Merge branch 'fix/imuFactor_BodyPSensor' into feature/cleanup_ImuFactor

Conflicts:
	gtsam/navigation/CombinedImuFactor.cpp
	gtsam/navigation/ImuFactor.cpp
	gtsam/navigation/PreintegrationBase.cpp
	gtsam/navigation/PreintegrationBase.h
	gtsam/navigation/tests/testImuFactor.cpp
release/4.3a0
dellaert 2015-07-26 20:50:56 +02:00
commit d5d8000926
5 changed files with 162 additions and 22 deletions

View File

@ -59,8 +59,7 @@ void PreintegratedCombinedMeasurements::integrateMeasurement(
// (i.e., we have to update jacobians and covariances before updating preintegrated measurements).
Vector3 correctedAcc, correctedOmega;
correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega,
&correctedAcc, &correctedOmega);
boost::tie(correctedAcc, correctedOmega) = correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega, body_P_sensor);
const Vector3 integratedOmega = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
Matrix3 D_Rincr_integratedOmega; // Right jacobian computed at theta_incr

View File

@ -54,8 +54,7 @@ void PreintegratedImuMeasurements::integrateMeasurement(
OptionalJacobian<9, 9> F_test, OptionalJacobian<9, 9> G_test) {
Vector3 correctedAcc, correctedOmega;
correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega,
&correctedAcc, &correctedOmega);
boost::tie(correctedAcc, correctedOmega) = correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega, body_P_sensor);
// rotation increment computed from the current rotation rate measurement
const Vector3 integratedOmega = correctedOmega * deltaT;

View File

@ -102,23 +102,30 @@ void PreintegrationBase::updatePreintegratedJacobians(
update_delRdelBiasOmega(D_Rincr_integratedOmega, incrR, deltaT);
}
void PreintegrationBase::correctMeasurementsByBiasAndSensorPose(
std::pair<Vector3, Vector3> PreintegrationBase::correctMeasurementsByBiasAndSensorPose(
const Vector3& measuredAcc, const Vector3& measuredOmega,
Vector3* correctedAcc, Vector3* correctedOmega) {
*correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
*correctedOmega = biasHat_.correctGyroscope(measuredOmega);
boost::optional<const Pose3&> body_P_sensor) const {
// Correct for bias in the sensor frame
Vector3 s_correctedAcc, s_correctedOmega;
s_correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
s_correctedOmega = biasHat_.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities
// Compensate for sensor-body displacement if needed: we express the quantities
// (originally in the IMU frame) into the body frame
if (p().body_P_sensor) {
Matrix3 body_R_sensor = p().body_P_sensor->rotation().matrix();
*correctedOmega = body_R_sensor * (*correctedOmega); // rotation rate vector in the body frame
Matrix3 body_omega_body__cross = skewSymmetric(*correctedOmega);
*correctedAcc = body_R_sensor * (*correctedAcc)
- body_omega_body__cross * body_omega_body__cross
* p().body_P_sensor->translation().vector();
// linear acceleration vector in the body frame
}
// Equations below assume the "body" frame is the CG
if (body_P_sensor) {
Matrix3 bRs = body_P_sensor->rotation().matrix();
Vector3 b_correctedOmega = bRs * s_correctedOmega; // rotation rate vector in the body frame
Matrix3 body_omega_body__cross = skewSymmetric(b_correctedOmega);
Vector3 b_arm = body_P_sensor->translation().vector();
Vector3 b_velocity_bs = b_correctedOmega.cross(b_arm); // magnitude: omega * arm
// Subtract out the the centripetal acceleration from the measured one
// to get linear acceleration vector in the body frame:
Vector3 b_correctedAcc = bRs * s_correctedAcc
- b_correctedOmega.cross(b_velocity_bs);
return std::make_pair(b_correctedAcc, b_correctedOmega);
} else
return std::make_pair(correctedAcc, s_correctedOmega);
}
//------------------------------------------------------------------------------

View File

@ -177,9 +177,9 @@ public:
void updatePreintegratedJacobians(const Vector3& correctedAcc,
const Matrix3& D_Rincr_integratedOmega, const Rot3& incrR, double deltaT);
void correctMeasurementsByBiasAndSensorPose(const Vector3& measuredAcc,
const Vector3& measuredOmega, Vector3* correctedAcc,
Vector3* correctedOmega);
std::pair<Vector3, Vector3>
correctMeasurementsByBiasAndSensorPose(const Vector3& measuredAcc,
const Vector3& measuredOmega) const;
/// Given the estimate of the bias, return a NavState tangent vector
/// summarizing the preintegrated IMU measurements so far

