.
.. code-block:: c++
m.def("std_string_return",
[]() {
return std::string("This string needs to be UTF-8 encoded");
}
);
.. code-block:: python
>>> isinstance(example.std_string_return(), str)
True
Because UTF-8 is inclusive of pure ASCII, there is never any issue with
returning a pure ASCII string to Python. If there is any possibility that the
string is not pure ASCII, it is necessary to ensure the encoding is valid
UTF-8.
.. warning::
Implicit conversion assumes that a returned ``char *`` is null-terminated.
If there is no null terminator a buffer overrun will occur.
Explicit conversions
--------------------
If some C++ code constructs a ``std::string`` that is not a UTF-8 string, one
can perform a explicit conversion and return a ``py::str`` object. Explicit
conversion has the same overhead as implicit conversion.
.. code-block:: c++
// This uses the Python C API to convert Latin-1 to Unicode
m.def("str_output",
[]() {
std::string s = "Send your r\xe9sum\xe9 to Alice in HR"; // Latin-1
py::str py_s = PyUnicode_DecodeLatin1(s.data(), s.length());
return py_s;
}
);
.. code-block:: python
>>> str_output()
'Send your résumé to Alice in HR'
The `Python C API
<https://docs.python.org/3/c-api/unicode.html#built-in-codecs>`_ provides
several built-in codecs.
One could also use a third party encoding library such as libiconv to transcode
to UTF-8.
Return C++ strings without conversion
-------------------------------------
If the data in a C++ ``std::string`` does not represent text and should be
returned to Python as ``bytes``, then one can return the data as a
``py::bytes`` object.
.. code-block:: c++
m.def("return_bytes",
[]() {
std::string s("\xba\xd0\xba\xd0"); // Not valid UTF-8
return py::bytes(s); // Return the data without transcoding
}
);
.. code-block:: python
>>> example.return_bytes()
b'\xba\xd0\xba\xd0'
Note the asymmetry: pybind11 will convert ``bytes`` to ``std::string`` without
encoding, but cannot convert ``std::string`` back to ``bytes`` implicitly.
.. code-block:: c++
m.def("asymmetry",
[](std::string s) { // Accepts str or bytes from Python
return s; // Looks harmless, but implicitly converts to str
}
);
.. code-block:: python
>>> isinstance(example.asymmetry(b"have some bytes"), str)
True
>>> example.asymmetry(b"\xba\xd0\xba\xd0") # invalid utf-8 as bytes
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xba in position 0: invalid start byte
Wide character strings
======================
When a Python ``str`` is passed to a C++ function expecting ``std::wstring``,
``wchar_t*``, ``std::u16string`` or ``std::u32string``, the ``str`` will be
encoded to UTF-16 or UTF-32 depending on how the C++ compiler implements each
type, in the platform's native endianness. When strings of these types are
returned, they are assumed to contain valid UTF-16 or UTF-32, and will be
decoded to Python ``str``.
.. code-block:: c++
#define UNICODE
#include <windows.h>
m.def("set_window_text",
[](HWND hwnd, std::wstring s) {
// Call SetWindowText with null-terminated UTF-16 string
::SetWindowText(hwnd, s.c_str());
}
);
m.def("get_window_text",
[](HWND hwnd) {
const int buffer_size = ::GetWindowTextLength(hwnd) + 1;
auto buffer = std::make_unique< wchar_t[] >(buffer_size);
::GetWindowText(hwnd, buffer.data(), buffer_size);
std::wstring text(buffer.get());
// wstring will be converted to Python str
return text;
}
);
.. warning::
Wide character strings may not work as described on Python 2.7 or Python
3.3 compiled with ``--enable-unicode=ucs2``.
Strings in multibyte encodings such as Shift-JIS must transcoded to a
UTF-8/16/32 before being returned to Python.
Character literals
==================
C++ functions that accept character literals as input will receive the first
character of a Python ``str`` as their input. If the string is longer than one
Unicode character, trailing characters will be ignored.
When a character literal is returned from C++ (such as a ``char`` or a
``wchar_t``), it will be converted to a ``str`` that represents the single
character.
.. code-block:: c++
m.def("pass_char", [](char c) { return c; });
m.def("pass_wchar", [](wchar_t w) { return w; });
.. code-block:: python
>>> example.pass_char('A')
'A'
While C++ will cast integers to character types (``char c = 0x65;``), pybind11
does not convert Python integers to characters implicitly. The Python function
``chr()`` can be used to convert integers to characters.
.. code-block:: python
>>> example.pass_char(0x65)
TypeError
>>> example.pass_char(chr(0x65))
'A'
If the desire is to work with an 8-bit integer, use ``int8_t`` or ``uint8_t``
as the argument type.
Grapheme clusters
-----------------
A single grapheme may be represented by two or more Unicode characters. For
example 'é' is usually represented as U+00E9 but can also be expressed as the
combining character sequence U+0065 U+0301 (that is, the letter 'e' followed by
a combining acute accent). The combining character will be lost if the
two-character sequence is passed as an argument, even though it renders as a
single grapheme.
.. code-block:: python
>>> example.pass_wchar('é')
'é'
>>> combining_e_acute = 'e' + '\u0301'
>>> combining_e_acute
'é'
>>> combining_e_acute == 'é'
False
>>> example.pass_wchar(combining_e_acute)
'e'
Normalizing combining characters before passing the character literal to C++
may resolve *some* of these issues:
.. code-block:: python
>>> example.pass_wchar(unicodedata.normalize('NFC', combining_e_acute))
'é'
In some languages (Thai for example), there are `graphemes that cannot be
expressed as a single Unicode code point
<http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries>`_, so there is
no way to capture them in a C++ character type.
C++17 string views
==================
C++17 string views are automatically supported when compiling in C++17 mode.
They follow the same rules for encoding and decoding as the corresponding STL
string type (for example, a ``std::u16string_view`` argument will be passed
UTF-16-encoded data, and a returned ``std::string_view`` will be decoded as
UTF-8).
References
==========
* `The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!) <https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/>`_
* `C++ - Using STL Strings at Win32 API Boundaries <https://msdn.microsoft.com/en-ca/magazine/mt238407.aspx>`_

