Add cpp example for GNC

release/4.3a0
achintyamohan 2023-09-10 20:07:12 -04:00
parent 9cdf9cee11
commit d6e9889f45
1 changed files with 67 additions and 0 deletions

67
examples/GNCExample.cpp Normal file
View File

@ -0,0 +1,67 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GNCExample.cpp
* @brief Simple example showcasing a Graduated Non-Convexity based solver
* @author Achintya Mohan
*/
#include <gtsam/geometry/Point2.h>
#include <gtsam/nonlinear/GncOptimizer.h>
#include <gtsam/nonlinear/GncParams.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/LevenbergMarquardtParams.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/slam/BetweenFactor.h>
#include <iostream>
using namespace std;
using namespace gtsam;
int main() {
cout << "Graduated Non-Convexity Example\n";
NonlinearFactorGraph graph;
// Add a prior to the first point, set to the origin
auto priorNoise = noiseModel::Isotropic::Sigma(2, 0.1);
graph.addPrior(1, Point2(0.0, 0.0), priorNoise);
// Add additional factors, noise models must be Gaussian
Point2 x1(1.0, 0.0);
graph.emplace_shared<BetweenFactor<Point2>>(1, 2, x1, noiseModel::Isotropic::Sigma(2, 0.2));
Point2 x2(1.1, 0.1);
graph.emplace_shared<BetweenFactor<Point2>>(2, 3, x2, noiseModel::Isotropic::Sigma(2, 0.4));
// Initial estimates
Values initial;
initial.insert(1, Point2(0.5, -0.1));
initial.insert(2, Point2(1.3, 0.1));
initial.insert(3, Point2(0.8, 0.2));
// Set options for the non-minimal solver
LevenbergMarquardtParams lmParams;
lmParams.setMaxIterations(1000);
lmParams.setRelativeErrorTol(1e-5);
// Set GNC-specific options
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
gncParams.setLossType(GncLossType::TLS);
// Optimize the graph and print results
GncOptimizer<GncParams<LevenbergMarquardtParams>> optimizer(graph, initial, gncParams);
Values result = optimizer.optimize();
result.print("Final Result:");
return 0;
}