diff --git a/gtsam/linear/NoiseModel.cpp b/gtsam/linear/NoiseModel.cpp index f982dc43a..ccc61c508 100644 --- a/gtsam/linear/NoiseModel.cpp +++ b/gtsam/linear/NoiseModel.cpp @@ -121,8 +121,8 @@ SharedDiagonal Gaussian::QR(Matrix& Ab) const { // get size(A) and maxRank // TODO: really no rank problems ? - size_t m = Ab.rows(), n = Ab.cols()-1; -// size_t maxRank = min(m,n); + // size_t m = Ab.rows(), n = Ab.cols()-1; + // size_t maxRank = min(m,n); // pre-whiten everything (cheaply if possible) WhitenInPlace(Ab); @@ -134,7 +134,7 @@ SharedDiagonal Gaussian::QR(Matrix& Ab) const { // hand-coded householder implementation // TODO: necessary to isolate last column? -// householder(Ab, maxRank); + // householder(Ab, maxRank); return SharedDiagonal(); } @@ -270,10 +270,8 @@ Vector Constrained::whiten(const Vector& v) const { // a hard constraint, we don't do anything. const Vector& a = v; const Vector& b = sigmas_; - DenseIndex n = a.size(); - // Now allow for whiten augmented vector with a new additional part coming + // Now allows for whiten augmented vector with a new additional part coming // from the Lagrange multiplier. So a.size() >= b.size() -// assert (b.size()==a.size()); Vector c = a; for( DenseIndex i = 0; i < b.size(); i++ ) { const double& ai = a(i), &bi = b(i); @@ -782,7 +780,6 @@ Robust::shared_ptr Robust::Create( return shared_ptr(new Robust(robust,noise)); } - /* ************************************************************************* */ }