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,261 @@
.. _embedding:
Embedding the interpreter
#########################
While pybind11 is mainly focused on extending Python using C++, it's also
possible to do the reverse: embed the Python interpreter into a C++ program.
All of the other documentation pages still apply here, so refer to them for
general pybind11 usage. This section will cover a few extra things required
for embedding.
Getting started
===============
A basic executable with an embedded interpreter can be created with just a few
lines of CMake and the ``pybind11::embed`` target, as shown below. For more
information, see :doc:`/compiling`.
.. code-block:: cmake
cmake_minimum_required(VERSION 3.0)
project(example)
find_package(pybind11 REQUIRED) # or `add_subdirectory(pybind11)`
add_executable(example main.cpp)
target_link_libraries(example PRIVATE pybind11::embed)
The essential structure of the ``main.cpp`` file looks like this:
.. code-block:: cpp
#include <pybind11/embed.h> // everything needed for embedding
namespace py = pybind11;
int main() {
py::scoped_interpreter guard{}; // start the interpreter and keep it alive
py::print("Hello, World!"); // use the Python API
}
The interpreter must be initialized before using any Python API, which includes
all the functions and classes in pybind11. The RAII guard class `scoped_interpreter`
takes care of the interpreter lifetime. After the guard is destroyed, the interpreter
shuts down and clears its memory. No Python functions can be called after this.
Executing Python code
=====================
There are a few different ways to run Python code. One option is to use `eval`,
`exec` or `eval_file`, as explained in :ref:`eval`. Here is a quick example in
the context of an executable with an embedded interpreter:
.. code-block:: cpp
#include <pybind11/embed.h>
namespace py = pybind11;
int main() {
py::scoped_interpreter guard{};
py::exec(R"(
kwargs = dict(name="World", number=42)
message = "Hello, {name}! The answer is {number}".format(**kwargs)
print(message)
)");
}
Alternatively, similar results can be achieved using pybind11's API (see
:doc:`/advanced/pycpp/index` for more details).
.. code-block:: cpp
#include <pybind11/embed.h>
namespace py = pybind11;
using namespace py::literals;
int main() {
py::scoped_interpreter guard{};
auto kwargs = py::dict("name"_a="World", "number"_a=42);
auto message = "Hello, {name}! The answer is {number}"_s.format(**kwargs);
py::print(message);
}
The two approaches can also be combined:
.. code-block:: cpp
#include <pybind11/embed.h>
#include <iostream>
namespace py = pybind11;
using namespace py::literals;
int main() {
py::scoped_interpreter guard{};
auto locals = py::dict("name"_a="World", "number"_a=42);
py::exec(R"(
message = "Hello, {name}! The answer is {number}".format(**locals())
)", py::globals(), locals);
auto message = locals["message"].cast<std::string>();
std::cout << message;
}
Importing modules
=================
Python modules can be imported using `module::import()`:
.. code-block:: cpp
py::module sys = py::module::import("sys");
py::print(sys.attr("path"));
For convenience, the current working directory is included in ``sys.path`` when
embedding the interpreter. This makes it easy to import local Python files:
.. code-block:: python
"""calc.py located in the working directory"""
def add(i, j):
return i + j
.. code-block:: cpp
py::module calc = py::module::import("calc");
py::object result = calc.attr("add")(1, 2);
int n = result.cast<int>();
assert(n == 3);
Modules can be reloaded using `module::reload()` if the source is modified e.g.
by an external process. This can be useful in scenarios where the application
imports a user defined data processing script which needs to be updated after
changes by the user. Note that this function does not reload modules recursively.
.. _embedding_modules:
Adding embedded modules
=======================
Embedded binary modules can be added using the `PYBIND11_EMBEDDED_MODULE` macro.
Note that the definition must be placed at global scope. They can be imported
like any other module.
.. code-block:: cpp
#include <pybind11/embed.h>
namespace py = pybind11;
PYBIND11_EMBEDDED_MODULE(fast_calc, m) {
// `m` is a `py::module` which is used to bind functions and classes
m.def("add", [](int i, int j) {
return i + j;
});
}
int main() {
py::scoped_interpreter guard{};
auto fast_calc = py::module::import("fast_calc");
auto result = fast_calc.attr("add")(1, 2).cast<int>();
assert(result == 3);
}
Unlike extension modules where only a single binary module can be created, on
the embedded side an unlimited number of modules can be added using multiple
`PYBIND11_EMBEDDED_MODULE` definitions (as long as they have unique names).
These modules are added to Python's list of builtins, so they can also be
imported in pure Python files loaded by the interpreter. Everything interacts
naturally:
.. code-block:: python
"""py_module.py located in the working directory"""
import cpp_module
a = cpp_module.a
b = a + 1
.. code-block:: cpp
#include <pybind11/embed.h>
namespace py = pybind11;
PYBIND11_EMBEDDED_MODULE(cpp_module, m) {
m.attr("a") = 1;
}
int main() {
py::scoped_interpreter guard{};
auto py_module = py::module::import("py_module");
auto locals = py::dict("fmt"_a="{} + {} = {}", **py_module.attr("__dict__"));
assert(locals["a"].cast<int>() == 1);
assert(locals["b"].cast<int>() == 2);
py::exec(R"(
c = a + b
message = fmt.format(a, b, c)
)", py::globals(), locals);
assert(locals["c"].cast<int>() == 3);
assert(locals["message"].cast<std::string>() == "1 + 2 = 3");
}
Interpreter lifetime
====================
The Python interpreter shuts down when `scoped_interpreter` is destroyed. After
this, creating a new instance will restart the interpreter. Alternatively, the
`initialize_interpreter` / `finalize_interpreter` pair of functions can be used
to directly set the state at any time.
Modules created with pybind11 can be safely re-initialized after the interpreter
has been restarted. However, this may not apply to third-party extension modules.
The issue is that Python itself cannot completely unload extension modules and
there are several caveats with regard to interpreter restarting. In short, not
all memory may be freed, either due to Python reference cycles or user-created
global data. All the details can be found in the CPython documentation.
.. warning::
Creating two concurrent `scoped_interpreter` guards is a fatal error. So is
calling `initialize_interpreter` for a second time after the interpreter
has already been initialized.
Do not use the raw CPython API functions ``Py_Initialize`` and
``Py_Finalize`` as these do not properly handle the lifetime of
pybind11's internal data.
Sub-interpreter support
=======================
Creating multiple copies of `scoped_interpreter` is not possible because it
represents the main Python interpreter. Sub-interpreters are something different
and they do permit the existence of multiple interpreters. This is an advanced
feature of the CPython API and should be handled with care. pybind11 does not
currently offer a C++ interface for sub-interpreters, so refer to the CPython
documentation for all the details regarding this feature.
We'll just mention a couple of caveats the sub-interpreters support in pybind11:
1. Sub-interpreters will not receive independent copies of embedded modules.
Instead, these are shared and modifications in one interpreter may be
reflected in another.
2. Managing multiple threads, multiple interpreters and the GIL can be
challenging and there are several caveats here, even within the pure
CPython API (please refer to the Python docs for details). As for
pybind11, keep in mind that `gil_scoped_release` and `gil_scoped_acquire`
do not take sub-interpreters into account.

View File

@ -0,0 +1,142 @@
Exceptions
##########
Built-in exception translation
==============================
When C++ code invoked from Python throws an ``std::exception``, it is
automatically converted into a Python ``Exception``. pybind11 defines multiple
special exception classes that will map to different types of Python
exceptions:
.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
+--------------------------------------+--------------------------------------+
| C++ exception type | Python exception type |
+======================================+======================================+
| :class:`std::exception` | ``RuntimeError`` |
+--------------------------------------+--------------------------------------+
| :class:`std::bad_alloc` | ``MemoryError`` |
+--------------------------------------+--------------------------------------+
| :class:`std::domain_error` | ``ValueError`` |
+--------------------------------------+--------------------------------------+
| :class:`std::invalid_argument` | ``ValueError`` |
+--------------------------------------+--------------------------------------+
| :class:`std::length_error` | ``ValueError`` |
+--------------------------------------+--------------------------------------+
| :class:`std::out_of_range` | ``IndexError`` |
+--------------------------------------+--------------------------------------+
| :class:`std::range_error` | ``ValueError`` |
+--------------------------------------+--------------------------------------+
| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to implement |
| | custom iterators) |
+--------------------------------------+--------------------------------------+
| :class:`pybind11::index_error` | ``IndexError`` (used to indicate out |
| | of bounds access in ``__getitem__``, |
| | ``__setitem__``, etc.) |
+--------------------------------------+--------------------------------------+
| :class:`pybind11::value_error` | ``ValueError`` (used to indicate |
| | wrong value passed in |
| | ``container.remove(...)``) |
+--------------------------------------+--------------------------------------+
| :class:`pybind11::key_error` | ``KeyError`` (used to indicate out |
| | of bounds access in ``__getitem__``, |
| | ``__setitem__`` in dict-like |
| | objects, etc.) |
+--------------------------------------+--------------------------------------+
| :class:`pybind11::error_already_set` | Indicates that the Python exception |
| | flag has already been set via Python |
| | API calls from C++ code; this C++ |
| | exception is used to propagate such |
| | a Python exception back to Python. |
+--------------------------------------+--------------------------------------+
When a Python function invoked from C++ throws an exception, it is converted
into a C++ exception of type :class:`error_already_set` whose string payload
contains a textual summary.
There is also a special exception :class:`cast_error` that is thrown by
:func:`handle::call` when the input arguments cannot be converted to Python
objects.
Registering custom translators
==============================
If the default exception conversion policy described above is insufficient,
pybind11 also provides support for registering custom exception translators.
To register a simple exception conversion that translates a C++ exception into
a new Python exception using the C++ exception's ``what()`` method, a helper
function is available:
.. code-block:: cpp
py::register_exception<CppExp>(module, "PyExp");
This call creates a Python exception class with the name ``PyExp`` in the given
module and automatically converts any encountered exceptions of type ``CppExp``
into Python exceptions of type ``PyExp``.
When more advanced exception translation is needed, the function
``py::register_exception_translator(translator)`` can be used to register
functions that can translate arbitrary exception types (and which may include
additional logic to do so). The function takes a stateless callable (e.g. a
function pointer or a lambda function without captured variables) with the call
signature ``void(std::exception_ptr)``.
When a C++ exception is thrown, the registered exception translators are tried
in reverse order of registration (i.e. the last registered translator gets the
first shot at handling the exception).
Inside the translator, ``std::rethrow_exception`` should be used within
a try block to re-throw the exception. One or more catch clauses to catch
the appropriate exceptions should then be used with each clause using
``PyErr_SetString`` to set a Python exception or ``ex(string)`` to set
the python exception to a custom exception type (see below).
To declare a custom Python exception type, declare a ``py::exception`` variable
and use this in the associated exception translator (note: it is often useful
to make this a static declaration when using it inside a lambda expression
without requiring capturing).
The following example demonstrates this for a hypothetical exception classes
``MyCustomException`` and ``OtherException``: the first is translated to a
custom python exception ``MyCustomError``, while the second is translated to a
standard python RuntimeError:
.. code-block:: cpp
static py::exception<MyCustomException> exc(m, "MyCustomError");
py::register_exception_translator([](std::exception_ptr p) {
try {
if (p) std::rethrow_exception(p);
} catch (const MyCustomException &e) {
exc(e.what());
} catch (const OtherException &e) {
PyErr_SetString(PyExc_RuntimeError, e.what());
}
});
Multiple exceptions can be handled by a single translator, as shown in the
example above. If the exception is not caught by the current translator, the
previously registered one gets a chance.
If none of the registered exception translators is able to handle the
exception, it is handled by the default converter as described in the previous
section.
.. seealso::
The file :file:`tests/test_exceptions.cpp` contains examples
of various custom exception translators and custom exception types.
.. note::
You must call either ``PyErr_SetString`` or a custom exception's call
operator (``exc(string)``) for every exception caught in a custom exception
translator. Failure to do so will cause Python to crash with ``SystemError:
error return without exception set``.
Exceptions that you do not plan to handle should simply not be caught, or
may be explicitly (re-)thrown to delegate it to the other,
previously-declared existing exception translators.