View File

@ -958,6 +958,141 @@ TEST(ImuFactor, PredictArbitrary) {
EXPECT(assert_equal(Vector(expectedV), v2, 1e-7));
}
/* ************************************************************************* */
TEST(ImuFactor, bodyPSensorNoBias) {
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0.1, 0)); // Biases (acc, rot)
// Measurements
Vector3 n_gravity(0, 0, -9.81); // z-up nav frame
Vector3 omegaCoriolis(0, 0, 0);
// Sensor frame is z-down
// Gyroscope measurement is the angular velocity of sensor w.r.t nav frame in sensor frame
Vector3 s_omegaMeas_ns(0, 0.1, M_PI / 10);
// Acc measurement is acceleration of sensor in the sensor frame, when stationary,
// table exerts an equal and opposite force w.r.t gravity
Vector3 s_accMeas(0, 0, -9.81);
double dt = 0.001;
// Rotate sensor (z-down) to body (same as navigation) i.e. z-up
Pose3 body_P_sensor(Rot3::ypr(0, 0, M_PI), Point3(0, 0, 0));
ImuFactor::PreintegratedMeasurements pim(bias, Z_3x3, Z_3x3, Z_3x3, true);
for (int i = 0; i < 1000; ++i)
pim.integrateMeasurement(s_accMeas, s_omegaMeas_ns, dt, body_P_sensor);
// Create factor
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pim, n_gravity, omegaCoriolis);
// Predict
Pose3 x1;
Vector3 v1(0, 0, 0);
PoseVelocityBias poseVelocity = pim.predict(x1, v1, bias, n_gravity,
omegaCoriolis);
Pose3 expectedPose(Rot3().ypr(-M_PI / 10, 0, 0), Point3(0, 0, 0));
EXPECT(assert_equal(expectedPose, poseVelocity.pose));
Vector3 expectedVelocity(0, 0, 0);
EXPECT(assert_equal(Vector(expectedVelocity), Vector(poseVelocity.velocity)));
}
/* ************************************************************************* */
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
TEST(ImuFactor, bodyPSensorWithBias) {
using noiseModel::Diagonal;
typedef imuBias::ConstantBias Bias;
int numFactors = 80;
Vector6 noiseBetweenBiasSigma;
noiseBetweenBiasSigma << Vector3(2.0e-5, 2.0e-5, 2.0e-5), Vector3(3.0e-6,
3.0e-6, 3.0e-6);
SharedDiagonal biasNoiseModel = Diagonal::Sigmas(noiseBetweenBiasSigma);
// Measurements
Vector3 n_gravity(0, 0, -9.81);
Vector3 omegaCoriolis(0, 0, 0);
// Sensor frame is z-down
// Gyroscope measurement is the angular velocity of sensor w.r.t nav frame in sensor frame
Vector3 measuredOmega(0, 0.01, 0);
// Acc measurement is acceleration of sensor in the sensor frame, when stationary,
// table exerts an equal and opposite force w.r.t gravity
Vector3 measuredAcc(0, 0, -9.81);
Pose3 body_P_sensor(Rot3::ypr(0, 0, M_PI), Point3());
Matrix3 accCov = 1e-7 * I_3x3;
Matrix3 gyroCov = 1e-8 * I_3x3;
Matrix3 integrationCov = 1e-9 * I_3x3;
double deltaT = 0.005;
// Specify noise values on priors
Vector6 priorNoisePoseSigmas(
(Vector(6) << 0.001, 0.001, 0.001, 0.01, 0.01, 0.01).finished());
Vector3 priorNoiseVelSigmas((Vector(3) << 0.1, 0.1, 0.1).finished());
Vector6 priorNoiseBiasSigmas(
(Vector(6) << 0.1, 0.1, 0.1, 0.5e-1, 0.5e-1, 0.5e-1).finished());
SharedDiagonal priorNoisePose = Diagonal::Sigmas(priorNoisePoseSigmas);
SharedDiagonal priorNoiseVel = Diagonal::Sigmas(priorNoiseVelSigmas);
SharedDiagonal priorNoiseBias = Diagonal::Sigmas(priorNoiseBiasSigmas);
Vector3 zeroVel(0, 0, 0);
// Create a factor graph with priors on initial pose, vlocity and bias
NonlinearFactorGraph graph;
Values values;
PriorFactor<Pose3> priorPose(X(0), Pose3(), priorNoisePose);
graph.add(priorPose);
values.insert(X(0), Pose3());
PriorFactor<Vector3> priorVel(V(0), zeroVel, priorNoiseVel);
graph.add(priorVel);
values.insert(V(0), zeroVel);
// The key to this test is that we specify the bias, in the sensor frame, as known a priori
// We also create factors below that encode our assumption that this bias is constant over time
// In theory, after optimization, we should recover that same bias estimate
Bias priorBias(Vector3(0, 0, 0), Vector3(0, 0.01, 0)); // Biases (acc, rot)
PriorFactor<Bias> priorBiasFactor(B(0), priorBias, priorNoiseBias);
graph.add(priorBiasFactor);
values.insert(B(0), priorBias);
// Now add IMU factors and bias noise models
Bias zeroBias(Vector3(0, 0, 0), Vector3(0, 0, 0));
for (int i = 1; i < numFactors; i++) {
ImuFactor::PreintegratedMeasurements pim =
ImuFactor::PreintegratedMeasurements(zeroBias, accCov, gyroCov,
integrationCov, true);
for (int j = 0; j < 200; ++j)
pim.integrateMeasurement(measuredAcc, measuredOmega, deltaT,
body_P_sensor);
// Create factors
graph.add(
ImuFactor(X(i - 1), V(i - 1), X(i), V(i), B(i - 1), pim, n_gravity,
omegaCoriolis));
graph.add(BetweenFactor<Bias>(B(i - 1), B(i), zeroBias, biasNoiseModel));
values.insert(X(i), Pose3());
values.insert(V(i), zeroVel);
values.insert(B(i), priorBias);
}
// Finally, optimize, and get bias at last time step
Values results = LevenbergMarquardtOptimizer(graph, values).optimize();
Bias biasActual = results.at<Bias>(B(numFactors - 1));
// And compare it with expected value (our prior)
Bias biasExpected(Vector3(0, 0, 0), Vector3(0, 0.01, 0));
EXPECT(assert_equal(biasExpected, biasActual, 1e-3));
}
/* ************************************************************************* */
int main() {
TestResult tr;