Simplified IncompleteGamma

release/4.3a0
Varun Agrawal 2023-05-10 15:54:42 -04:00
parent 8201c77b30
commit d5771609a4
1 changed files with 38 additions and 31 deletions

View File

@ -19,6 +19,7 @@
#include <algorithm>
#include <cmath>
#include <iostream>
namespace gtsam {
@ -105,13 +106,14 @@ namespace internal {
template <typename T>
class IncompleteGamma {
/// 50 point Gauss-Legendre quadrature
/// 50 point Gauss-Legendre quadrature values
static constexpr T quadrature_inp_vals(const T lb, const T ub,
const int counter) noexcept {
return (ub - lb) * gauss_legendre_50_points[counter] / T(2) +
(ub + lb) / T(2);
}
/// 50 point Gauss-Legendre quadrature weights
static constexpr T quadrature_weight_vals(const T lb, const T ub,
const int counter) noexcept {
return (ub - lb) * gauss_legendre_50_weights[counter] / T(2);
@ -122,19 +124,6 @@ class IncompleteGamma {
return exp(-x + (a - T(1)) * log(x) - lg_term);
}
static constexpr T quadrature_recur(const T lb, const T ub, const T a,
const T lg_term,
const int counter) noexcept {
if (counter < 49) {
return quadrature_fn(quadrature_inp_vals(lb, ub, counter), a, lg_term) *
quadrature_weight_vals(lb, ub, counter) +
quadrature_recur(lb, ub, a, lg_term, counter + 1);
} else {
return quadrature_fn(quadrature_inp_vals(lb, ub, counter), a, lg_term) *
quadrature_weight_vals(lb, ub, counter);
}
}
static constexpr T quadrature_lb(const T a, const T z) noexcept {
// break integration into ranges
return a > T(1000) ? std::max(T(0), std::min(z, a) - 11 * sqrt(a))
@ -163,12 +152,27 @@ class IncompleteGamma {
}
static constexpr T quadrature(const T a, const T z) noexcept {
return quadrature_recur(quadrature_lb(a, z), quadrature_ub(a, z), a,
lgamma(a), 0);
T lb = quadrature_lb(a, z);
T ub = quadrature_ub(a, z);
T lg_term = lgamma(a);
T value = quadrature_fn(quadrature_inp_vals(lb, ub, 49), a, lg_term) *
quadrature_weight_vals(lb, ub, 49);
for (size_t counter = 48; counter >= 0; counter--) {
value += quadrature_fn(quadrature_inp_vals(lb, ub, counter), a, lg_term) *
quadrature_weight_vals(lb, ub, counter);
}
return value;
}
// reverse cf expansion
// see: https://functions.wolfram.com/GammaBetaErf/Gamma2/10/0003/
/**
* @brief Reverse continued fraction expansion
* See: https://functions.wolfram.com/GammaBetaErf/Gamma2/10/0003/
*
* @param a
* @param z
* @param depth
* @return constexpr T
*/
static constexpr T cf_2_recur(const T a, const T z,
const int depth) noexcept {
if (depth < 100) {
@ -186,22 +190,25 @@ class IncompleteGamma {
* @param z
* @return constexpr T
*/
static constexpr T cf_2(const T a, const T z) noexcept {
static constexpr T continued_fraction_2(const T a, const T z) noexcept {
return T(1.0) - exp(a * log(z) - z - lgamma(a)) / cf_2_recur(a, z, 1);
}
// continued fraction expansion
// see: http://functions.wolfram.com/GammaBetaErf/Gamma2/10/0009/
static constexpr T cf_1_coef(const T a, const T z, const int depth) noexcept {
return (is_odd(depth) ? -(a - 1 + T(depth + 1) / T(2)) * z
: T(depth) / T(2) * z);
}
/**
* @brief Continued fraction expansion of Gamma function
* See: http://functions.wolfram.com/GammaBetaErf/Gamma2/10/0009/
*
* @param a
* @param z
* @param depth
* @return constexpr T
*/
static constexpr T cf_1_recur(const T a, const T z,
const int depth) noexcept {
if (depth < 55) {
return (a + depth - 1) +
cf_1_coef(a, z, depth) / cf_1_recur(a, z, depth + 1);
T cf_coef = is_odd(depth) ? -(a - 1 + T(depth + 1) / T(2)) * z
: T(depth) / T(2) * z;
return (a + depth - 1) + cf_coef / cf_1_recur(a, z, depth + 1);
} else {
return (a + depth - 1);
}
@ -214,7 +221,7 @@ class IncompleteGamma {
* @param z
* @return constexpr T
*/
static constexpr T cf_1(const T a, const T z) noexcept {
static constexpr T continued_fraction_1(const T a, const T z) noexcept {
return exp(a * log(z) - z - lgamma(a)) / cf_1_recur(a, z, 1);
}
@ -236,9 +243,9 @@ class IncompleteGamma {
} else if (LIM<T>::min() > a) {
return T(1);
} else if (a < T(10) && z - a < T(10)) {
return cf_1(a, z);
return continued_fraction_1(a, z);
} else if (a < T(10) || z / a > T(3)) {
return cf_2(a, z);
return continued_fraction_2(a, z);
} else {
return quadrature(a, z);
}