View File

@ -0,0 +1,507 @@
Functions
#########
Before proceeding with this section, make sure that you are already familiar
with the basics of binding functions and classes, as explained in :doc:`/basics`
and :doc:`/classes`. The following guide is applicable to both free and member
functions, i.e. *methods* in Python.
.. _return_value_policies:
Return value policies
=====================
Python and C++ use fundamentally different ways of managing the memory and
lifetime of objects managed by them. This can lead to issues when creating
bindings for functions that return a non-trivial type. Just by looking at the
type information, it is not clear whether Python should take charge of the
returned value and eventually free its resources, or if this is handled on the
C++ side. For this reason, pybind11 provides a several *return value policy*
annotations that can be passed to the :func:`module::def` and
:func:`class_::def` functions. The default policy is
:enum:`return_value_policy::automatic`.
Return value policies are tricky, and it's very important to get them right.
Just to illustrate what can go wrong, consider the following simple example:
.. code-block:: cpp
/* Function declaration */
Data *get_data() { return _data; /* (pointer to a static data structure) */ }
...
/* Binding code */
m.def("get_data", &get_data); // <-- KABOOM, will cause crash when called from Python
What's going on here? When ``get_data()`` is called from Python, the return
value (a native C++ type) must be wrapped to turn it into a usable Python type.
In this case, the default return value policy (:enum:`return_value_policy::automatic`)
causes pybind11 to assume ownership of the static ``_data`` instance.
When Python's garbage collector eventually deletes the Python
wrapper, pybind11 will also attempt to delete the C++ instance (via ``operator
delete()``) due to the implied ownership. At this point, the entire application
will come crashing down, though errors could also be more subtle and involve
silent data corruption.
In the above example, the policy :enum:`return_value_policy::reference` should have
been specified so that the global data instance is only *referenced* without any
implied transfer of ownership, i.e.:
.. code-block:: cpp
m.def("get_data", &get_data, return_value_policy::reference);
On the other hand, this is not the right policy for many other situations,
where ignoring ownership could lead to resource leaks.
As a developer using pybind11, it's important to be familiar with the different
return value policies, including which situation calls for which one of them.
The following table provides an overview of available policies:
.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
+--------------------------------------------------+----------------------------------------------------------------------------+
| Return value policy | Description |
+==================================================+============================================================================+
| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
| | ownership. Python will call the destructor and delete operator when the |
| | object's reference count reaches zero. Undefined behavior ensues when the |
| | C++ side does the same, or when the data was not dynamically allocated. |
+--------------------------------------------------+----------------------------------------------------------------------------+
| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
| | This policy is comparably safe because the lifetimes of the two instances |
| | are decoupled. |
+--------------------------------------------------+----------------------------------------------------------------------------+
| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
| | that will be owned by Python. This policy is comparably safe because the |
| | lifetimes of the two instances (move source and destination) are decoupled.|
+--------------------------------------------------+----------------------------------------------------------------------------+
| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
| | responsible for managing the object's lifetime and deallocating it when |
| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
| | side deletes an object that is still referenced and used by Python. |
+--------------------------------------------------+----------------------------------------------------------------------------+
| :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime |
| | of a parent object, namely the implicit ``this``, or ``self`` argument of |
| | the called method or property. Internally, this policy works just like |
| | :enum:`return_value_policy::reference` but additionally applies a |
| | ``keep_alive<0, 1>`` *call policy* (described in the next section) that |
| | prevents the parent object from being garbage collected as long as the |
| | return value is referenced by Python. This is the default policy for |
| | property getters created via ``def_property``, ``def_readwrite``, etc. |
+--------------------------------------------------+----------------------------------------------------------------------------+
| :enum:`return_value_policy::automatic` | **Default policy.** This policy falls back to the policy |
| | :enum:`return_value_policy::take_ownership` when the return value is a |
| | pointer. Otherwise, it uses :enum:`return_value_policy::move` or |
| | :enum:`return_value_policy::copy` for rvalue and lvalue references, |
| | respectively. See above for a description of what all of these different |
| | policies do. |
+--------------------------------------------------+----------------------------------------------------------------------------+
| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
| | return value is a pointer. This is the default conversion policy for |
| | function arguments when calling Python functions manually from C++ code |
| | (i.e. via handle::operator()). You probably won't need to use this. |
+--------------------------------------------------+----------------------------------------------------------------------------+
Return value policies can also be applied to properties:
.. code-block:: cpp
class_<MyClass>(m, "MyClass")
.def_property("data", &MyClass::getData, &MyClass::setData,
py::return_value_policy::copy);
Technically, the code above applies the policy to both the getter and the
setter function, however, the setter doesn't really care about *return*
value policies which makes this a convenient terse syntax. Alternatively,
targeted arguments can be passed through the :class:`cpp_function` constructor:
.. code-block:: cpp
class_<MyClass>(m, "MyClass")
.def_property("data"
py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
py::cpp_function(&MyClass::setData)
);
.. warning::
Code with invalid return value policies might access uninitialized memory or
free data structures multiple times, which can lead to hard-to-debug
non-determinism and segmentation faults, hence it is worth spending the
time to understand all the different options in the table above.
.. note::
One important aspect of the above policies is that they only apply to
instances which pybind11 has *not* seen before, in which case the policy
clarifies essential questions about the return value's lifetime and
ownership. When pybind11 knows the instance already (as identified by its
type and address in memory), it will return the existing Python object
wrapper rather than creating a new copy.
.. note::
The next section on :ref:`call_policies` discusses *call policies* that can be
specified *in addition* to a return value policy from the list above. Call
policies indicate reference relationships that can involve both return values
and parameters of functions.
.. note::
As an alternative to elaborate call policies and lifetime management logic,
consider using smart pointers (see the section on :ref:`smart_pointers` for
details). Smart pointers can tell whether an object is still referenced from
C++ or Python, which generally eliminates the kinds of inconsistencies that
can lead to crashes or undefined behavior. For functions returning smart
pointers, it is not necessary to specify a return value policy.
.. _call_policies:
Additional call policies
========================
In addition to the above return value policies, further *call policies* can be
specified to indicate dependencies between parameters or ensure a certain state
for the function call.
Keep alive
----------
In general, this policy is required when the C++ object is any kind of container
and another object is being added to the container. ``keep_alive<Nurse, Patient>``
indicates that the argument with index ``Patient`` should be kept alive at least
until the argument with index ``Nurse`` is freed by the garbage collector. Argument
indices start at one, while zero refers to the return value. For methods, index
``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
with value ``None`` is detected at runtime, the call policy does nothing.
When the nurse is not a pybind11-registered type, the implementation internally
relies on the ability to create a *weak reference* to the nurse object. When
the nurse object is not a pybind11-registered type and does not support weak
references, an exception will be thrown.
Consider the following example: here, the binding code for a list append
operation ties the lifetime of the newly added element to the underlying
container:
.. code-block:: cpp
py::class_<List>(m, "List")
.def("append", &List::append, py::keep_alive<1, 2>());
For consistency, the argument indexing is identical for constructors. Index
``1`` still refers to the implicit ``this`` pointer, i.e. the object which is
being constructed. Index ``0`` refers to the return type which is presumed to
be ``void`` when a constructor is viewed like a function. The following example
ties the lifetime of the constructor element to the constructed object:
.. code-block:: cpp
py::class_<Nurse>(m, "Nurse")
.def(py::init<Patient &>(), py::keep_alive<1, 2>());
.. note::
``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
0) policies from Boost.Python.
Call guard
----------
The ``call_guard<T>`` policy allows any scope guard type ``T`` to be placed
around the function call. For example, this definition:
.. code-block:: cpp
m.def("foo", foo, py::call_guard<T>());
is equivalent to the following pseudocode:
.. code-block:: cpp
m.def("foo", [](args...) {
T scope_guard;
return foo(args...); // forwarded arguments
});
The only requirement is that ``T`` is default-constructible, but otherwise any
scope guard will work. This is very useful in combination with `gil_scoped_release`.
See :ref:`gil`.
Multiple guards can also be specified as ``py::call_guard<T1, T2, T3...>``. The
constructor order is left to right and destruction happens in reverse.
.. seealso::
The file :file:`tests/test_call_policies.cpp` contains a complete example
that demonstrates using `keep_alive` and `call_guard` in more detail.
.. _python_objects_as_args:
Python objects as arguments
===========================
pybind11 exposes all major Python types using thin C++ wrapper classes. These
wrapper classes can also be used as parameters of functions in bindings, which
makes it possible to directly work with native Python types on the C++ side.
For instance, the following statement iterates over a Python ``dict``:
.. code-block:: cpp
void print_dict(py::dict dict) {
/* Easily interact with Python types */
for (auto item : dict)
std::cout << "key=" << std::string(py::str(item.first)) << ", "
<< "value=" << std::string(py::str(item.second)) << std::endl;
}
It can be exported:
.. code-block:: cpp
m.def("print_dict", &print_dict);
And used in Python as usual:
.. code-block:: pycon
>>> print_dict({'foo': 123, 'bar': 'hello'})
key=foo, value=123
key=bar, value=hello
For more information on using Python objects in C++, see :doc:`/advanced/pycpp/index`.
Accepting \*args and \*\*kwargs
===============================
Python provides a useful mechanism to define functions that accept arbitrary
numbers of arguments and keyword arguments:
.. code-block:: python
def generic(*args, **kwargs):
... # do something with args and kwargs
Such functions can also be created using pybind11:
.. code-block:: cpp
void generic(py::args args, py::kwargs kwargs) {
/// .. do something with args
if (kwargs)
/// .. do something with kwargs
}
/// Binding code
m.def("generic", &generic);
The class ``py::args`` derives from ``py::tuple`` and ``py::kwargs`` derives
from ``py::dict``.
You may also use just one or the other, and may combine these with other
arguments as long as the ``py::args`` and ``py::kwargs`` arguments are the last
arguments accepted by the function.
Please refer to the other examples for details on how to iterate over these,
and on how to cast their entries into C++ objects. A demonstration is also
available in ``tests/test_kwargs_and_defaults.cpp``.
.. note::
When combining \*args or \*\*kwargs with :ref:`keyword_args` you should
*not* include ``py::arg`` tags for the ``py::args`` and ``py::kwargs``
arguments.
Default arguments revisited
===========================
The section on :ref:`default_args` previously discussed basic usage of default
arguments using pybind11. One noteworthy aspect of their implementation is that
default arguments are converted to Python objects right at declaration time.
Consider the following example:
.. code-block:: cpp
py::class_<MyClass>("MyClass")
.def("myFunction", py::arg("arg") = SomeType(123));
In this case, pybind11 must already be set up to deal with values of the type
``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
exception will be thrown.
Another aspect worth highlighting is that the "preview" of the default argument
in the function signature is generated using the object's ``__repr__`` method.
If not available, the signature may not be very helpful, e.g.:
.. code-block:: pycon
FUNCTIONS
...
| myFunction(...)
| Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
...
The first way of addressing this is by defining ``SomeType.__repr__``.
Alternatively, it is possible to specify the human-readable preview of the
default argument manually using the ``arg_v`` notation:
.. code-block:: cpp
py::class_<MyClass>("MyClass")
.def("myFunction", py::arg_v("arg", SomeType(123), "SomeType(123)"));
Sometimes it may be necessary to pass a null pointer value as a default
argument. In this case, remember to cast it to the underlying type in question,
like so:
.. code-block:: cpp
py::class_<MyClass>("MyClass")
.def("myFunction", py::arg("arg") = (SomeType *) nullptr);
.. _nonconverting_arguments:
Non-converting arguments
========================
Certain argument types may support conversion from one type to another. Some
examples of conversions are:
* :ref:`implicit_conversions` declared using ``py::implicitly_convertible<A,B>()``
* Calling a method accepting a double with an integer argument
* Calling a ``std::complex<float>`` argument with a non-complex python type
(for example, with a float). (Requires the optional ``pybind11/complex.h``
header).
* Calling a function taking an Eigen matrix reference with a numpy array of the
wrong type or of an incompatible data layout. (Requires the optional
``pybind11/eigen.h`` header).
This behaviour is sometimes undesirable: the binding code may prefer to raise
an error rather than convert the argument. This behaviour can be obtained
through ``py::arg`` by calling the ``.noconvert()`` method of the ``py::arg``
object, such as:
.. code-block:: cpp
m.def("floats_only", [](double f) { return 0.5 * f; }, py::arg("f").noconvert());
m.def("floats_preferred", [](double f) { return 0.5 * f; }, py::arg("f"));
Attempting the call the second function (the one without ``.noconvert()``) with
an integer will succeed, but attempting to call the ``.noconvert()`` version
will fail with a ``TypeError``:
.. code-block:: pycon
>>> floats_preferred(4)
2.0
>>> floats_only(4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: floats_only(): incompatible function arguments. The following argument types are supported:
1. (f: float) -> float
Invoked with: 4
You may, of course, combine this with the :var:`_a` shorthand notation (see
:ref:`keyword_args`) and/or :ref:`default_args`. It is also permitted to omit
the argument name by using the ``py::arg()`` constructor without an argument
name, i.e. by specifying ``py::arg().noconvert()``.
.. note::
When specifying ``py::arg`` options it is necessary to provide the same
number of options as the bound function has arguments. Thus if you want to
enable no-convert behaviour for just one of several arguments, you will
need to specify a ``py::arg()`` annotation for each argument with the
no-convert argument modified to ``py::arg().noconvert()``.
.. _none_arguments:
Allow/Prohibiting None arguments
================================
When a C++ type registered with :class:`py::class_` is passed as an argument to
a function taking the instance as pointer or shared holder (e.g. ``shared_ptr``
or a custom, copyable holder as described in :ref:`smart_pointers`), pybind
allows ``None`` to be passed from Python which results in calling the C++
function with ``nullptr`` (or an empty holder) for the argument.
To explicitly enable or disable this behaviour, using the
``.none`` method of the :class:`py::arg` object:
.. code-block:: cpp
py::class_<Dog>(m, "Dog").def(py::init<>());
py::class_<Cat>(m, "Cat").def(py::init<>());
m.def("bark", [](Dog *dog) -> std::string {
if (dog) return "woof!"; /* Called with a Dog instance */
else return "(no dog)"; /* Called with None, dog == nullptr */
}, py::arg("dog").none(true));
m.def("meow", [](Cat *cat) -> std::string {
// Can't be called with None argument
return "meow";
}, py::arg("cat").none(false));
With the above, the Python call ``bark(None)`` will return the string ``"(no
dog)"``, while attempting to call ``meow(None)`` will raise a ``TypeError``:
.. code-block:: pycon
>>> from animals import Dog, Cat, bark, meow
>>> bark(Dog())
'woof!'
>>> meow(Cat())
'meow'
>>> bark(None)
'(no dog)'
>>> meow(None)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: meow(): incompatible function arguments. The following argument types are supported:
1. (cat: animals.Cat) -> str
Invoked with: None
The default behaviour when the tag is unspecified is to allow ``None``.
.. note::
Even when ``.none(true)`` is specified for an argument, ``None`` will be converted to a
``nullptr`` *only* for custom and :ref:`opaque <opaque>` types. Pointers to built-in types
(``double *``, ``int *``, ...) and STL types (``std::vector<T> *``, ...; if ``pybind11/stl.h``
is included) are copied when converted to C++ (see :doc:`/advanced/cast/overview`) and will
not allow ``None`` as argument. To pass optional argument of these copied types consider
using ``std::optional<T>``
Overload resolution order
=========================
When a function or method with multiple overloads is called from Python,
pybind11 determines which overload to call in two passes. The first pass
attempts to call each overload without allowing argument conversion (as if
every argument had been specified as ``py::arg().noconvert()`` as described
above).
If no overload succeeds in the no-conversion first pass, a second pass is
attempted in which argument conversion is allowed (except where prohibited via
an explicit ``py::arg().noconvert()`` attribute in the function definition).
If the second pass also fails a ``TypeError`` is raised.
Within each pass, overloads are tried in the order they were registered with
pybind11.
What this means in practice is that pybind11 will prefer any overload that does
not require conversion of arguments to an overload that does, but otherwise prefers
earlier-defined overloads to later-defined ones.
.. note::
pybind11 does *not* further prioritize based on the number/pattern of
overloaded arguments. That is, pybind11 does not prioritize a function
requiring one conversion over one requiring three, but only prioritizes
overloads requiring no conversion at all to overloads that require
conversion of at least one argument.

View File

@ -0,0 +1,306 @@
Miscellaneous
#############
.. _macro_notes:
General notes regarding convenience macros
==========================================
pybind11 provides a few convenience macros such as
:func:`PYBIND11_DECLARE_HOLDER_TYPE` and ``PYBIND11_OVERLOAD_*``. Since these
are "just" macros that are evaluated in the preprocessor (which has no concept
of types), they *will* get confused by commas in a template argument; for
example, consider:
.. code-block:: cpp
PYBIND11_OVERLOAD(MyReturnType<T1, T2>, Class<T3, T4>, func)
The limitation of the C preprocessor interprets this as five arguments (with new
arguments beginning after each comma) rather than three. To get around this,
there are two alternatives: you can use a type alias, or you can wrap the type
using the ``PYBIND11_TYPE`` macro:
.. code-block:: cpp
// Version 1: using a type alias
using ReturnType = MyReturnType<T1, T2>;
using ClassType = Class<T3, T4>;
PYBIND11_OVERLOAD(ReturnType, ClassType, func);
// Version 2: using the PYBIND11_TYPE macro:
PYBIND11_OVERLOAD(PYBIND11_TYPE(MyReturnType<T1, T2>),
PYBIND11_TYPE(Class<T3, T4>), func)
The ``PYBIND11_MAKE_OPAQUE`` macro does *not* require the above workarounds.
.. _gil:
Global Interpreter Lock (GIL)
=============================
When calling a C++ function from Python, the GIL is always held.
The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
used to acquire and release the global interpreter lock in the body of a C++
function call. In this way, long-running C++ code can be parallelized using
multiple Python threads. Taking :ref:`overriding_virtuals` as an example, this
could be realized as follows (important changes highlighted):
.. code-block:: cpp
:emphasize-lines: 8,9,31,32
class PyAnimal : public Animal {
public:
/* Inherit the constructors */
using Animal::Animal;
/* Trampoline (need one for each virtual function) */
std::string go(int n_times) {
/* Acquire GIL before calling Python code */
py::gil_scoped_acquire acquire;
PYBIND11_OVERLOAD_PURE(
std::string, /* Return type */
Animal, /* Parent class */
go, /* Name of function */
n_times /* Argument(s) */
);
}
};
PYBIND11_MODULE(example, m) {
py::class_<Animal, PyAnimal> animal(m, "Animal");
animal
.def(py::init<>())
.def("go", &Animal::go);
py::class_<Dog>(m, "Dog", animal)
.def(py::init<>());
m.def("call_go", [](Animal *animal) -> std::string {
/* Release GIL before calling into (potentially long-running) C++ code */
py::gil_scoped_release release;
return call_go(animal);
});
}
The ``call_go`` wrapper can also be simplified using the `call_guard` policy
(see :ref:`call_policies`) which yields the same result:
.. code-block:: cpp
m.def("call_go", &call_go, py::call_guard<py::gil_scoped_release>());
Binding sequence data types, iterators, the slicing protocol, etc.
==================================================================
Please refer to the supplemental example for details.
.. seealso::
The file :file:`tests/test_sequences_and_iterators.cpp` contains a
complete example that shows how to bind a sequence data type, including
length queries (``__len__``), iterators (``__iter__``), the slicing
protocol and other kinds of useful operations.
Partitioning code over multiple extension modules
=================================================
It's straightforward to split binding code over multiple extension modules,
while referencing types that are declared elsewhere. Everything "just" works
without any special precautions. One exception to this rule occurs when
extending a type declared in another extension module. Recall the basic example
from Section :ref:`inheritance`.
.. code-block:: cpp
py::class_<Pet> pet(m, "Pet");
pet.def(py::init<const std::string &>())
.def_readwrite("name", &Pet::name);
py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
.def(py::init<const std::string &>())
.def("bark", &Dog::bark);
Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
course that the variable ``pet`` is not available anymore though it is needed
to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
However, it can be acquired as follows:
.. code-block:: cpp
py::object pet = (py::object) py::module::import("basic").attr("Pet");
py::class_<Dog>(m, "Dog", pet)
.def(py::init<const std::string &>())
.def("bark", &Dog::bark);
Alternatively, you can specify the base class as a template parameter option to
``class_``, which performs an automated lookup of the corresponding Python
type. Like the above code, however, this also requires invoking the ``import``
function once to ensure that the pybind11 binding code of the module ``basic``
has been executed:
.. code-block:: cpp
py::module::import("basic");
py::class_<Dog, Pet>(m, "Dog")
.def(py::init<const std::string &>())
.def("bark", &Dog::bark);
Naturally, both methods will fail when there are cyclic dependencies.
Note that pybind11 code compiled with hidden-by-default symbol visibility (e.g.
via the command line flag ``-fvisibility=hidden`` on GCC/Clang), which is
required for proper pybind11 functionality, can interfere with the ability to
access types defined in another extension module. Working around this requires
manually exporting types that are accessed by multiple extension modules;
pybind11 provides a macro to do just this:
.. code-block:: cpp
class PYBIND11_EXPORT Dog : public Animal {
...
};
Note also that it is possible (although would rarely be required) to share arbitrary
C++ objects between extension modules at runtime. Internal library data is shared
between modules using capsule machinery [#f6]_ which can be also utilized for
storing, modifying and accessing user-defined data. Note that an extension module
will "see" other extensions' data if and only if they were built with the same
pybind11 version. Consider the following example:
.. code-block:: cpp
auto data = (MyData *) py::get_shared_data("mydata");
if (!data)
data = (MyData *) py::set_shared_data("mydata", new MyData(42));
If the above snippet was used in several separately compiled extension modules,
the first one to be imported would create a ``MyData`` instance and associate
a ``"mydata"`` key with a pointer to it. Extensions that are imported later
would be then able to access the data behind the same pointer.
.. [#f6] https://docs.python.org/3/extending/extending.html#using-capsules
Module Destructors
==================
pybind11 does not provide an explicit mechanism to invoke cleanup code at
module destruction time. In rare cases where such functionality is required, it
is possible to emulate it using Python capsules or weak references with a
destruction callback.
.. code-block:: cpp
auto cleanup_callback = []() {
// perform cleanup here -- this function is called with the GIL held
};
m.add_object("_cleanup", py::capsule(cleanup_callback));
This approach has the potential downside that instances of classes exposed
within the module may still be alive when the cleanup callback is invoked
(whether this is acceptable will generally depend on the application).
Alternatively, the capsule may also be stashed within a type object, which
ensures that it not called before all instances of that type have been
collected:
.. code-block:: cpp
auto cleanup_callback = []() { /* ... */ };
m.attr("BaseClass").attr("_cleanup") = py::capsule(cleanup_callback);
Both approaches also expose a potentially dangerous ``_cleanup`` attribute in
Python, which may be undesirable from an API standpoint (a premature explicit
call from Python might lead to undefined behavior). Yet another approach that
avoids this issue involves weak reference with a cleanup callback:
.. code-block:: cpp
// Register a callback function that is invoked when the BaseClass object is colelcted
py::cpp_function cleanup_callback(
[](py::handle weakref) {
// perform cleanup here -- this function is called with the GIL held
weakref.dec_ref(); // release weak reference
}
);
// Create a weak reference with a cleanup callback and initially leak it
(void) py::weakref(m.attr("BaseClass"), cleanup_callback).release();
.. note::
PyPy (at least version 5.9) does not garbage collect objects when the
interpreter exits. An alternative approach (which also works on CPython) is to use
the :py:mod:`atexit` module [#f7]_, for example:
.. code-block:: cpp
auto atexit = py::module::import("atexit");
atexit.attr("register")(py::cpp_function([]() {
// perform cleanup here -- this function is called with the GIL held
}));
.. [#f7] https://docs.python.org/3/library/atexit.html
Generating documentation using Sphinx
=====================================
Sphinx [#f4]_ has the ability to inspect the signatures and documentation
strings in pybind11-based extension modules to automatically generate beautiful
documentation in a variety formats. The python_example repository [#f5]_ contains a
simple example repository which uses this approach.
There are two potential gotchas when using this approach: first, make sure that
the resulting strings do not contain any :kbd:`TAB` characters, which break the
docstring parsing routines. You may want to use C++11 raw string literals,
which are convenient for multi-line comments. Conveniently, any excess
indentation will be automatically be removed by Sphinx. However, for this to
work, it is important that all lines are indented consistently, i.e.:
.. code-block:: cpp
// ok
m.def("foo", &foo, R"mydelimiter(
The foo function
Parameters
----------
)mydelimiter");
// *not ok*
m.def("foo", &foo, R"mydelimiter(The foo function
Parameters
----------
)mydelimiter");
By default, pybind11 automatically generates and prepends a signature to the docstring of a function
registered with ``module::def()`` and ``class_::def()``. Sometimes this
behavior is not desirable, because you want to provide your own signature or remove
the docstring completely to exclude the function from the Sphinx documentation.
The class ``options`` allows you to selectively suppress auto-generated signatures:
.. code-block:: cpp
PYBIND11_MODULE(example, m) {
py::options options;
options.disable_function_signatures();
m.def("add", [](int a, int b) { return a + b; }, "A function which adds two numbers");
}
Note that changes to the settings affect only function bindings created during the
lifetime of the ``options`` instance. When it goes out of scope at the end of the module's init function,
the default settings are restored to prevent unwanted side effects.
.. [#f4] http://www.sphinx-doc.org
.. [#f5] http://github.com/pybind/python_example

View File

@ -0,0 +1,13 @@
Python C++ interface
####################
pybind11 exposes Python types and functions using thin C++ wrappers, which
makes it possible to conveniently call Python code from C++ without resorting
to Python's C API.
.. toctree::
:maxdepth: 2
object
numpy
utilities

View File

@ -0,0 +1,386 @@
.. _numpy:
NumPy
#####
Buffer protocol
===============
Python supports an extremely general and convenient approach for exchanging
data between plugin libraries. Types can expose a buffer view [#f2]_, which
provides fast direct access to the raw internal data representation. Suppose we
want to bind the following simplistic Matrix class:
.. code-block:: cpp
class Matrix {
public:
Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
m_data = new float[rows*cols];
}
float *data() { return m_data; }
size_t rows() const { return m_rows; }
size_t cols() const { return m_cols; }
private:
size_t m_rows, m_cols;
float *m_data;
};
The following binding code exposes the ``Matrix`` contents as a buffer object,
making it possible to cast Matrices into NumPy arrays. It is even possible to
completely avoid copy operations with Python expressions like
``np.array(matrix_instance, copy = False)``.
.. code-block:: cpp
py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
.def_buffer([](Matrix &m) -> py::buffer_info {
return py::buffer_info(
m.data(), /* Pointer to buffer */
sizeof(float), /* Size of one scalar */
py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
2, /* Number of dimensions */
{ m.rows(), m.cols() }, /* Buffer dimensions */
{ sizeof(float) * m.cols(), /* Strides (in bytes) for each index */
sizeof(float) }
);
});
Supporting the buffer protocol in a new type involves specifying the special
``py::buffer_protocol()`` tag in the ``py::class_`` constructor and calling the
``def_buffer()`` method with a lambda function that creates a
``py::buffer_info`` description record on demand describing a given matrix
instance. The contents of ``py::buffer_info`` mirror the Python buffer protocol
specification.
.. code-block:: cpp
struct buffer_info {
void *ptr;
ssize_t itemsize;
std::string format;
ssize_t ndim;
std::vector<ssize_t> shape;
std::vector<ssize_t> strides;
};
To create a C++ function that can take a Python buffer object as an argument,
simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
in a great variety of configurations, hence some safety checks are usually
necessary in the function body. Below, you can see an basic example on how to
define a custom constructor for the Eigen double precision matrix
(``Eigen::MatrixXd``) type, which supports initialization from compatible
buffer objects (e.g. a NumPy matrix).
.. code-block:: cpp
/* Bind MatrixXd (or some other Eigen type) to Python */
typedef Eigen::MatrixXd Matrix;
typedef Matrix::Scalar Scalar;
constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
.def("__init__", [](Matrix &m, py::buffer b) {
typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
/* Request a buffer descriptor from Python */
py::buffer_info info = b.request();
/* Some sanity checks ... */
if (info.format != py::format_descriptor<Scalar>::format())
throw std::runtime_error("Incompatible format: expected a double array!");
if (info.ndim != 2)
throw std::runtime_error("Incompatible buffer dimension!");
auto strides = Strides(
info.strides[rowMajor ? 0 : 1] / (py::ssize_t)sizeof(Scalar),
info.strides[rowMajor ? 1 : 0] / (py::ssize_t)sizeof(Scalar));
auto map = Eigen::Map<Matrix, 0, Strides>(
static_cast<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
new (&m) Matrix(map);
});
For reference, the ``def_buffer()`` call for this Eigen data type should look
as follows:
.. code-block:: cpp
.def_buffer([](Matrix &m) -> py::buffer_info {
return py::buffer_info(
m.data(), /* Pointer to buffer */
sizeof(Scalar), /* Size of one scalar */
py::format_descriptor<Scalar>::format(), /* Python struct-style format descriptor */
2, /* Number of dimensions */
{ m.rows(), m.cols() }, /* Buffer dimensions */
{ sizeof(Scalar) * (rowMajor ? m.cols() : 1),
sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
/* Strides (in bytes) for each index */
);
})
For a much easier approach of binding Eigen types (although with some
limitations), refer to the section on :doc:`/advanced/cast/eigen`.
.. seealso::
The file :file:`tests/test_buffers.cpp` contains a complete example
that demonstrates using the buffer protocol with pybind11 in more detail.
.. [#f2] http://docs.python.org/3/c-api/buffer.html
Arrays
======
By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
restrict the function so that it only accepts NumPy arrays (rather than any
type of Python object satisfying the buffer protocol).
In many situations, we want to define a function which only accepts a NumPy
array of a certain data type. This is possible via the ``py::array_t<T>``
template. For instance, the following function requires the argument to be a
NumPy array containing double precision values.
.. code-block:: cpp
void f(py::array_t<double> array);
When it is invoked with a different type (e.g. an integer or a list of
integers), the binding code will attempt to cast the input into a NumPy array
of the requested type. Note that this feature requires the
:file:`pybind11/numpy.h` header to be included.
Data in NumPy arrays is not guaranteed to packed in a dense manner;
furthermore, entries can be separated by arbitrary column and row strides.
Sometimes, it can be useful to require a function to only accept dense arrays
using either the C (row-major) or Fortran (column-major) ordering. This can be
accomplished via a second template argument with values ``py::array::c_style``
or ``py::array::f_style``.
.. code-block:: cpp
void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
The ``py::array::forcecast`` argument is the default value of the second
template parameter, and it ensures that non-conforming arguments are converted
into an array satisfying the specified requirements instead of trying the next
function overload.
Structured types
================
In order for ``py::array_t`` to work with structured (record) types, we first
need to register the memory layout of the type. This can be done via
``PYBIND11_NUMPY_DTYPE`` macro, called in the plugin definition code, which
expects the type followed by field names:
.. code-block:: cpp
struct A {
int x;
double y;
};
struct B {
int z;
A a;
};
// ...
PYBIND11_MODULE(test, m) {
// ...
PYBIND11_NUMPY_DTYPE(A, x, y);
PYBIND11_NUMPY_DTYPE(B, z, a);
/* now both A and B can be used as template arguments to py::array_t */
}
The structure should consist of fundamental arithmetic types, ``std::complex``,
previously registered substructures, and arrays of any of the above. Both C++
arrays and ``std::array`` are supported. While there is a static assertion to
prevent many types of unsupported structures, it is still the user's
responsibility to use only "plain" structures that can be safely manipulated as
raw memory without violating invariants.
Vectorizing functions
=====================
Suppose we want to bind a function with the following signature to Python so
that it can process arbitrary NumPy array arguments (vectors, matrices, general
N-D arrays) in addition to its normal arguments:
.. code-block:: cpp
double my_func(int x, float y, double z);
After including the ``pybind11/numpy.h`` header, this is extremely simple:
.. code-block:: cpp
m.def("vectorized_func", py::vectorize(my_func));
Invoking the function like below causes 4 calls to be made to ``my_func`` with
each of the array elements. The significant advantage of this compared to
solutions like ``numpy.vectorize()`` is that the loop over the elements runs
entirely on the C++ side and can be crunched down into a tight, optimized loop
by the compiler. The result is returned as a NumPy array of type
``numpy.dtype.float64``.
.. code-block:: pycon
>>> x = np.array([[1, 3],[5, 7]])
>>> y = np.array([[2, 4],[6, 8]])
>>> z = 3
>>> result = vectorized_func(x, y, z)
The scalar argument ``z`` is transparently replicated 4 times. The input
arrays ``x`` and ``y`` are automatically converted into the right types (they
are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
``numpy.dtype.float32``, respectively).
.. note::
Only arithmetic, complex, and POD types passed by value or by ``const &``
reference are vectorized; all other arguments are passed through as-is.
Functions taking rvalue reference arguments cannot be vectorized.
In cases where the computation is too complicated to be reduced to
``vectorize``, it will be necessary to create and access the buffer contents
manually. The following snippet contains a complete example that shows how this
works (the code is somewhat contrived, since it could have been done more
simply using ``vectorize``).
.. code-block:: cpp
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
py::buffer_info buf1 = input1.request(), buf2 = input2.request();
if (buf1.ndim != 1 || buf2.ndim != 1)
throw std::runtime_error("Number of dimensions must be one");
if (buf1.size != buf2.size)
throw std::runtime_error("Input shapes must match");
/* No pointer is passed, so NumPy will allocate the buffer */
auto result = py::array_t<double>(buf1.size);
py::buffer_info buf3 = result.request();
double *ptr1 = (double *) buf1.ptr,
*ptr2 = (double *) buf2.ptr,
*ptr3 = (double *) buf3.ptr;
for (size_t idx = 0; idx < buf1.shape[0]; idx++)
ptr3[idx] = ptr1[idx] + ptr2[idx];
return result;
}
PYBIND11_MODULE(test, m) {
m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
}
.. seealso::
The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
example that demonstrates using :func:`vectorize` in more detail.
Direct access
=============
For performance reasons, particularly when dealing with very large arrays, it
is often desirable to directly access array elements without internal checking
of dimensions and bounds on every access when indices are known to be already
valid. To avoid such checks, the ``array`` class and ``array_t<T>`` template
class offer an unchecked proxy object that can be used for this unchecked
access through the ``unchecked<N>`` and ``mutable_unchecked<N>`` methods,
where ``N`` gives the required dimensionality of the array:
.. code-block:: cpp
m.def("sum_3d", [](py::array_t<double> x) {
auto r = x.unchecked<3>(); // x must have ndim = 3; can be non-writeable
double sum = 0;
for (ssize_t i = 0; i < r.shape(0); i++)
for (ssize_t j = 0; j < r.shape(1); j++)
for (ssize_t k = 0; k < r.shape(2); k++)
sum += r(i, j, k);
return sum;
});
m.def("increment_3d", [](py::array_t<double> x) {
auto r = x.mutable_unchecked<3>(); // Will throw if ndim != 3 or flags.writeable is false
for (ssize_t i = 0; i < r.shape(0); i++)
for (ssize_t j = 0; j < r.shape(1); j++)
for (ssize_t k = 0; k < r.shape(2); k++)
r(i, j, k) += 1.0;
}, py::arg().noconvert());
To obtain the proxy from an ``array`` object, you must specify both the data
type and number of dimensions as template arguments, such as ``auto r =
myarray.mutable_unchecked<float, 2>()``.
If the number of dimensions is not known at compile time, you can omit the
dimensions template parameter (i.e. calling ``arr_t.unchecked()`` or
``arr.unchecked<T>()``. This will give you a proxy object that works in the
same way, but results in less optimizable code and thus a small efficiency
loss in tight loops.
Note that the returned proxy object directly references the array's data, and
only reads its shape, strides, and writeable flag when constructed. You must
take care to ensure that the referenced array is not destroyed or reshaped for
the duration of the returned object, typically by limiting the scope of the
returned instance.
The returned proxy object supports some of the same methods as ``py::array`` so
that it can be used as a drop-in replacement for some existing, index-checked
uses of ``py::array``:
- ``r.ndim()`` returns the number of dimensions
- ``r.data(1, 2, ...)`` and ``r.mutable_data(1, 2, ...)``` returns a pointer to
the ``const T`` or ``T`` data, respectively, at the given indices. The
latter is only available to proxies obtained via ``a.mutable_unchecked()``.
- ``itemsize()`` returns the size of an item in bytes, i.e. ``sizeof(T)``.
- ``ndim()`` returns the number of dimensions.
- ``shape(n)`` returns the size of dimension ``n``
- ``size()`` returns the total number of elements (i.e. the product of the shapes).
- ``nbytes()`` returns the number of bytes used by the referenced elements
(i.e. ``itemsize()`` times ``size()``).
.. seealso::
The file :file:`tests/test_numpy_array.cpp` contains additional examples
demonstrating the use of this feature.
Ellipsis
========
Python 3 provides a convenient ``...`` ellipsis notation that is often used to
slice multidimensional arrays. For instance, the following snippet extracts the
middle dimensions of a tensor with the first and last index set to zero.
.. code-block:: python
a = # a NumPy array
b = a[0, ..., 0]
The function ``py::ellipsis()`` function can be used to perform the same
operation on the C++ side:
.. code-block:: cpp
py::array a = /* A NumPy array */;
py::array b = a[py::make_tuple(0, py::ellipsis(), 0)];

View File

@ -0,0 +1,170 @@
Python types
############
Available wrappers
==================
All major Python types are available as thin C++ wrapper classes. These
can also be used as function parameters -- see :ref:`python_objects_as_args`.
Available types include :class:`handle`, :class:`object`, :class:`bool_`,
:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
:class:`array`, and :class:`array_t`.
Casting back and forth
======================
In this kind of mixed code, it is often necessary to convert arbitrary C++
types to Python, which can be done using :func:`py::cast`:
.. code-block:: cpp
MyClass *cls = ..;
py::object obj = py::cast(cls);
The reverse direction uses the following syntax:
.. code-block:: cpp
py::object obj = ...;
MyClass *cls = obj.cast<MyClass *>();
When conversion fails, both directions throw the exception :class:`cast_error`.
.. _python_libs:
Accessing Python libraries from C++
===================================
It is also possible to import objects defined in the Python standard
library or available in the current Python environment (``sys.path``) and work
with these in C++.
This example obtains a reference to the Python ``Decimal`` class.
.. code-block:: cpp
// Equivalent to "from decimal import Decimal"
py::object Decimal = py::module::import("decimal").attr("Decimal");
.. code-block:: cpp
// Try to import scipy
py::object scipy = py::module::import("scipy");
return scipy.attr("__version__");
.. _calling_python_functions:
Calling Python functions
========================
It is also possible to call Python classes, functions and methods
via ``operator()``.
.. code-block:: cpp
// Construct a Python object of class Decimal
py::object pi = Decimal("3.14159");
.. code-block:: cpp
// Use Python to make our directories
py::object os = py::module::import("os");
py::object makedirs = os.attr("makedirs");
makedirs("/tmp/path/to/somewhere");
One can convert the result obtained from Python to a pure C++ version
if a ``py::class_`` or type conversion is defined.
.. code-block:: cpp
py::function f = <...>;
py::object result_py = f(1234, "hello", some_instance);
MyClass &result = result_py.cast<MyClass>();
.. _calling_python_methods:
Calling Python methods
========================
To call an object's method, one can again use ``.attr`` to obtain access to the
Python method.
.. code-block:: cpp
// Calculate e^π in decimal
py::object exp_pi = pi.attr("exp")();
py::print(py::str(exp_pi));
In the example above ``pi.attr("exp")`` is a *bound method*: it will always call
the method for that same instance of the class. Alternately one can create an
*unbound method* via the Python class (instead of instance) and pass the ``self``
object explicitly, followed by other arguments.
.. code-block:: cpp
py::object decimal_exp = Decimal.attr("exp");
// Compute the e^n for n=0..4
for (int n = 0; n < 5; n++) {
py::print(decimal_exp(Decimal(n));
}
Keyword arguments
=================
Keyword arguments are also supported. In Python, there is the usual call syntax:
.. code-block:: python
def f(number, say, to):
... # function code
f(1234, say="hello", to=some_instance) # keyword call in Python
In C++, the same call can be made using:
.. code-block:: cpp
using namespace pybind11::literals; // to bring in the `_a` literal
f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
Unpacking arguments
===================
Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with
other arguments:
.. code-block:: cpp
// * unpacking
py::tuple args = py::make_tuple(1234, "hello", some_instance);
f(*args);
// ** unpacking
py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
f(**kwargs);
// mixed keywords, * and ** unpacking
py::tuple args = py::make_tuple(1234);
py::dict kwargs = py::dict("to"_a=some_instance);
f(*args, "say"_a="hello", **kwargs);
Generalized unpacking according to PEP448_ is also supported:
.. code-block:: cpp
py::dict kwargs1 = py::dict("number"_a=1234);
py::dict kwargs2 = py::dict("to"_a=some_instance);
f(**kwargs1, "say"_a="hello", **kwargs2);
.. seealso::
The file :file:`tests/test_pytypes.cpp` contains a complete
example that demonstrates passing native Python types in more detail. The
file :file:`tests/test_callbacks.cpp` presents a few examples of calling
Python functions from C++, including keywords arguments and unpacking.
.. _PEP448: https://www.python.org/dev/peps/pep-0448/

View File

@ -0,0 +1,144 @@
Utilities
#########
Using Python's print function in C++
====================================
The usual way to write output in C++ is using ``std::cout`` while in Python one
would use ``print``. Since these methods use different buffers, mixing them can
lead to output order issues. To resolve this, pybind11 modules can use the
:func:`py::print` function which writes to Python's ``sys.stdout`` for consistency.
Python's ``print`` function is replicated in the C++ API including optional
keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as
expected in Python:
.. code-block:: cpp
py::print(1, 2.0, "three"); // 1 2.0 three
py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three
auto args = py::make_tuple("unpacked", true);
py::print("->", *args, "end"_a="<-"); // -> unpacked True <-
.. _ostream_redirect:
Capturing standard output from ostream
======================================
Often, a library will use the streams ``std::cout`` and ``std::cerr`` to print,
but this does not play well with Python's standard ``sys.stdout`` and ``sys.stderr``
redirection. Replacing a library's printing with `py::print <print>` may not
be feasible. This can be fixed using a guard around the library function that
redirects output to the corresponding Python streams:
.. code-block:: cpp
#include <pybind11/iostream.h>
...
// Add a scoped redirect for your noisy code
m.def("noisy_func", []() {
py::scoped_ostream_redirect stream(
std::cout, // std::ostream&
py::module::import("sys").attr("stdout") // Python output
);
call_noisy_func();
});
This method respects flushes on the output streams and will flush if needed
when the scoped guard is destroyed. This allows the output to be redirected in
real time, such as to a Jupyter notebook. The two arguments, the C++ stream and
the Python output, are optional, and default to standard output if not given. An
extra type, `py::scoped_estream_redirect <scoped_estream_redirect>`, is identical
except for defaulting to ``std::cerr`` and ``sys.stderr``; this can be useful with
`py::call_guard`, which allows multiple items, but uses the default constructor:
.. code-block:: py
// Alternative: Call single function using call guard
m.def("noisy_func", &call_noisy_function,
py::call_guard<py::scoped_ostream_redirect,
py::scoped_estream_redirect>());
The redirection can also be done in Python with the addition of a context
manager, using the `py::add_ostream_redirect() <add_ostream_redirect>` function:
.. code-block:: cpp
py::add_ostream_redirect(m, "ostream_redirect");
The name in Python defaults to ``ostream_redirect`` if no name is passed. This
creates the following context manager in Python:
.. code-block:: python
with ostream_redirect(stdout=True, stderr=True):
noisy_function()
It defaults to redirecting both streams, though you can use the keyword
arguments to disable one of the streams if needed.
.. note::
The above methods will not redirect C-level output to file descriptors, such
as ``fprintf``. For those cases, you'll need to redirect the file
descriptors either directly in C or with Python's ``os.dup2`` function
in an operating-system dependent way.
.. _eval:
Evaluating Python expressions from strings and files
====================================================
pybind11 provides the `eval`, `exec` and `eval_file` functions to evaluate
Python expressions and statements. The following example illustrates how they
can be used.
.. code-block:: cpp
// At beginning of file
#include <pybind11/eval.h>
...
// Evaluate in scope of main module
py::object scope = py::module::import("__main__").attr("__dict__");
// Evaluate an isolated expression
int result = py::eval("my_variable + 10", scope).cast<int>();
// Evaluate a sequence of statements
py::exec(
"print('Hello')\n"
"print('world!');",
scope);
// Evaluate the statements in an separate Python file on disk
py::eval_file("script.py", scope);
C++11 raw string literals are also supported and quite handy for this purpose.
The only requirement is that the first statement must be on a new line following
the raw string delimiter ``R"(``, ensuring all lines have common leading indent:
.. code-block:: cpp
py::exec(R"(
x = get_answer()
if x == 42:
print('Hello World!')
else:
print('Bye!')
)", scope
);
.. note::
`eval` and `eval_file` accept a template parameter that describes how the
string/file should be interpreted. Possible choices include ``eval_expr``
(isolated expression), ``eval_single_statement`` (a single statement, return
value is always ``none``), and ``eval_statements`` (sequence of statements,
return value is always ``none``). `eval` defaults to ``eval_expr``,
`eval_file` defaults to ``eval_statements`` and `exec` is just a shortcut
for ``eval<eval_statements>``.

Some files were not shown because too many files have changed in this diff Show More